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GENERALIZED SCHWARTZ TYPE SPACES AND LCT BASED PSEUDO

DIFFERENTIAL OPERATOR

PANKAJ JAIN1, RAJENDER KUMAR1, AND AKHILESH PRASAD2

Abstract. In connection with the LCT, in this paper, we define the Schwartz type spaces S∆,α,A,

S∆,β,B , S∆,β,B
∆,α,A and study the mapping properties of LCT between these spaces. Moreover, we

define a generalized ∆-pseudo differential operator and investigate its mapping properties in the
framework of the above Schwartz type spaces.

1. Introduction

The Fourier transform

f̂(ξ) := F [f ; ξ] =

∫
R

f(x)e−ixξ dx

and the related convolution

(f ∗ g)(ξ) =

∫
R

f(ξ − x)g(x) dx

have become an essential tool for solving many practical problems over the last few decades. Because
of their usefulness, these notions have been generalized and extended by several people to give rise
more general transforms and convolutions such as fractional Fourier transform [8], [12], [25], [33]. One
such generalizaion is the so-called linear canonical transform (LCT) introduced in 1971 [26] which is
connected with the 2× 2 matrix M given by

M =

[
a b
c d

]
, with ad− bc = 1.

The LCT is defined by

LM [f ; ξ] =

∫
R

f(x)KM (x, ξ) dx,

where the kernel KM is defined by

KM (x, ξ) =


1√

2πbi
exp

[
i
2

(
a
bx

2 − 2
bxξ + d

b ξ
2
)]
, if b 6= 0

1√
a
ei(

c
2a )ξ2δ

(
x− ξ

a

)
, if b = 0.

The convolution related to LCT is given by

(f ?M g)(x) =

∫
R

f(ξ)g(x− ξ) exp
[
i
a

b
ξ(x− ξ)

]
dξ

and the inverse LCT is defined by

LM−1 [f ;x] =

∫
R

f(ξ)KM−1(ξ, x) dξ,

where M−1 is the inverse of the matrix M .
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At present, “Fourier Analysis” is usually termed as “Time Frequency Analysis”. In this context,
the Fourier transform rotates the signals from the time axis to the frequency axis by 90 degrees.
It has been observed that certain optical systems rotated the signals by an arbitrary angle which
requires the notion of fractional Fourier transforms, i.e., a one-parameter family of transforms. The
linear canonical transforms (LCT) form a class of three-parameter family of transforms involving
many known transforms. For notational convenience, if we write the matrix M as (a, b; c, d), then
the matrices (0, 1;−1, 0) and (cosα, sinα;− sinα, cosα) correspond, respectively, to the Fourier and
fractional Fourier transforms. More special matrices lead to some other known integral transforms,
e.g., Fresnel transform, chirp functions etc. Various applications of LCT have been realized in the
field of electromagnetic, acoustic and other wave propagation problems. As mentioned in [10], LCT
is known under other terminology as well, such as a quadratic phase integral [2], generalized Huygens
integral [28], generalized Fresnel transform [9], [13], etc.

Recently, in [23], the authors have studied certain mappings properties of LCT and the associated
pseudo-differential operators in a variant of Schwartz space denoted by SM ≡ SM (R).

In this paper, we first introduce further variants of the space SM , denoted by S∆,α,A, S∆,β,B and

S∆,β,B
∆,α,A , where ∆ is a differential operator defined and studied in Section 2, and α, β,A and B are

certain constants. These spaces extend the spaces Sα, Sβ and Sβα (see [5]). We study the mapping

properties of LCT in the spaces S∆,α,A, S∆,β,B and S∆,β,B
∆,α,A . This is done in Section 3. Finally, in

Section 4, we define a generalized ∆-pseudo differential operator and study its mapping properties in

the framework of the spaces S∆,α,A, S∆,β,B and S∆,β,B
∆,α,A .

2. LCT Based Convolution and Differential Operators

We begin this section with mentioning that a Young type inequality can be proved for the convolu-
tion ?M , and this can be done on lines, similar to those obvious modifications performed in [23]. We
only state the result.

Theorem 2.1. Let 1 ≤ p <∞, f ∈ L1(R) and g ∈ Lp(R). Then (f ?M g) ∈ Lp(R) with

‖f ?M g‖Lp(R) ≤ ‖f‖L1(R)‖g‖Lp(R).

Next, we prove the following

Theorem 2.2. Let f be continuous and g be continuous with a compact support. Then f ?M g is
continuous.

Proof. Let h ∈ R. Then

|(f ?M g)(x+ h)− (f ?M g)(x)|

=

∣∣∣∣ ∫
R

f(y)g(x+ h− y) exp[i(a/b)y(x+ h− y)] dy

−
∫
R

f(y)g(x− y) exp[i(a/b)y(x− y)] dy

∣∣∣∣
=

∣∣∣∣ ∫
R

f(y)(g(x+ h− y) exp[i(a/b)yh]− g(x− y)) exp[i(a/b)y(x− y)] dy

∣∣∣∣
≤
∫
R

∣∣∣f(y)
(
g(x+ h− y) exp[i(a/b)yh]− g(x− y)

)∣∣∣ dy
=

∫
R

∣∣∣f(y)
(
g(x+ h− y) exp[i(a/b)yh]− g(x− y) exp[i(a/b)yh]

+ g(x− y) exp[i(a/b)yh]− g(x− y)
)∣∣∣ dy
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≤
∫
R

|f(y)||g(x+ h− y)− g(x− y)| dy

+

∫
R

|f(y)||g(x− y)|| exp[i(a/b)yh]− 1| dy

=: I1 + I2.

Let K := supp (g) be compact. Then for any fixed x,

x−K = {x− y : y ∈ K}

is compact and therefore, f is uniformly continuous on x−K. Thus, for each ε > 0, there exists η > 0
such that if |h| < η, then I1 → 0 as h→ 0. Further, on x−K, f, g are bounded, therefore

I2 ≤
∫
R

|f(y)||g(x− y)|2| sin(a/2b)yh| dy

which tends to 0 as h → 0. Hence |(f ?M g)(x + h) − (f ?M g)(x)| → 0 as h → 0 and the assertion
follows. �

A stronger version of Theorem 2.2 is the following

Theorem 2.3. If f ∈ C∞(R) and g is continuous with a compact support, then f ?M g is C∞.

Proof. We have

1

h
[(f ?M g)(x+ h)− (f ?M g)(x)]

=
1

h

∫
R

g(y)
(
f(x+ h− y) exp[i(a/b)yh]− f(x− y)

)
exp[i(a/b)y(x− y)] dy

=
1

h

∫
R

g(y)
(
f(x+ h− y) exp[i(a/b)yh]− exp[i(a/b)yh]f(x− y)

+ exp[i(a/b)yh]f(x− y))− f(x− y)
)

exp[i(a/b)y(x− y)] dy

=
1

h

∫
R

g(y)
(
f(x+ h− y)− f(x− y)

)
exp[i(a/b)y(x+ h− y)] dy

+
1

h

∫
R

g(y)(exp[i(a/b)yh]− 1)f(x− y) exp[i(a/b)y(x− y)] dy.

→ (Df ?M g)(x) + (f ?M (ia/b)(·)g)(x)

as h→ 0. Therefore, it follows that f ?M g is differentiable if f is differentiable. It can be proved by
induction that

Dn
x (f ?M g)(x) =

n∑
r=0

An,r(D
n−rf ?M (ia/b(·))rg)(x),

where An,r are appropriate constants. Hence, f ?M g ∈ C∞. �

Remark 2.4. Since f ?M g is commutative, therefore, if g ∈ C∞ and f is continuous with a compact
support, then

Dn
x (f ?M g)(x) =

n∑
r=0

An,r((ia/b(·))n−rf ?M Drg)(x)

and, consequently, f ?M g ∈ C∞.
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Denote Dx :=
d

dx
. Let us define the following generalized differential operators based on the LCT:

∆x,a = Dx − i
a

b
x

∆∗x,a = −
(
Dx + i

a

b
x
)
.

Remark 2.5. The following can be observed immediately:

(i) 4x,aKM (x, ξ) =
(
−iξ
b

)
KM (x, ξ).

(ii) 4ξ,dKM (x, ξ) =
(−ix

b

)
KM (x, ξ).

(iii) 4∗x,aKM−1(ξ, x) =
(
−iξ
b

)
KM−1(ξ, x).

(iv) 4∗ξ,dKM−1(ξ, x) =
(−ix

b

)
KM−1(ξ, x).

Let us recall that the Schwartz space S(R) consists of all functions φ ∈ C∞ such that

sup
x∈R
|xkφ(q)(x)| ≤ mkq, k, q = 0, 1, 2, . . . .

Some of the properties of the operator 4x,a are given below which can be proved in a way, similar
to [23].

Proposition 2.6.

(i) For φ ∈ S(R), the follwoing

(4ξ,d)n LM [φ; ξ] = LM
[(
−ix
b

)n
φ; ξ

]
holds.

(ii) For φ, ψ ∈ S(R), the following Leibnitz type rule

4x,a(φ(x)ψ(x)) =

n∑
r=0

An,rD
r
xφ(x) · 4n−rx,a ψ(x)holds.

Remark 2.7. The results similar to those of Proposition 2.6 can also be proved for 4∗x,a,4ξ,d and
4∗ξ,d.

3. Schwartz Type Spaces Based on LCT

The space S∆ was defined in [17] (see also [23]) as the space of all φ ∈ C∞ for which

sup
t∈R

∣∣xk4qx,aφ(x)
∣∣ <∞, k, q ∈ N0 ≡ N ∪ {0}.

When 4x,a is the differential operator d
dx , the space S∆ coincides with the standard Schwartz space S.

Let us note from the construction of the Schwartz space S := S that the sequence mkq depends on
both k and q. The Gelfand and Shilov type spaces are the variants of the space S, in which the
sequence mkq depends only on k, or only on q, or on both. Such spaces are denoted, respectively, by
Sα, Sβ and Sβα. These spaces have further been generalized to give rise to the spaces Sα,A, Sβ,B and

Sβ,Bα,A . For a systematic study and related results about these spaces, one may refer to [5].

Below, we define and study further generalizations of the spaces Sα,A, Sβ,B and Sβ,Bα,A in which the

derivative
d

dx
is replaced by more general operators ∆ and ∆∗.

In the literature (see, e.g., [5]), various spaces of type S such as Sα,Sβ ,Sβα have been defined and
studied. In this section, we define and study similar variants of the space S∆.

Definition 3.1. Let δ > 0. We define the space S∆,α,A that consists of all φ ∈ C∞ such that

|xk4qx,aφ(x)| ≤ Cq,δ(A+ δ)kkkα,

where k, q ∈ N0 and Cq,δ depends on φ.
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Definition 3.2. Let ρ > 0. We define the space S∆,β,B that consists of all φ ∈ C∞ such that

|xk4qx,aφ(x)| ≤ Ck,ρ(B + ρ)qqqβ ,

where k, q ∈ N0 and Ck,ρ depends upon φ.

Definition 3.3. Let δ, ρ > 0. We define the space S∆,β,B
∆,α,A that consists of all φ ∈ C∞ such that

|xk4qx,aφ(x)| ≤ Ck(A+ δ)k(B + ρ)qkk,αqqβ ,

where k, q ∈ N0 and Ck depends on φ.

Remark 3.4. We also define the spaces S∆∗,α,A, S∆∗,β,B and S∆∗,β,B
∆∗,α,A , where ∆ in Definitions 3.1,

3.2 and 3.3, is replaced by ∆∗.

Theorem 3.5. Let φ ∈ S∆∗,α,A. Then LM [φ; ·] ∈ S∆,α,B.

Proof. We have

ξk4qξ,dLM [φ; ξ] = ξk4qξ,d
∫
R

KM (x, ξ)φ(x) dx

= ξk
∫
R

4qξ,dKM (x, ξ)φ(x) dx

= ξk
∫
R

(
−ix
b

)q
KM (x, ξ)φ(x) dx

=

(
−i
b

)q−k ∫
R

(
−iξ
b

)k
KM (x, ξ)xqφ(x) dx

=

(
−i
b

)q−k ∫
R

(4x,a)kKM (x, ξ)xqφ(x) dx

=

(
−i
b

)q−k ∫
R

KM (x, ξ)(4∗x,a)k(xqφ(x)) dx

=

(
−i
b

)q−k ∫
R

KM (x, ξ)

( k∑
r=0

Ak,rD
r
xx

q(4∗x,a)(k−r)φ(x)

)
dx

=

(
−i
b

)q−k ( k∑
r=0

Ak,r

∫
R

KM (x, ξ)Dr
xx

q(4∗x,a)(k−r)φ(x) dx

)
so that

|ξk4qξ,dLM [φ; ξ]|

=

∣∣∣∣ (−ib
)q−k ( k∑

r=0

Ak,r

∫
R

KM (x, ξ)
q!

(q − r)!
ψ(x)q−r(4∗x,a)(k−r)φ(x) dx

)∣∣∣∣,
where

ψ(x) =

{
x if q − r ≥ 0,

0 otherwise.

Denote |Ak| = sup
r
|Ak,r|. Then

|ξk4qξ,dLM [φ; ξ]|
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≤
(

1

|b|

)q−k ( k∑
r=0

|Ak,r|
∫
R

|KM (x, ξ)| q!

(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

≤
(

1

|b|

)q−k
|Ak|

( k∑
r=0

∫
R

|KM (x, ξ)| q!

(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

=

(
1

|b|

)q−k
|Ak|k!

( k∑
r=0

∫
R

|KM (x, ξ)| q!

k!(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

≤
(

1

|b|

)q−k
|Ak|k!

( k∑
r=0

∫
R

|KM (x, ξ)| q!

r!(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

=

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!

∫
R

|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx
)

=

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!

∫
R

(1 + |x|2)|ψ(x)|q−r

× (4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

)
=

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!

[ ∫
R

|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

+

∫
R

|ψ(x)|q+2−r|(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

])

≤
(

1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!

∫
R

2|ψ(x)|q+2−r|(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!
Ck−r,δ(A+ δ)q+2−r(q + 2− r)(q+2−r)α

×
∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!

∫
R

Ck−r,δ(A+ δ)q+2−r

× (q + 2)(q+2)α dx

(1 + |x|2)

)
≤ 2

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|

( q∑
r=0

q!

r!(q − r)!
Ck,δ(A+ δ)q+2−r

× (q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|Ck,δ

( q+2∑
r=0

q!

r!(q − r)!
(A+ δ)q+2−r

× (q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

)
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= 2

(
1

|b|

)q−k
|Ak|k!|KM (x, ξ)|Ck,δ(1 +A+ δ)q+2(q + 2)(q+2)α

∫
R

dx

(1 + |x|2)

= 2π

(
1

|b|

)−k−2

|Ak|k!|KM (x, ξ)|Ck,δ
(

1 +A

|b|
+ δ/|b|

)q+2

(q + 2)(q+2)α

= 2π|b|k+2|Ak|k!|KM (x, ξ)|Ck,δ
(

1 +A

|b|
+ δ/|b|

)q+2

(q + 2)(q+2)α

= Dk,δ (B + ρ)
q+2

(q + 2)(q+2)α

= Dk,ρ (B + ρ)
q+2

(q + 2)(q+2)α

= Ek,ρ (B + ρ)
q
qqα. (3.1)

�

Theorem 3.6. Let φ ∈ S∆∗,β,B. Then LM [φ; ·] ∈ S∆,β,A.

Proof. Let φ ∈ S∆∗,β,A and ρ > 0 be arbitrary. Using (3.1), we get

|ξk4qξ,dLM [φ; ξ]|

≤
(

1

|b|

)q−k
|Ak|

( k∑
r=0

∫
R

|KM (x, ξ)| q!

(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

=

(
1

|b|

)q−k
|Ak|

( k∑
r=0

∫
R

|KM (x, ξ)| q!

(q − r)!
|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx

)

≤
(

1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

r!(q − r)!

∫
R

|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)| dx
)

≤
(

1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

r!(q − r)!

∫
R

(1 + |x|2)|ψ(x)|q−r

× |(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

)
=

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

r!(q − r)!

[ ∫
R

|ψ(x)|q−r|(4∗x,a)(k−r)φ(x)|

× dx

(1 + |x|2)
+

∫
R

|ψ(x)|q+2−r|(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

])

≤
(

1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( k∑
r=0

q!

r!(q − r)!

∫
R

2|ψ(x)|q+2−r

× |(4∗x,a)(k−r)φ(x)| dx

(1 + |x|2)

)
= 2

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

(q − r)!
Cq+2−r,ρ(B + ρ)k−r

× (k − r)(k−r)α
∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

r!(q − r)!

∫
R

Cq+2−r,ρ(B + ρ)k
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× kkβ dx

(1 + |x|2)

)
≤ 2

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!

( q∑
r=0

q!

r!(q − r)!
Cq,ρ(B + ρ)k

× kkβ
∫
R

dx

(1 + |x|2)

)

≤ 2

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!Cq,ρ

(
2q(B + ρ)kkkβ

∫
R

dx

(1 + |x|2)

)

= 2π

(
1

|b|

)q−k
|Ak||KM (x, ξ)|q!2qCq,ρ(B + ρ)kkkβ

= 2π

(
1

|b|

)q
|Ak||KM (x, ξ)|q!2qCq,ρ(|b||Ak|1/k(B + ρ))kkkβ

= Dq,ρ(A+ δ)kkkβ .

�

Similarly, the following can be proved. We skip the proof for conciseness.

Theorem 3.7. Let φ ∈ S∆∗,β,B
∆∗,α,A . Then LM [φ; ·] ∈ S∆,α,A′

∆,β,B′ .

4. LCT Based Pseudo Differential Operator

Consider the linear differential operator given by

P (x,4∗x,a) =

m∑
r=0

ar(x)(4∗x,a)r,

where ar(x) are the functions on R. We also consider the polynomial given by

Pm(x, ξ) =

m∑
r=0

ar(x)

(
−iξ
b

)r
Let φ ∈ S. Then we have

(P (x,4∗x,a)φ)(x) =

m∑
r=0

ar(x)(4∗x,a)rφ(x)

=

m∑
r=0

ar(x)LM−1LM [(4∗x,a)rφ(x); ξ]

=

m∑
r=0

ar(x)LM−1

[(
−iξ
b

)r
LM [φ; ξ]

]

= LM−1

[(
m∑
r=0

ar(x)

(
−iξ
b

)r)
LM [φ; ξ]

]
= LM−1 [P (x, ξ)LMφ(ξ)]

=

∫
R

KM−1(ξ, x)Pm(x, ξ)LM [φ; ξ] dξ.

We replace Pm(x, ξ), the polynomial in , ξ by a more general symbol a(x, ξ), which need not to be a
polynomial. This motivates the need to define a more general pseudo-differential operator which will
be defined below. First, let us recall the following
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Definition 4.1 ([31]). Let m ∈ R. We define Sm to be the set of all functions σ(x, ξ) ∈ C∞(R× R)
such that for any two k, q ∈ N0, there is a positive constant c depending on k and q (which, without
loss of generality, can be taken > 1) such that∣∣∣(Dk

xD
q
ξ)σ(x, ξ)

∣∣∣ ≤ ck+q(1 + |ξ|)m−q. (4.1)

It is customary to call the function σ ∈ Sm a symbol. Now, we define the following

Definition 4.2. Let σ be a symbol. Define the ∆−pseudo-differential operator Tσ,M associated with
σ by

(Tσ,Mφ)(x) =

∫
R

KM−1(ξ, x)σ(x, ξ)LM (φ)(ξ) dξ, φ ∈ S.

Remark 4.3. The mapping properties of pseudo-differential operators between Schwartz spaces are
well-known in the literature (see, e.g., [31]). Recently, in [19], pseudo-differential operators have been
studied in the framework of a fractional Fourier transform and in [23] they have been studied in the
spaces S∆ and in the corresponding space of tempered distribution S ′∆. Below, we prove the mapping
properties of the operator Tσ,M between the generalized Gelfand-Shilov type spaces defined in Section
3.

Theorem 4.4. The ∆−pseudo-differential operator Tσ,M maps S∆∗,α,A into S∆∗,1+α,A′ for some
A′ > 0 depending on A.

Proof. Let φ ∈ S∆∗,α,A. Then for each δ > 0,

|(xk(4∗x,a)qφ)| ≤ Cq,δ(A+ δ)kkkα, k, q ∈ N0.

Now,

|xk(4∗x,a)q(Tσ,Mφ)(x)|

=

∣∣∣∣xk(4∗x,a)q
∫
R

KM−1(ξ, x)σ(x, ξ)LM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣xk ∫
R

(4∗x,a)q[KM−1(ξ, x)σ(x, ξ)]LM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣xk ∫
R

( q∑
r=0

Aq,r(4∗x,a)rKM−1(ξ, x)Dq−r
x σ(x, u)

)
LM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣ ∫
R

( q∑
r=0

Aq,rx
k

(
−iξ
b

)r
KM−1(ξ, x)Dq−r

x σ(x, ξ)

)
LM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣ (−ib
)−k ∫

R

( q∑
r=0

Aq,r

(
−iξ
b

)r
(4∗ξ,d)kKM−1(ξ, x)Dq−r

x σ(x, ξ)

)
LM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣ (−ib
)−k q∑

r=0

Aq,r

(
−i
b

)r ∫
R

(4∗ξ,d)kKM−1(ξ, x)Dq−r
x σ(x, ξ)ξrLM [φ](ξ) dξ

∣∣∣∣
=

∣∣∣∣ q∑
r=0

Aq,r

(
−i
b

)−k+r ∫
R

KM−1(ξ, x)(4ξ,d)k[Dq−r
x σ(x, ξ)ξrLM [φ](ξ)] dξ

∣∣∣∣
=

∣∣∣∣ q∑
r=0

Aq,r

(
−i
b

)−k+r ∫
R

KM−1(ξ, x)

k∑
j=0

Bk,jD
j
ξD

q−r
x σ(x, ξ)(4ξ,d)(k−j)[ξrLM [φ](ξ)] dξ

∣∣∣∣
=

∣∣∣∣ q∑
r=0

Aq,r

(
−i
b

)−k+r ∫
R

KM−1(ξ, x)

k∑
j=0

Bk,jD
j
ξD

q−r
x σ(x, ξ)
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×
(k−j)∑
i=0

Ck−j,iD
i
ξξ
r(4∗ξ,d)(k−j)−iLM [φ](ξ)] dξ

∣∣∣∣
≤

q∑
r=0

|Aq,r||b|k−r
∫
R

|KM−1(x, ξ)|
k∑
j=0

|Bk,j ||Dj
ξD

q−r
x σ(x, ξ)|

×
(k−j)∑
i=0

|Ck−j,i||Di
ξξ
r||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ. (4.2)

Writing

|Aq| = sup
r
|Aq,r|, |Bk| = sup

j
|Bk,j |, |Ck| = sup

i,j
|Ck−j,i|, (4.3)

the last estimate by using (4.1) gives

|xk(4∗x,a)q(Tσ,Mφ)(x)|

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

|c(q−r)+j |(1 + |ξ|)m−j

×
(k−j)∑
i=0

|Di
ξξ
r||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

|c(q−r)+j |(1 + |ξ|)m−j

×
(k−j)∑
i=0

r!

(r − i)!
|ξr−i||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j

×
(k−j)∑
i=0

r!

(r − i)!
Cr−i,δ(A+ δ)k−j−i(k − j − i)(k−j−i)α dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j

× (k − j)!
(k−j)∑
i=0

r!

i!(r − i)!
Cr−i,δ(A+ δ)k(k)kα dξ

≤ Cq,δ|Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j(k − j)!2r dξ

× (A+ δ)k(k)kα

≤ Cq,δ|Aq||Bk||Ck||b|k
q∑
r=0

|b|−rk!2qcq+k
k∑
j=0

∫
R

(1 + |ξ|)m−j dξ

× (A+ δ)k(k)kα

≤ 2qcqCq,δ|Aq|
( q∑
r=0

|b|−r
)
|Bk||Ck||b|kk!ckIk(A+ δ)k(k)kα,



GENERALIZED SCHWARTZ TYPE SPACES AND LCT BASED PSEUDO DIFFERENTIAL OPERATOR 103

where

Ik =

k∑
j=0

∫
R

(1 + |ξ|)m−j dξ

in which the integral converges by choosing m− k + 1 < 0. Thus we have

|xk(4∗x,a)q(Tσ,Mφ)(x)|

≤ 2qcqCq,δ|Aq|
( q∑
r=0

|b|−r
)
|Bk||Ck||b|kkkCkIk(A+ δ)k(k)kα

= Eq,δ(A
′ + δ′)kk(k+1)α

= Eq,δ′(A
′ + δ′)kkk(1+α),

where

Eq,δ = 2qcqCq,δ|Aq|
( q∑
r=0

|b|−r
)
, A′ = (|Bk||Ck||b|kckIk)1/kA.

�

Theorem 4.5. The ∆−pseudo-differential operator Tσ,M maps S∆∗,β,B into S∆∗,1+β,B′ for some
B′ > 0 depending on B.

Proof. Let φ ∈ S∆∗,α,A. Then for each β > 0,

|(xk(4∗x,a)qφ)| ≤ Ck,β(B + β)qqqβ , k, q ∈ N0.

Now, using (4.1) and (4.2), we have

|xk(4∗x,a)q(Tσ,Mφ)(x)|

≤
q∑
r=0

|Aq,r||b|k−r
∫
R

|KM−1(x, ξ)|
k∑
j=0

|Bk,j ||Dj
ξD

q−r
x σ(x, ξ)|

×
(k−j)∑
i=0

|Ck−j,i||Di
ξξ
r||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

|c(q−r)+j |(1 + |ξ|)m−j

×
(k−j)∑
i=0

|Di
ξξ
r||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

|c(q−r)+j |(1 + |ξ|)m−j

×
(k−j)∑
i=0

r!

(r − i)!
|ξr−i||(4ξ,d)(k−j)−iLM [φ](ξ)| dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j

×
(k−j)∑
i=0

r!

(r − i)!
Ck−j−i,β(B + β)r−i(r − i)(r−i)β dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j
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× Ck,β
(k−j)∑
i=0

r!

(r − i)!
(B + β)r−i(r − i)(r−i)β dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
∫
R

k∑
j=0

cq+k(1 + |ξ|)m−j

× Ck,β r!
r∑
i=0

r!

i!(r − i)!
(B + β)r−iqqβ dξ

≤ |Aq||Bk||Ck|
q∑
r=0

|b|k−r
k∑
j=0

cq+k
∫
R

(1 + |ξ|)m−j

× Ck,β r!
r∑
i=0

r!

i!(r − i)!
(B + β)r−iqqβ dξ

= |Aq||Bk||Ck|
q∑
r=0

|b|k−rcq+k
k∑
j=0

∫
R

(1 + |ξ|)m−j

× Ck,β r!(1 +B + β)rqqβ dξ

≤ |Aq||Bk||Ck,β ||Ck|
q∑
r=0

|b|k−rcq+kIkq!(1 +B + β)qqqβ dξ,

where

Ik =

k∑
j=0

∫
R

(1 + |ξ|)m−j dξ

in which the integral converges by choosing m− k + 1 < 0. Thus we have

|xk(4∗x,a)q(Tσ,Mφ)(x)|

≤ |b|kCkIk|Bk||Ck,β ||Ck||Aq|
( q∑
r=0

|b|−r
)
cqqq(1 +B + β)qqqβ

= Ek,β(B′ + β′)qqq(1+β)

= Ek,β′(B
′ + β′)qqq(1+β),

where

Ek,β = |b|kCkIk|Bk||Ck,β ||Ck|, B′ =

(
|Aq|

( q∑
r=0

|b|−r
)
cq
)1/q

A

and

β′ =

(
|Aq|

( q∑
r=0

|b|−r
)
cq
)
β.

�

In a similar way we can prove the following

Theorem 4.6. The ∆−pseudo-differential operator Tσ,M maps S∆∗,β,B
∆∗,α,A into S∆∗,1+β,B′

∆∗,1+α,A′ .

5. Concluding Remark

Harmonic oscillators occupy an important place in several science and engineering fields. Many
mechanical systems such as vibrating string with small amplitude about an equilibrium point can be
modeled as a simple harmonic oscillator. In [18], the author points out that one of the most important
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features of an harmonic oscillator is its energy eigenstates which can be described in terms of their
coordinate space wave functions ψn(x) as

d2ψn
dX2

+
2M

h2

(
En −

MΩ2X2

2

)
ψn = 0, (5.1)

where X is the spatial coordinate, En is the energy of the nth stationary state of the oscillator, M is
the mass and Ω is the frequency. The author in [18] solved equation (4.1) by using a simple harmonic
transformation, although many classical approaches already exist (see, e.g., [4], [27]).

Similarly, in [11], the authors describe the relationship of fractional Fourier transform and certain
variants of equation (4.1). Since the LCT is more general than the fractional Fourier transform, it is
of interest to work out the relationship between LCT and some further generalized equations as dealt
with in [18] or [11].

In the recent paper [3], the authors have defined and studied a transform more general than the
LCT, the so-called Special Affine Fourier Transform (SAFT). It will be of interest if the results of the
present paper are extended in the framework of SAFT.
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