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MULTILINEAR FEFFERMAN-STEIN INEQUALITY AND ITS

GENERALIZATIONS

GIORGI IMERLISHVILI1, ALEXANDER MESKHI1,2, AND QINGYING XUE3

Abstract. The Fefferman-Stein type inequalities are established for multilinear fractional maximal
operators with a variable parameter defined with respect to the basis B on Rn which may be both

either Q or R, where Q (resp., R) consists of all cubes (resp., of n-dimensional intervals) with sides

parallel to the coordinate axes. Some related two-weight boundedness problems are also investigated.

1. Introduction

Let B in Rn be a basis which may be both either Q or R, where Q (resp., R) is a basis consisting
of all cubes (resp., of n−dimensional intervals) with sides parallel to the coordinate axes. Further, let

−→
f := (f1, . . . , fm), −→p := (p1, . . . , pm), −→w = (w1, . . . , wm),

where pi are the constants (0 < pi <∞) and wi are a.e. positive functions defined on the Euclidean
space. It will also be assumed that

1

p
=

m∑
i=1

1

pi
. (1)

For a given function α(·) on Rn, let

α− := inf α(·), α+ := supα(·).

In this paper we establish the following inequalities: 1 < pi, q <∞, i = 1, . . . ,m, and 1 < p < q <
∞, where p is defined by (1). Then

(i) ∥∥∥(M(B)
α(·)
−→
f
)
v
∥∥∥
Lq
≤ C

m∏
i=1

∥∥∥fi(M̃ (B)
α(·),pi,qvi

)1/q∥∥∥
Lpi

, (2)

where v(x) =
∏m
i=1 v

p/pi
i (x), M(B)

α(·) is a strong fractional maximal operator defined with respect to

the basis B given by the formula

M(B)
α(x)(

−→
f )(x) = sup

B3x,B∈B

m∏
i=1

1

|B|1−α(x)/(nm)

∫
B

|fi(yi)|dyi, 0 < α− ≤ α+ < mn, (3)

and M̃
(B)
α(·),pi,q, i = 1, . . . ,m, are the appropriate fractional maximal operators (see the definition in

Theorem 2.1).
(ii) ∥∥∥M(B)

α(·),µ
−→
f
∥∥∥
Lqµ
≤ C

m∏
i=1

∥∥∥fi(M̃ (B)
α(·),p,q,µdµ

)1/(mq)∥∥∥
L
pi
µ

, 0 < α− ≤ α+ < mn,
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with dµ(x) = w(x)dx, where w is a weight function satisfying the doubling condition, the maximal

function M(B)
α(x),µ is defined by

M(B)
α(x),µ(

−→
f )(x) = sup

B3x, B∈B

m∏
i=1

|B|α(x)/(nm)

µ(B)

∫
B

|fi(yi)|dµ, 0 < α− ≤ α+ < mn, 1 < p < q <∞,

and M̃
(B)
α(·),p,q,µ is appropriate fractional maximal operator (see the definition in Theorem 2.2).

We claim that the these results are new even for the linear case (m = 1).
For two-weight inequalities and for strong fractional maximal operators with variable parameters

we refer to the monograph [19], Chapter 6.
Recall that inequality (2) was derived in [14] for v1 = · · · = vm = v and α(·) = const.
Operator (3) for α(x) ≡ 0 and B = R was introduced in [10]. In this case we have multi(sub)linear

strong maximal operator denoted by M(S) and defined with respect to rectangles in Rk with sides
parallel to the coordinate axes. In that paper the authors studied one– and two–weight problems for
M(S). In particular, they proved that the one-weight boundedness M(S) : Lp1w1

× · · · × Lpmwm 7→ Lpν−→w ,

ν−→w =
∏m
j=1 w

p/pj
j , holds if and only if −→w weight satisfies the strong A−→p condition

sup
R∈R

(
1

|R|

∫
R

ν−→w (x)dx

)1/p m∏
i=1

(
1

|R|

∫
R

w
1−p′i
i (x)dx

)1/p′i

<∞.

Historically, multilinear fractional integrals were introduced in their papers by L. Grafakos [8], C.
Kenig and E. Stein [11], L. Grafakos and N. Kalton [9]. In particular, these works deal with the
operator

Bγ(f, g)(x) =

∫
Rn

f(x+ t)g(x− t)
|t|n−γ

dt,

where γ is a constant parameter satisfying the condition 0 < γ < n.
In the above-mentioned papers it was proved that if 1

q = 1
p −

γ
n , where 1

p = 1
p1

+ 1
p2

, then Bγ is

bounded from Lp1 × Lp2 to Lq.
As a tool to understand Bγ , the operator

Iγ(
−→
f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−γ
d−→y ,

where x ∈ Rn, γ is constant satisfying the condition 0 < γ < nm,
−→
f := (f1, . . . , fm),

−→y := (y1, . . . , ym), was studied as well. The corresponding maximal operator is given by (see [22])
the formula

Mγ(
−→
f )(x) = sup

Q3x

m∏
i=1

1

|Q|1− γ
mn

∫
Q

|fi(yi)|dyi,

and the supremum is taken over all cubes Q containing x.
For a variable parameter α(·), let

Iα(·)(
−→
f )(x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α(x)
d−→y ,

Mα(·)(
−→
f )(x) = sup

Q3x

m∏
i=1

1

|Q|1−
α(x)
mn

∫
Q

|fi(yi)|dyi,

where 0 < α− ≤ α+ < nm. The operator Mα(·) for α ≡ 0 was introduced and studied in [21].
It can be immediately checked that

Iα(x)(
−→
f )(x) ≥ cn,α(·)Mα(x)(

−→
f )(x), fi ≥ 0, i = 1, . . . ,m.
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Throughout the paper, we use the notation Q to denote the family of all cubes in Rn with sides
parallel to the coordinate axes.

Let 0 < r < ∞ and let µ be a σ- finite measure on Rn. We denote by Lrµ(Rn) the class of all µ−
measurable functions f on Rn such that

‖f‖Lrµ(Rn) :=

(∫
Rn

|f(x)|rdµ(x)

)1/r

<∞.

If dµ(x) = w(x)dx with a weight function w, then we also use the symbol Lrw(Rn) for Lrµ(Rn).

Definition 1.1 (Vector Muckenhoupt condition, [21]). Let 1 ≤ pi < ∞ for i = 1, . . . ,m. Let wi be
weights on Rn, i = 1, . . . ,m. We say that −→w ∈ A−→p (Rn) (or simply −→w ∈ A−→p ) if

sup
Q∈Q

(
1

|Q|

∫
Q

m∏
i=1

w
p/pi
i (y)dy

)1/p m∏
i=1

(
1

|Q|

∫
Q

w
1−p′i
i (y)dy

)1/p′i

<∞.

Remark 1.1. In the linear case (m = 1) the class A−→p coincides with the well-known Muckenhoupt
class Ap.

Definition 1.2 (Vector Muckenhoupt–Wheeden condition, [22]). Let 1 ≤ pi < ∞ for i = 1, . . . ,m.
Suppose that p < q <∞. We say that −→w = (w1, . . . , wm) satisfies A−→p ,q(Rn) condition (−→w ∈ A−→p ,q) if

sup
Q∈Q

(
1

|Q|

∫
Q

m∏
i=1

wqi (y)dy

)1/q m∏
i=1

(
1

|Q|

∫
Q

w
−p′i
i (y)dy

)1/p′i

<∞.

Theorem A ([21]). Let 1 < pi < ∞, i = 1, . . . ,m. Suppose that wi are weights on Rn. Then the
operator M0 is bounded from Lp1w1

(Rn)×· · ·×Lpmwm(Rn) to Lp∏m
i=1 w

p/pi
i

(Rn) if and only if −→w ∈ A−→p (Rn).

Theorem B ([22]). Let 1 < p1, . . . , pm <∞, 0 < γ < mn, 1
m < p < n

γ . Assume that q is an exponent

satisfying the condition 1
q = 1

p −
γ
n . Suppose that wi are a.e. positive functions on Rn such that wpii

are weights. Then the inequality( ∫
Rn

(∣∣Nγ(
−→
f )(x)

∣∣ m∏
i=1

wi(x)
)q
dx

)1/q

≤ C
m∏
i=1

( ∫
Rn

(
|fi(y)|wi(x)

)pi
dx

)1/pi

,

holds, where Nγ is either Iγ or Mγ , if and only if −→w ∈ A−→p ,q(Rn).

Remark 1.2. The two-weight problem for linear fractional integral operators has been already solved.
We mention the papers due to E. Sawyer [26] for the conditions involving the operator itself, due to
M. Gabidzashvili and V. Kokilashvili [6] (see also [13]) and R. L. Wheeden [32] for integral type
conditions.

Finally, we mention that the weighted inequalities for multilinear fractional integrals were also
studied in [25], [4], [14], [15]. The study of the boundedness of multi(sub)linear fractional strong
maximal operators was initiated in [10] and continued in [15], [2], [3], etc.

1.1. Preliminaries. By the symbol DQ(Rn) (or shortly, DQ) is denoted a countable collection of
dyadic cubes that enjoy the following properties:

(i) Q ∈ DQ ⇒ l(Q) = 2k for some k ∈ Z;
(ii) Q,P ∈ DQ ⇒ Q ∩ P ∈ {∅, P,Q};
(iii) for each k ∈ Z the set DQk = {Q ∈ DQ : l(Q) = 2k} forms a partition of Rn.

Definition 1.3. We say that a weight function ρ satisfies the dyadic reverse doubling condition with

respect to the cubes (ρ ∈ RDQ(d)(R)) if there exists a constant d > 1 such that

dρ(Q′) ≤ ρ(Q),

for all Q′, Q ∈ DQ, where Q′ is a child interval of Q, i.e., Q′ ⊂ Q and |Q| = 2n|Q′|.
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We shall also need the following Carleson–Hörmander type embedding theorem regarding the dyadic
intervals.

Theorem C (see, e.g., [29], [31]). Let 1 < r < q <∞ and let ρ be a weight function on Rn such that

ρ1−r
′

satisfies the dyadic reverse doubling condition. Then the Carleson–Hörmander type inequality

∑
Q∈DQ

(∫
Q

ρ1−r
′
(x)dx

)−q/r′(∫
Q

f(x)dx

)q
≤ c
( ∫

Rn

fr(x)ρ(x)dx

)q/r
holds for all non-negative f ∈ Lrρ(Rn).

We denote by DR the family of all dyadic rectangles in Rn given by the formula

DR := {2−k(m+ [0, 1)) : k,m ∈ Z}n.

Definition 1.4. We say that a weight function ρ satisfies the dyadic reverse doubling condition with

respect to the rectangles (ρ ∈ RDR(d)(Rn)) if there exists a constant d > 1 such that

dρ(R′) ≤ ρ(R),

for all R′, R ∈ DR, where R′ ⊂ R and |R| = 2|R′|.

We denote by DB(Rn) (or simply, DB) the dyadic grid which is DQ for B = Q and DR for B = R.

In the sequel, under the symbol DRB(d)(Rn) (or simply, DRB(d)) we mean the class of weights
satisfying the dyadic reverse doubling condition in the sense of cubes if B = Q, and in the sense of
rectangles if B = R. Further, for B ∈ B and c > 0 we denote by cB the set in Rn with the same center
but with c times the side-length of B. We say that a measure µ defined on Rn satisfies the doubling
condition with respect to Q (µ ∈ DCQ) if there is a positive constant bµ such that for all B ∈ Q the
inequality

µ(2B) ≤ bµµ(B) (4)

holds; further, we say that µ satisfies the doubling condition with respect to R (µ ∈ DCR) if (4) holds
for all B ∈ R. We write µ ∈ DCB if µ ∈ DCQ for a basis Q, and µ ∈ DCR for the basis R.

Definition 1.5. We say that a measure µ satisfies the reverse doubling condition with respect to
R (µ ∈ RDR) if there is a constant β > 1 such that βµ(R′) ≤ µ(R) for any R,R′ ∈ R, where R′

is the two-equal division of R. Further, µ satisfies the reverse doubling condition with respect to Q
(µ ∈ RDQ) if there is a constant β > 1 such that βµ(Q′) ≤ µ(Q) for any Q,Q′ ∈ Q, where R′ is the
2n-equal division of Q. We say that µ ∈ RDB if µ ∈ RDR for B = DR, and µ ∈ RDQ for B = DQ.

The following fact was noticed in [28]:

Remark 1.3 ([28]). The condition µ ∈ DCB is equivalent to the condition µ ∈ RDB.

Proposition 1.1 ([2]). Let 1 < r < q < ∞ and let ρ be a weight function on Rn such that ρ1−r
′ ∈

RDR(Rn). Then there is a positive constant C such that the inequality

∑
R∈DR

(∫
R

ρ1−r
′
(x)dx

)−q/r′(∫
R

f(x)dx

)q
≤ C

( ∫
Rn

fr(x)ρ(x)dx

)q/r
holds for all non-negative f ∈ Lrρ(Rn).

Proposition 1.1 for the weight ρ(n) having the form ρ(n)(x1, . . . , ρn) = ρ1(x1) × · · · × ρn(xn) can
also be derived by a simple proof based on the mathematical induction. Indeed, the statement is
true owing to Theorem C for n = 1. Suppose that it is true for n− 1–dimensional dyadic rectangles
and a weight of the form ρ(n−1)(x1, . . . , ρn−1) = ρ1(x1)× · · · × ρn(xn−1). We set R := I1 × · · · × In,
Rn−1 := I1 × · · · × In−1.
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We have∑
ρ(n)(R)∈DR(Rn)

|R|
q
r′

(∫
R

f(x1, . . . , xn)

n∏
i=1

ρi(xi)dx1 . . . dxn

)q

≤
∑

In∈DR(R)

ρn(In)
q
r′

∑
Rn−1∈DR(Rn−1)

( n−1∏
i=1

ρi(xi)

)− q
r′

×
( ∫
Rn−1

(∫
In

f(x1, . . . , xn)ρ(xn)dxn

)
dx1 . . . dxn−1ρ1(x1)× · · · × ρn(xn−1)

)q

≤
∑

In∈DR(Rn−1)

|In|−
q
r′

( ∫
Rn−1

(∫
In

f(x1, . . . , xn−1)ρxndx1

)q

× ρ1(x1) . . . ρn(xn−1)dx1 . . . dxn−1

)p
dxn

)q/r
≤

∑
In∈DR(Rn−1)

|In|−
q
p′

(∫
In

(
fr(x1, . . . , xn−1)ρ1(x1) . . . ρn(xn)dx1 . . . dxn−1

) 1
r

ρn(xn)dxn

)q

≤ C
( ∫

Rn

fr(x1, . . . xn)ρ(x1, . . . , xn)dx1 . . . dxn

) q
r

.

2. Main Results

Now we formulate our main results.

Theorem 2.1. Let 1 < pi <∞, i = 1, . . . ,m. Suppose that p < q <∞ and 0 < α− ≤ α+ < mn. Let

vi’s be weights on Rn, i = 1, · · · ,m. We set v(x) =
∏m
i=1 v

p/pi
i (x). Then the inequality

‖M(B)
α(·)(
−→
f )‖Lqv(Rn) ≤ C

m∏
i=1

‖fi
(
M̃

(B)
α(·),pi,qvi

)1/q‖Lpi (Rn)
holds, where

M̃
(B)
α(x),pi,q

vi(x) = sup
B3x,B∈B

n∏
i=1

(
1

|B|q/p

∫
B

|B|
α(y)q
n vi(y)dy

)p/pi
, i = 1, . . . ,m.

The next two corollaries were proved in [15] for α(·) ≡ α = const.

Corollary 2.1. Let 1 < pi < ∞, i = 1, . . . ,m. Suppose that p < q < ∞ and 0 < α− ≤ α+ < mn.
Let v be a weight on Rn. Then the following inequality

‖M(B)
α(·)(
−→
f )‖Lqv(Rn) ≤ C

m∏
i=1

‖fi
(
M̃

(B)
α(·),p,qv

)1/q‖Lpi (Rn),
holds, where

M̃
(B)
α(x),p,qv(x) = sup

B3x,B∈B

1

|B|q/p

∫
B

|B|
α(y)q
n v(y)dy.

Corollary 2.2. Let the conditions of Corollary 2.1 be satisfied. Then the inequality

‖M(B)
α(·)(
−→
f )‖Lqv(Rn) ≤ C

m∏
i=1

‖fi‖Lpi (Rn) (5)

holds if and only if

sup
B∈B

1

|B|q/p

∫
B

|B|
α(y)q
n v(y)dy <∞.
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Theorem 2.2. Let 1 < pi < ∞, i = 1, . . . ,m. Suppose that p < q < ∞ and 0 < α− ≤ α+ < mn.
Suppose that a measure µ is doubling, dµ(x) = v(x)dx, where v is a weight on Rn. Then the inequality

‖M(B)
α(·),µ(

−→
f )‖Lqµ(Rn) ≤ C

m∏
i=1

∥∥∥fi(M̃ (B)
α(·),p,q,µ(dµ)

)1/(mq)∥∥∥
L
pi
µ (Rn)

holds, where

M̃
(B)
α(x),p,q,µ(dµ)(x) = sup

B3x,B∈B

1

µ(B)q/p

∫
B

|B|
α(y)q
n dµ(y). (6)

Corollary 2.3. Let the conditions of Theorem 2.2 hold. Then the inequality

‖M(B)
α(·),µ(

−→
f )‖Lqµ(Rn) ≤ C

m∏
i=1

‖fi‖Lpiµ (Rn)

holds if and only if

sup
B∈B

1

µ(B)q/p

∫
B

|B|
α(y)q
n dµ(y) <∞.

Let us introduce the following strong fractional maximal operator defined with respect to a measure
µ:

N (B)
α,µ (
−→
f )(x) = sup

B3x,B∈B

m∏
i=1

1

µ(B)1−α/m

∫
B

|fi(y)|dµ(y),

where α is a constant such that 0 < α < nm.
We have also proved the following statement.

Theorem 2.3. Let µ be an infinite measure on Rn without atoms such that µ ∈ DCB, 1 < pi < ∞,
i = 1, . . . ,m. Let α be a constant such that 0 < α < n/p. Then the inequality

‖N (B)
α,µ (
−→
f )‖Lqµ(Rn) ≤ C

m∏
i=1

‖fi‖Lpiµ (Rn)

holds if and only if q = np
n−αp .

It should be mentiond that the necessary and sufficient condition governing the boundedness of the
multilinear fractional integral operator

Tγ,µ ~f(x) =

∫
Xm

f1(y1) . . . f(ym)(
d(x, y1) + · · ·+ d(x, ym)

)m−γ dµ(~y), dµ(~y) := dµ(y1) . . . dµ(ym)

defined with respect to a measure µ on a σ-algebra of Borel sets of quasi-metric space (X, d, µ) from
the product Lp1(X,µ)× · · · × Lpm(X,µ) to Lq(X,µ) has been established recently in [16].

3. Proofs of the Main Results

In this section we give the proofs of the main results of this paper.
First of all, we will need the following statement.

Lemma 3.1 ([20]). There exist 2n shifted dyadic grids

Dβ := {2−k([0, 1)n +m+ (−1)kβ) : k ∈ Z,m ∈ Zn}, β ∈ {0, 1/3}n,

such that for any given cube Q there are a β and a Qβ ∈ Dβ with Q ⊂ Qβ and l(Qβ) ≤ 6l(Q).

As a consequence of this lemma, one has the following pointwise estimate

Mα(·)(
−→
f )(x) ≤ C

∑
β∈{0,1/3}n

M(d),Dβ
α(·) (

−→
f )(x), (7)
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whereM(d),Dβ
α(·) is the dyadic multi(sub)linear fractional maximal operator corresponding to the dyadic

grid Dβ defined by

(M(d),Dβ
α(·)

−→
f )(x) = sup

Dβ3Q,Q3x

m∏
i=1

1

|Q|1−α(·)/(nm)

∫
Q

|fi(yi)|dyi, 0 < α− ≤ α+ < mn,

and the constant C depending only on n, m and α.

Remark 3.1. It can be checked that estimates similar to (7) are also true for the operators M(B)
α(·),

M(B)
α(·),µ and N (B)

α(·),µ provided that µ ∈ DCB.

Proof of Theorem 2.1. First we show that the two-weight inequality

‖M(d),B
α(·) (

−→
f )‖Lqv(Rn) ≤ C

m∏
i=1

‖fi
(
M̃

(d),(B)
α(·),pi,qvi

)1/q‖Lpi (Rn)
holds, where M(d),(B)

α(·) is an appropriate to MBα(·) dyadic maximal operator and

M̃
(B)
α(·),pi,qvi(x) = sup

B3x,B∈(B)

(
1

|B|q/p

∫
B

|B|
α(y)q
n vi(y)dy

)p/pi
, i = 1, . . . ,m.

For every x ∈ Rn, let us take Bx ∈ DB such that Bx 3 x and(
M(d),(B)

α(·)
−→
f
)
(x) ≤ 2

|Bx|m−α(x)/n
m∏
i=1

∫
Bx

|fi(yi)|dyi. (8)

Without loss of generality, we can assume, for example, that fi, i = 1, . . . ,m are non–negative,
bounded and have compact supports.

Let us introduce a set

FB = {x ∈ Rn : x ∈ B and (8) holds for B}.

It is obvious that FB ⊂ B and Rn = ∪B∈DBFB .
Now, applying Hölder’s inequality, we have

I =

∫
Rn

(
M(d),(B)

α(x)

−→
f
)
(x)
)q( m∏

i=1

v
p/pi
i (x)

)
dx ≤

∑
B∈DB

∫
FB

(
M(d),(B)

α(x)

−→
f (x)

)q( m∏
i=1

v
p/pi
i (x)

)
dx

≤ 2q
∑
B∈DB

|B|−mq
(∫
B

|B|α(x)q/n
( m∏
i=1

v
p/pi
i (x)

)
dx

)( m∏
i=1

∫
B

fi(yi)dyi

)q

≤ 2q
∑
B∈DB

|B|−mq
m∏
i=1

(∫
B

|B|α(x)q/nvi(x)dx

) p
pi
( m∏
i=1

∫
B

fi(yi)dyi

)q

≤ 2q
∑
B∈DB

m∏
i=1

|B|−q/p
′
i

(
1

|B|q/p

∫
B

|B|α(x)q/nvi(x)dx

) p
pi
(∫
B

fi(yi)dyi

)q

≤ 2q
∑
B∈DB

m∏
i=1

|B|−q/p
′
i

(∫
B

fi(yi)
(
M̃

(B)
α(·),pi,qvi(yi)

)1/q
dyi

)q
.

Further, by using Hölder’s inequality in the form∑
k

a
(1)
k × · · · × a

(m)
k ≤

m∏
j=1

(∑
k

(a
(j)
k )pj/p

)p/pj
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for positive sequences {a(j)k }, j = 1, . . . ,m, we have

I ≤ 2q
[ ∑
B∈DB

|B|−(qp1)/(pp
′
1)

(∫
B

f1(y1)(M̃
(B)
α(y1),p1,q

v1(x))1/qdy1

)qp1/p]p/p1

× · · · ×
[ ∑
B∈DB

|B|−(qpm)/(pp′m)

(∫
B

fm(ym)(M̃
(B)
α(ym),pm,q

vm(x))1/qdym

)qpm/p]p/pm
.

Finally, Theorem C (for B = Q) and Proposition 1.1 (for B = R) for the exponents (pi, qpi/p),
i = 1, . . . ,m, and weight ρ ≡ 1, yield that

I ≤ c
m∏
i=1

‖fi
(
M̃

(B)
α(x),pi,q

v1(x)
)1/q‖qLpi (Rn).

At last, taking into account Remark 3.1, we can pass from M(d),B
α(x) to M(B)

α(x). �

Proof of Corollary 2.2. The proof of the sufficiency is a direct consequence of Theorem 2.1. For the
necessity we take test functions: fj = χB , with B ∈ B. By applying inequality (5) for these functions,
we get the desired condition. �

Proof of Theorem 2.2. Following the proof of Theorem 2.1 we get the inequality∥∥∥M(d),(B)
α(·),µ (

−→
f )
∥∥∥
Lqµ(Rn)

≤ C
m∏
i=1

∥∥∥fi(M̃ (B)
α(·),p,q,µ(dµ)

)1/(qm)∥∥∥
Lpi (Rn)

where M(d),(B)
α(·),µ is the dyadic analogue of M(B)

α(·),µ and M̃
(B)
α(·),p,q,µ(dµ)(x) is defined by (6).

Indeed, observe that

I =

∫
Rn

(
M(d),(B)

α(x),µ

−→
f
)
(x)
)q
dµ(x) ≤

∑
B∈(DB)

∫
FB

(
M(d),(B)

α(x)

−→
f (x)

)q
dµ(x)

≤ 2q
∑
B∈DB

(∫
B

|B|(α(x)q)/ndµ(x)

) m∏
j=1

(
1

µ(B)

∫
B

fj(yj)dµ(yj)

)q

= 2q
∑
B∈DB

m∏
j=1

µ(B)−q/p
′
j

(∫
B

fj(yj)

(
µ(B)−q/p

∫
B

|B|
α(x)q
n dµ(x)

)1/(mq)

dµ(yj)

)q

≤ C

[ ∑
B∈DB

µ(B)−qp1/(pp
′
1)

[ ∫
B

f1(y1)

(
M̃

(B)
α(·),p,q,µ(dµ)(y1)

)1/(mq)

dµ(y1)

]qp1/p]p/p1

× · · · ×

[ ∑
B∈DB

µ(B)−qpm/(pp
′
m)

[ ∫
B

fj(ym)

(
M̃

(B)
α(·),p,q,µ(dµ)(ym)

)1/(mq)

dµ(ym)

]qpm/p]p/pm
.

Now, applying Theorem C (for B = Q) and Proposition 1.1 (for B = R) for the weight ρ ≡ v and
exponents (pi, qpi/p), i = 1, . . . ,m, we can conclude that

I ≤ C
m∏
j=1

∥∥∥fj(M̃ (B)
α(·),p,q,µ(dµ)

)1/(mq)∥∥∥q
L
pj
µ (Rn)

. �

Proof of Theorem 2.3. The sufficiency follows in the same manner as in the previous theorems by

considering dyadic version of the operator N (B)
α,µ and Remark 3.1; that is why we are focused on the

necessity. Let fi(x) = χB(x). Then the following inequality

‖N (B)
α,µ

−→
f ‖Lqµ(Rn) ≥ µ(B)1/q+α/n

holds.
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On the other hand, we notice that

m∏
i=1

‖fi‖Lpiµ (Rn) = µ(B)1/p,

therefore,

µ(B)1/q+α/n−1/p ≤ C.
Since µ(Rn) =∞ and µ is a measure without atoms, we conclude that

q =
pn

n− αp
. �

Remark 3.2. Thus from the above proof we can conclude that in the necessity part of Theorem 2.3
no doubling condition is needed.
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