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A NEW FACTOR THEOREM FOR GENERALIZED ABSOLUTE CESÀRO

SUMMABILITY METHODS

HÜSEYİN BOR

Abstract. In [6], we have proved a main theorem dealing with ϕ − | C,α, |k summability factors

of infinite series. In this paper, we will generalize this result for the ϕ − | C,α, β |k summability

method. Also, some new and known results are obtained.

1. Introduction

Let
∑
an be a given infinite series. We denote by tα,βn the nth Cesàro mean of order (α, β), with

α+ β > −1, of the sequence (nan), that is (see [7]),

tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav, (1)

where

Aα+β
n = O(nα+β), Aα+β

0 = 1 and Aα+β
−n = 0 for n > 0.

Let (ωα,βn ) be a sequence defined by (see [3])

ωα,βn =

{∣∣tα,βn ∣∣ , α = 1, β > −1,

max
1≤v≤n

∣∣tα,βv ∣∣ , 0 < α < 1, β > −1.
(2)

Let (ϕn) be a sequence of complex numbers. The series
∑
an is said to be summable ϕ− | C,α, β |k,

k ≥ 1, if (see [4])
∞∑
n=1

n−k | ϕntα,βn |k<∞.

In the special case for ϕn = n1− 1
k , the ϕ−| C,α, β |k summability is the same as | C,α, β |k summabil-

ity (see [8]). Also, if we take ϕn = nδ+1− 1
k , then ϕ− | C,α, β |k summability reduces to | C,α, β; δ |k

summability (see [5]). If we take β = 0, then we have ϕ − | C,α |k summability (see [1]). If we take

ϕn = n1− 1
k and β = 0, then we get | C,α |k summability (see [9]). Finally, if we take ϕn = nδ+1− 1

k

and β = 0, then we obtain | C,α; δ |k summability (see [10]).

2. The Known Results

The following theorems dealing with the ϕ− | C,α |k summability factors of infinite series are
known.

Theorem A ([2]). Let 0 < α ≤ 1. Let (Xn) be a positive non-decreasing sequence and let there exist
the sequences (βn) and (λn) such that

| ∆λn |≤ βn (3)

βn → 0 as n→∞ (4)
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∞∑
n=1

n | ∆βn | Xn <∞ (5)

| λn | Xn = O(1) as n→∞. (6)

If there exists an ε > 0 such that the sequence (nε−k |ϕn|k) is non-increasing and if the sequence
(ωαn) defined by (see [12])

ωαn =

{
|tαn| (α = 1)

max1≤v≤n |tαv | (0 < α < 1)
(7)

satisfies the condition
m∑
n=1

(| ϕn | wαn)k

nk
= O(Xm) as m→∞,

then the series
∑
anλn is summable ϕ− | C,α |k, k ≥ 1 and (α+ ε) > 1.

Theorem B ([6]). Let 0 < α ≤ 1. Let (Xn) be a positive non-decreasing sequence and the sequences
(βn) and (λn) such that conditions (3), (4), (5), (6) of Theorem A are satisfied. If there exists an

ε > 0 such that the sequence (nε−k |ϕn|k) is non-increasing and if the sequence (ωαn) defined by (7)
satisfies the condition

m∑
n=1

(| ϕn | wαn)k

nkXn
k−1

= O(Xm) as m→∞,

then the series
∑
anλn is summable ϕ− | C,α |k, k ≥ 1 and (1 + αk + ε− k) > 1.

3. The Main Result

The aim of this paper is to generalize Theorem B for ϕ− | C,α, β |k summability method. Now we
shall prove the following theorem.

Theorem. Let 0 < α ≤ 1. Let (Xn) be a positive non-decreasing sequence and the sequences (βn) and
(λn) such that conditions (3), (4), (5), (6) of Theorem A are satisfied. If there exists an ε > 0 such

that the sequence (nε−k |ϕn|k) is non-increasing and if the sequence (ωα,βn ) defined by (2) satisfies the
condition

m∑
n=1

(| ϕn | wα,βn )k

nkXn
k−1

= O(Xm) as m→∞,

then the series
∑
anλn is summable ϕ− | C,α, β |k, k ≥ 1 and (1 + (α+ β)k + ε− k) > 1.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then∣∣∣∣ v∑
p=0

Aα−1
n−pA

β
pap

∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣ m∑
p=0

Aα−1
m−pA

β
pap

∣∣∣∣.
Lemma 2 ([11]). Under the conditions on (Xn), (βn) and (λn) as taken in the statement of Theorem
A, the conditions

nβnXn = O(1) as n→∞ (8)
∞∑
n=1

βnXn <∞.

hold, when (5) is satisfied.
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4. Proof of the Theorem

Let (Tα,βn ) be the nth (C,α, β) mean of the sequence (nanλn).
Then, by (1), we have

Tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvavλv.

Applying first Abel’s transformation and then using Lemma 1, we have

Tα,βn =
1

Aα+β
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λn

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav,

| Tα,βn |≤ 1

Aα+β
n

n−1∑
v=1

| ∆λv |
∣∣∣∣ v∑
p=1

Aα−1
n−pA

β
ppap

∣∣∣∣+
| λn |
Aα+β
n

∣∣∣∣ n∑
v=1

Aα−1
n−vA

β
vvav

∣∣∣∣
≤ 1

Aα+β
n

n−1∑
v=1

A(α+β)
v ωα,βv | ∆λv | + | λn | ωα,βn = Tα,βn,1 + Tα,βn,2 .

To complete the proof of the theorem, by Minkowski’s inequality, it suffices to show that

∞∑
n=1

n−k | ϕnTα,βn,r |k<∞, for r = 1, 2.

For k > 1, applying first Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, and then using
(8), we obtain

m+1∑
n=2

n−k | ϕnTα,βn,1 |k≤
m+1∑
n=2

n−k(Aα+β
n )−k|ϕn|k

{
n−1∑
v=1

Aα+β
v ωα,βv βv

}k−1

≤
m+1∑
n=2

1

n
(Aα+β

n )−k|ϕn|k
n−1∑
v=1

(Aα+β
v )k(ωα,βv )kβkv ×

{
1

n

n−1∑
v=1

1

}k−1

=O(1)

m+1∑
n=2

|ϕn|k

n1+(α+β)k

n−1∑
v=1

v(α+β)k(ωα,βv )kβkv

=O(1)

m∑
v=1

v(α+β)k(ωα,βv )kβvβ
k−1
v

m+1∑
n=v+1

nε−k|ϕn|k

n1+(α+β)k+ε−k

=O(1)

m∑
v=1

v(α+β)k(ωα,βv )kβv
vε−k|ϕv|k

vk−1Xk−1
v

∞∫
v

dx

x1+(α+β)k+ε−k

=O(1)

m∑
v=1

vβv
(ωα,βv |ϕv|)k

vkXk−1
v

=O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(ωα,βr |ϕr|)k

rkXk−1
r

+O(1)mβm

m∑
v=1

(ωα,βv |ϕv|)k

vkXk−1
v

=O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

=O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m→∞,
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by the hypotheses of the theorem and Lemma 2. Again, using (6), we have
m∑
n=1

n−k | ϕnTα,βn,2 |k=

m∑
n=1

n−k |ϕn|k |λn| |λn|k−1
(ωα,βn )k = O(1)

m∑
n=1

|λn|
(| ϕn | wα,βn )k

nkXn
k−1

=O(1)

m−1∑
n=1

∆ |λn|
n∑
v=1

(| ϕv | wα,βv )k

vkXv
k−1

+O(1) |λm|
m∑
n=1

(| ϕn | wα,βn )k

nkXn
k−1

=O(1)

m−1∑
n=1

|∆λn|Xn +O(1) |λm|Xm

=O(1)

m−1∑
n=1

βnXn +O(1) |λm|Xm = O(1) as m→∞,

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

5. Conclusion

If we take ε = 1 and ϕn = n1− 1
k , then we obtain a new result concerning the | C,α, β |k summability

factors of infinite series. If we take ε = 1, β = 0 and ϕn = nδ+1− 1
k , then we have a new result dealing

with the | C,α; δ |k summability factors of infinite series. Also, if we take β = 0, then we obtain
Theorem B.
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