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A NOTE ON THE MAXIMAL OPERATORS OF THE NÖRLUND LOGARITMIC

MEANS OF VILENKIN-FOURIER SERIES

GEORGE TEPHNADZE1 AND GIORGI TUTBERIDZE1,2

Abstract. The main aim of this paper is to investigate the (Hp, Lp)- type inequalities for the

maximal operators of Nörlund logarithmic means for 0 < p < 1.

1. Introduction

It is well-known that (see e.g., [1], [8] and [16]) Vilenkin systems do not form bases in the Lebesgue
space L1 (Gm) . Moreover, there exists a function in the Hardy space H1 such that the partial sums
of f are not bounded in L1-norm.

In [19] (see also [21]), it was proved that the following is true:

Theorem T1. Let 0 < p < 1. Then the maximal operator

∼
S
∗

pf := sup
n∈N

|Snf |
(n+ 1)

1/p−1

is bounded from the Hardy space Hp (Gm) to the space Lp (Gm) . Here, Sn denotes the n-th partial sum

with respect to the Vilenkin system. Moreover, it was proved that the rate of the factor (n+ 1)1/p−1

is in a sense sharp.

In the case p = 1, it was proved that the maximal operator S̃∗ defined by

S̃∗ := sup
n∈N

|Sn|
log (n+ 1)

is bounded from the Hardy space H1 (Gm) to the space L1 (Gm) . Moreover, the rate of the factor
log(n+ 1) is in a sense sharp. Similar problems for the Nörlund logarithmic means in the case, where
p = 1, was considered in [15].

Móricz and Siddiqi [9] investigated the approximation properties of some special Nörlund means of
Walsh-Fourier series of Lp (Gm) functions in Lp-norm. Fridli, Manchanda and Siddiqi [5] improved
and extended the results of Móricz and Siddiqi [9] to the Martingale Hardy spaces. However, the case
for {qk = 1/k : k ∈ N+} was excluded, since the methods are not applicable to the Nörlund logarithmic
means. In [6], Gt and Goginava proved some convergence and divergence properties of Walsh-Fourier
series of the Nörlund logarithmic means of functions in the Lebesgue space L1 (Gm) . In particular,
they proved that there exists a function in the space L1 (Gm) such that

sup
n∈N
‖Lnf‖1 =∞.

In [2] (see also [15, 17]), it was proved that there exists a martingale f ∈ Hp (Gm) , (0 < p < 1)
such that

sup
n∈N
‖Lnf‖p =∞.

Analogous problems for the Nörlund means with respect to Walsh, Kaczmarz and unbounded
Vilenkin systems were considered in Blahota, and Tephnadze, [3,4], Goginava and Nagy [7], Nagy and
Tephnadze [10–12], Persson, Tephnadze and Wall [13,14], Tephnadze [18,20,21], Tutberidze [22].
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In this paper, we discuss the boundedness of the weighted maximal operators from the Hardy space
Hp (Gm) to the Lebesgue space Lp (Gm) for 0 < p < 1.

2. Definitions and Notation

Let N+ denote the set of the positive integers, N := N+ ∪ {0}.
Let m := (m0,m1, . . . ) denote a sequence of the positive integers, not less than 2.
Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the group Zmj

with the product of the
discrete topologies of Zmj

.
The direct product µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk
)

is the Haar measure on Gm with µ (Gm) = 1.
If sup
n∈N

mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence m is not

bounded, then Gm is said to be an unbounded one. In this paper we discuss the bounded
Vilenkin groups only.

The elements of Gm are represented by the sequences

x := (x0, x1, . . . , xj , . . .) (xk ∈ Zmk
) .

It is easy to give a base for the neighborhood of Gm,

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N)

Denote In := In (0) , for n ∈ N and In := Gm\In.
If we define the so-called generalized number system based on m in the following way :

M0 := 1, Mk+1 := mkMk (k ∈ N)

then every n ∈ N can be uniquely expressed as n =
∞∑
k=0

njMj , where nj ∈ Zmj
(j ∈ N) and only a

finite number of nj ‘s differs from zero. Let |n| := max{j ∈ N; nj 6= 0}.
The norm (or quasi-norm) of the space Lp(Gm) is defined by

‖f‖pp :=

∫
Gm

|f |p dµ (0 < p <∞) .

The space weak − Lp (Gm) consists of all measurable functions f for which

‖f‖pweak−Lp(Gm) := sup
λ>0

λpµ (x : |f (x)| > λ) < +∞.

Next, we introduce on Gm an orthonormal system which is called the Vilenkin system. First we
define the complex-valued function rk (x) : Gm → C, the generalized Rademacher functions as

rk (x) := exp (2πixk/mk)
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn :=

∞∏
k=0

rnk

k , (n ∈ N) .

Specifically, we call this system the Walsh-Paley one if m=2.
The Vilenkin system is orthonormal and complete in L2 (Gm) [1, 23].
Now we introduce analogues of the usual definitions in the Fourier analysis.
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If f ∈ L1 (Gm) , we can establish the Fourier coefficients, the partial sums of the Fourier series, the
Dirichlet kernels with respect to the Vilenkin system ψ in the usual manner:

f̂(k) : =

∫
Gm

fψkdµ, (k ∈ N) ,

Snf : =

n−1∑
k=0

f̂ (k)ψk, (n ∈ N+, S0f := 0) ,

Dn : =

n−1∑
k=0

ψk, (n ∈ N+) .

Recall that (for details see e.g. [1])

DMn
(x) =

{
Mn x ∈ In
0 x /∈ In.

(1)

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by zn (n ∈ N) . Denote
by f = (fn : n ∈ N) a martingale with respect to zn (n ∈ N) (for details see e.g. [24,25]). The maximal
function of a martingale f is defined by

f∗ = sup
n∈N
|fn| .

In the case, where f ∈ L1, the maximal function is also given by

f∗ (x) = sup
n∈N

1

|In (x)|

∣∣∣∣ ∫
In(x)

f (u)µ (u)

∣∣∣∣.
For 0 < p <∞, the Hardy martingale spaces Hp (Gm) consist of all martingales for which

‖f‖Hp
:= ‖f∗‖p <∞.

If f ∈ L1, then it is easy to show that the sequence (SMn
f : n ∈ N) is a martingale. If f =

(fn : n ∈ N) is a martingale, then the Vilenkin-Fourier coefficients should be defined in a slightly
different manner:

f̂ (i) := lim
k→∞

∫
Gm

fkψidµ.

The Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as those of the martingale
(SMnf : n ∈ N) obtained from f .

Let {qk : k > 0} be a sequence of non-negative numbers. The n-th Nörlund means for the Fourier
series of f is defined by

1

Qn

n∑
k=1

qn−kSkf, where Qn :=

n∑
k=1

qk.

If qk = 1/k, then we get the Nörlund logarithmic means

Lnf :=
1

ln

n−1∑
k=0

Skf

n− k
, where ln =

n−1∑
k=0

1

n− k
=

n∑
j=1

1

j
.

A bounded measurable function a is p-atom, if there exists a dyadic interval I such that∫
I

adµ = 0, ‖a‖∞ ≤ µ (I)
−1/p

, supp (a) ⊂ I.
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3. Formulation of Main Results

Theorem 1. a) Let 0 < p < 1. Then the maximal operator

∼
L
∗

pf := sup
n∈N

|Lnf |
(n+ 1)

1/p−1

is bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .
b) Let 0 < p < 1 and ϕ : N+ → [1,∞) be a non-decreasing function satisfying the condition

lim
n→∞

n1/p−1

log nϕ (n)
= +∞.

Then there exists a martingale f ∈ Hp (Gm) such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .

4. Proof of the Theorem

Proof. Since

|Lnf |
(n+ 1)

1/p−1 ≤
1

(n+ 1)
1/p−1 sup

1≤k≤n
|Skf | ≤ sup

1≤k≤n

|Skf |
(k + 1)

1/p−1 ≤ sup
n∈N

|Snf |
(n+ 1)

1/p−1 ,

if we use Theorem T1, we obtain

sup
n∈N

|Lnf |
(n+ 1)

1/p−1 ≤ sup
n∈N

|Snf |
(n+ 1)

1/p−1

and ∥∥∥∥∥sup
n∈N

|Lnf |
(n+ 1)

1/p−1

∥∥∥∥∥
p

≤

∥∥∥∥∥sup
n∈N

|Snf |
(n+ 1)

1/p−1

∥∥∥∥∥
p

≤ cp ‖f‖Hp
.

Now, prove part b) of the Theorem. Let

fnk
= DM2nk+1 −DM2nk

.

It is evident that

f̂nk
(i) =

{
1, if i = M2nk

, . . . ,M2nk+1 − 1,

0, otherwise.

Then we can write that

Sifnk
=


Di −DM2nk

, if i = M2nk
+ 1, . . . ,M2nk+1 − 1,

fnk
, if i ≥M2nk+1,

0, otherwise.

(2)

From (1), we get

‖fnk
‖Hp

=

∥∥∥∥sup
n∈N

SMn
fnk

∥∥∥∥
p

=
∥∥∥DM2nk+1

−DM2nk

∥∥∥
p

(3)

≤
∥∥∥DM2nk+1

∥∥∥
p

+
∥∥∥DM2nk

∥∥∥
p
≤ cM1−1/p

2nk
< c <∞.

Let 0 < p < 1 and {λk : k ∈ N+} be an increasing sequence of the positive integers such that

lim
k→∞

λ
1/p−1
k

ϕ (λk)
=∞.
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Let {nk : k ∈ N+} ⊂ {λk : k ∈ N+} such that

lim
k→∞

(
M

2nk
+ 2
)1/p−1

log (M2nk
+ 2)ϕ (M2nk+2)

≥ c lim
k→∞

λ
1/p−1
k

ϕ (λk)
=∞.

According to (2), we can conclude that

∣∣∣∣LM2nk
+2fnk

ϕ (M2nk+2)

∣∣∣∣ =

∣∣∣DM
2nk

+1 −DM
2nk

∣∣∣
lM2nk

+1ϕ (M2nk+1)

=

∣∣∣ψM2nk

∣∣∣
lM2nk

+2ϕ (M2nk+1)
=

1

lM2nk
+1ϕ (M2nk+2)

.

Hence,

µ

{
x ∈ Gm :

∣∣∣LM2nk
+2fnk

∣∣∣ ≥ 1

lM2nk
+2ϕ (M2nk+2)

}
= µ (Gm) = 1. (4)

By combining (3) and (4), we get

1

lM2nk
+2ϕ(M2nk+2)

(
µ

{
x ∈ Gm :

∣∣∣LM2nk
+2fnk

∣∣∣ ≥ 1

lM2nk
+2ϕ(M2nk+2)

})1/p

‖fnk
‖p

≥
M1/p−1

2nk

lM2nk
+2ϕ (M2nk+2)

≥
c
(
M2nk

+ 2
)1/p−1

log (M2nk
+ 2)ϕ (M2nk+2)

→∞, as k →∞. �

Open Problem. For any 0 < p < 1, let us find a non-decreasing function Θ : N+ → [1,∞) such
that the following maximal operator

∼
L
∗

pf := sup
n∈N

|Lnf |
Θ (n+ 1)

is bounded from the Hardy space Hp (Gm) to the Lebesgue space Lp (Gm) and the rate of Θ : N+ →
[1,∞) is sharp, that is, for any non-decreasing function ϕ : N+ → [1,∞) satisfying the condition

lim
n→∞

Θ (n)

ϕ (n)
= +∞,

there exists a martingale f ∈ Hp (Gm) such that the maximal operator

sup
n∈N

|Lnf |
ϕ (n+ 1)

is not bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .

Remark 1. According to Theorem 1, we can conclude that there exist absolute constants C1 and C2

such that

C1n
1/p−1

log(n+ 1)
≤ Θ (n) ≤ C2n

1/p−1.
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