A NEW FACTOR THEOREM FOR GENERALIZED ABSOLUTE CESÀRO SUMMABILITY METHODS

HÜSEYİN BOR

Abstract

In [6], we have proved a main theorem dealing with $\varphi-|C, \alpha,|_{k}$ summability factors of infinite series. In this paper, we will generalize this result for the $\varphi-|C, \alpha, \beta|_{k}$ summability method. Also, some new and known results are obtained.

1. Introduction

Let $\sum a_{n}$ be a given infinite series. We denote by $t_{n}^{\alpha, \beta}$ the nth Cesàro mean of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(n a_{n}\right)$, that is (see [7]),

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 .
$$

Let $\left(\omega_{n}^{\alpha, \beta}\right)$ be a sequence defined by (see [3])

$$
\omega_{n}^{\alpha, \beta}= \begin{cases}\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1 \tag{2}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1\end{cases}
$$

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha, \beta|_{k}$, $k \geq 1$, if (see [4])

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} t_{n}^{\alpha, \beta}\right|^{k}<\infty
$$

In the special case for $\varphi_{n}=n^{1-\frac{1}{k}}$, the $\varphi-|C, \alpha, \beta|_{k}$ summability is the same as $|C, \alpha, \beta|_{k}$ summability (see [8]). Also, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then $\varphi-|C, \alpha, \beta|_{k}$ summability reduces to $|C, \alpha, \beta ; \delta|_{k}$ summability (see [5]). If we take $\beta=0$, then we have $\varphi-|C, \alpha|_{k}$ summability (see [1]). If we take $\varphi_{n}=n^{1-\frac{1}{k}}$ and $\beta=0$, then we get $|C, \alpha|_{k}$ summability (see [9]). Finally, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$ and $\beta=0$, then we obtain $|C, \alpha ; \delta|_{k}$ summability (see [10]).

2. The Known Results

The following theorems dealing with the $\varphi-|C, \alpha|_{k}$ summability factors of infinite series are known.

Theorem A ([2]). Let $0<\alpha \leq 1$. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and let there exist the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \quad\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{3}\\
& \beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4}
\end{align*}
$$

[^0]\[

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty \tag{5}\\
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{6}
\end{gather*}
$$
\]

If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\omega_{n}^{\alpha}\right)$ defined by (see [12])

$$
\omega_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right| & (\alpha=1) \tag{7}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right| & (0<\alpha<1)\end{cases}
$$

satisfies the condition

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}}{n^{k}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, k \geq 1$ and $(\alpha+\epsilon)>1$.
Theorem B ([6]). Let $0<\alpha \leq 1$. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that conditions (3), (4), (5), (6) of Theorem A are satisfied. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\omega_{n}^{\alpha}\right)$ defined by (7) satisfies the condition

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, k \geq 1$ and $(1+\alpha k+\epsilon-k)>1$.

3. The Main Result

The aim of this paper is to generalize Theorem B for $\varphi-|C, \alpha, \beta|_{k}$ summability method. Now we shall prove the following theorem.
Theorem. Let $0<\alpha \leq 1$. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that conditions (3), (4), (5), (6) of Theorem A are satisfied. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\omega_{n}^{\alpha, \beta}\right)$ defined by (2) satisfies the condition

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha, \beta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \beta|_{k}, k \geq 1$ and $(1+(\alpha+\beta) k+\epsilon-k)>1$.
We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right|
$$

Lemma 2 ([11]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of Theorem A, the conditions

$$
\begin{gather*}
n \beta_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{8}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty
\end{gather*}
$$

hold, when (5) is satisfied.

4. Proof of the Theorem

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$.
Then, by (1), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

Applying first Abel's transformation and then using Lemma 1, we have

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}, \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \omega_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \omega_{n}^{\alpha, \beta}=T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

For $k>1$, applying first Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and then using (8), we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{-k}\left|\varphi_{n} T_{n, 1}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} \omega_{v}^{\alpha, \beta} \beta_{v}\right\}^{k-1} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{n}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left|\varphi_{n}\right|^{k} \sum_{v=1}^{n-1}\left(A_{v}^{\alpha+\beta}\right)^{k}\left(\omega_{v}^{\alpha, \beta}\right)^{k} \beta_{v}^{k} \times\left\{\frac{1}{n} \sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(\omega_{v}^{\alpha, \beta}\right)^{k} \beta_{v}^{k} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\omega_{v}^{\alpha, \beta}\right)^{k} \beta_{v} \beta_{v}^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta) k+\epsilon-k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\omega_{v}^{\alpha, \beta}\right)^{k} \beta_{v} \frac{v^{\epsilon-k}\left|\varphi_{v}\right|^{k}}{v^{k-1} X_{v}^{k-1}} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta) k+\epsilon-k}} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left(\omega_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left(\omega_{r}^{\alpha, \beta}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left(\omega_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. Again, using (6), we have

$$
\begin{aligned}
\sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, 2}^{\alpha, \beta}\right|^{k} & =\sum_{n=1}^{m} n^{-k}\left|\varphi_{n}\right|^{k}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1}\left(\omega_{n}^{\alpha, \beta}\right)^{k}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha, \beta}\right)^{k}}{n^{k} X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left(\left|\varphi_{v}\right| w_{v}^{\alpha, \beta}\right)^{k}}{v^{k} X_{v}{ }^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| w_{n}^{\alpha, \beta}\right)^{k}}{n^{k} X_{n}^{k-1}} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

5. Conclusion

If we take $\epsilon=1$ and $\varphi_{n}=n^{1-\frac{1}{k}}$, then we obtain a new result concerning the $|C, \alpha, \beta|_{k}$ summability factors of infinite series. If we take $\epsilon=1, \beta=0$ and $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then we have a new result dealing with the $|C, \alpha ; \delta|_{k}$ summability factors of infinite series. Also, if we take $\beta=0$, then we obtain Theorem B.

References

1. M. Balcı, Absolute φ-summability factors. Comm. Fac. Sci. Univ. Ankara Sér. A A_{1} Math. 29 (1980), no. 8, 63-68 (1981).
2. H. Bor, Factors for generalized absolute Cesàro summability methods. Publ. Math. Debrecen 43 (1993), no. 3-4, 297-302.
3. H. Bor, On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57 (2008), no. 4, 205-209.
4. H. Bor, A newer application of almost increasing sequences. Pac. J. Appl. Math 2 (2010), no. 3, 211-216.
5. H. Bor, An application of almost increasing sequences. Appl. Math. Lett. 24 (2011), no. 3, 298-301.
6. H. Bor, A note on generalized absolute Cesàro summability factors. Filomat 32 (2018), no. 9, 3093-3096.
7. D. Borwein, Theorems on some methods of summability. Quart. J. Math. Oxford Ser. (2) 9 (1958), 310-316.
8. G. Das, A Tauberian theorem for absolute summability. Proc. Cambridge Philos. Soc. 67 (1970), 321-326.
9. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113-141.
10. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357-387.
11. K. N. Mishra, R. S. L. Srivastava, On absolute Cesàro summability factors of infinite series. Portugal. Math. 42 (1983/84), no. 1, 53-61 (1985).
12. T. Pati, The summability factors of infinite series. Duke Math. J. 21 (1954), 271-283.
(Received 18.09.2019)
P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

E-mail address: hbor33@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05.
 Key words and phrases. Cesàro mean; Absolute summability; Infinite series; Hölder's inequality; Minkowski's inequality.

