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S-I-CONVERGENCE OF SEQUENCES

ANDRÉS GUEVARA1, JOSÉ SANABRIA2∗, AND ENNIS ROSAS3

Abstract. In this article, we use the notions of a semi-open set and topological ideal, in order to

define and study a new variant of the classical concept of convergence of sequences in topological

spaces, namely, the S-I-convergence. Some basic properties of S-I-convergent sequences and their
preservation under certain types of functions are investigated. Also, we study the notions related

to compactness and cluster points by using semi-open sets and ideals. Finally, we explore the I-
convergence of sequences in the cartesian product space.

1. Introduction and Preliminaries

The ideal theory on a set was established in 1933 by Kuratowski [10]. This theory has recently
been used in order to generalize several concepts of Mathematical Analysis and General Topology
(see, e.g., see [4], [7], [8], [14]). In particular, in 2000, Kostyrko et al. [9] used ideals on the set N of the
positive integer numbers to introduce the notion of I-convergence on metric spaces, as a generalization
of statistical convergence. In 2005, Lahiri and Das [11] extended the notion of I-convergence to the
context of topological spaces and established some basic properties. On the other hand, in l963,
Levine [12] introduced the notion of semi-open set in topological spaces, which plays an important
role in recently researches in General Topology. In this article, we use the notion of a semi-open set,
in order to define and study a variant of the classical convergence in topological spaces, namely, the
S-I-convergence. Specifically, we investigate some basic properties of S-I-convergent sequences and
their preservation under certain types of functions. Also, we study the notions related to compactness
and cluster points by using semi-open sets and ideals. In the final part of the work, we explore the
I-convergence of sequences in the product space.

Now we will give some definitions and results that will be useful to understand content.

Definition 1.1. Let X be a nonempty set, a family of sets I ⊂ 2X is called an ideal [10] on X if the
following properties are satisfied:

(1) ∅ ∈ I,
(2) A,B ∈ I implies A ∪B ∈ I,
(3) A ∈ I, B ⊂ A implies B ∈ I.

An ideal I on X is called nontrivial if I 6= {∅} and X /∈ I. A nontrivial ideal I on X is called
admissible if I ⊃ {{x} : x ∈ X}. Some examples of admissible ideals can be found in [9].

Throughout this work, (X, τ) stands for a topological space (written frequently as X) and I is a
nontrivial ideal on N, the set of all positive integer numbers.

Definition 1.2. A sequence {xn} in X is called I-convergent [11] to a point x0, if for every nonempty
open set U containing x0, {n ∈ N : xn /∈ U} ∈ I.

Definition 1.3. A subset A of X is said to be semi-open [12], if there exists an open set U such that
U ⊂ A ⊂ Cl(U).

The collection of all semi-open sets of X is denoted by SO(X). The complement of a semi-open
set is called a semi-closed set. The semi-closure of a subset A of X, denoted by sCl(A), is defined as
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the intersection of all semi-closed sets containing A [1]. Obviously, a point x ∈ sCl(A) if and only if
for every semi-open set U containing x, U ∩A 6= ∅.

In the following definition, we present some well-known in the literature types of functions in the
literature, where X and Y are topological spaces.

Definition 1.4. A function f : X → Y is said to be:
(1) semi-continuous [12] if f−1(A) ∈ SO(X) for each open set A in Y ;
(2)irresolute [2] if f−1(A) ∈ SO(X) for each A ∈ SO(Y ).

Theorem 1.5 ([12, Theorem 12]). A function f : X → Y is semi-continuous if and only if for each
x ∈ X and each open set V in Y containing f(x), there exists U ∈ SO(X) such that x ∈ U and
f(U) ⊂ V .

Theorem 1.6. A function f : X → Y is irresolute if and only if for each x ∈ X and each V ∈ SO(Y )
containing f(x), there exists U ∈ SO(X) such that x ∈ U and f(U) ⊂ V .

Definition 1.7. A topological space X is said to be semi-Hausdorff [13], if for each pair x, y of
distinct points of X, there exist disjoint semi-open sets containing x and y, respectively.

Definition 1.8. Let X be a topological space and A be a subset of X. A point x ∈ X is said to be
a semi-limit point [3] of A if for every semi-open set U containing x, A ∩ (U − {x}) 6= ∅.

Definition 1.9. A topological space X is said to be:
(1) semi-compact [5] if every cover of X by semi-open sets has a finite subcover;
(2) semi-Lindelöf [6] if every cover of X by semi-open sets has a countable subcover.

2. The S-I-convergence and its Basic Properties

In this section, we introduce the concept of an S-I-convergent sequence to a point of a topological
space and study its relevant properties.

Definition 2.1. A sequence {xn} in X is said to be S-I-convergent to a point x0 ∈ X if for every
nonempty semi-open set U containing x0, {n ∈ N : xn /∈ U} ∈ I. In this case, x0 is called the S-I-limit
of {xn} and is denoted by S-I-limxn = x0.

Lemma 2.2. The S-I-convergence implies I-convergence for any nontrivial ideal I on N.

Proof. The proof is immediate from the fact that any open set is semi-open and the definition of
S-I-convergence. �

The following example shows that the converse of Lemma 2.2 is not necessarily true.

Example 2.3. Let R be the set of real numbers with the usual topology, I be an admissible ideal
and the sequence {xn} be defined as xn = an, where 0 < a < 1. Observe that the sequence xn = an

is I-convergent to 0, since for any open set W containing 0, the set {n ∈ N : xn /∈W} is finite. Now
consider the semi-open set U = (−1, 0]. It is easy to see that the set {n ∈ N : xn /∈ U} is equal to the
set of natural numbers and then the sequence xn = an is not S-I-convergent to 0.

Remark 2.4. If I is an admissible ideal, then an ordinary convergence implies I-convergence and,
in addition, if I does not contain any infinite set, both concepts coincide (see [11]).

An immediate consequence of Remark 2.4 is the following result.

Proposition 2.5. If I is an admissible ideal not containing any infinite set, then S-I-convergence
implies convergence.

The following example shows that the converse of Proposition 2.5 is not necessarily true.

Example 2.6. Let R be the set of real numbers with the usual topology and the sequence {xn} be
defined as xn = 1

n . Observe that {xn} converges to 0. Consider the semi-open set U = (−1, 0] and
note that 0 ∈ U , but {n ∈ N : xn /∈ U} = N. Therefore {n ∈ N : xn /∈ U} /∈ I (for any nontrivial
ideal I) and so {xn} is not S-I-convergent to 0.



S-I-CONVERGENCE OF SEQUENCES 77

Proposition 2.7. Let X be a discrete topological space and I be an admissible ideal, then convergence
implies the S-I-convergence.

Proof. The proof follows from the fact that in the discrete topology the collections of open sets and
semi-open sets are the same. �

Example 2.8. Consider X = R with the usual topology and {xn} the sequence in X defined as
xn = (−1)n. It is clear that {xn} do not converge to any point of X. Now, let M = {2j − 1 : j ∈ N}
and take I = 2M . Then I is a nontrivial ideal on N, and {xn} is S-I-convergent (also I-convergent)
to -1.

Theorem 2.9. Let X be a semi-Hausdorff space. If {xn} is a S-I-convergent sequence in X, then
the point of S-I-convergence is unique.

Proof. Consider {xn}, a sequence that is S-I-convergent in a semi-Hausdorff space X. Suppose that
the sequence {xn} has two distinct points of S-I-convergence, say x0 and y0. Since X is a semi-
Hausdorff space, there exist U, V ∈ SO(X) such that x0 ∈ U , y0 ∈ V and U ∩ V = ∅. On the other
hand, by the definition of the S-I-convergence, we have {n ∈ N : xn /∈ U} ∈ I and {n ∈ N : xn /∈ V } ∈
I, which implies that

{n ∈ N : xn ∈ (U ∩ V )c} = {n ∈ N : xn ∈ U c} ∪ {n ∈ N : xn ∈ V c} ∈ I.
As I is a nontrivial ideal, then {n ∈ N : xn ∈ (U ∩ V )c} 6= N and hence there exists n0 ∈ N such that
n0 /∈ {n ∈ N : xn ∈ (U ∩ V )c}, and so xn0

∈ (U ∩ V ), which is a contradiction. This shows that the
point of S-I-convergence is unique. �

Corollary 2.10. Let X be a Hausdorff space. If {xn} is a S-I-convergent sequence in X, then the
point of S-I-convergence is unique.

Theorem 2.11. If I is an admissible ideal and if there exists a sequence {xn} of distinct elements
in a subset A of X which is S-I-convergent to x0 ∈ X, then x0 is a semi-limit point of A.

Proof. Let U be any semi-open subset of X containing the point x0. Since {xn} is S-I-convergent to
x0, therefore {n ∈ N : xn /∈ U} ∈ I and so {n ∈ N : xn ∈ U} /∈ I, otherwise it would be {n∈N : xn /∈U}
∪ {n ∈ N : xn ∈ U} = N ∈ I, which contradicts that I is nontrivial. As I is an admissible ideal, it
follows that {n ∈ N : xn ∈ U} is an infinite set, otherwise,

{n ∈ N : xn ∈ U} =
⋃
xn∈U

{n} ∈ I,

which is {n ∈ N : xn ∈ U} would be a finite union of unitary sets, which is a contradiction because
{n ∈ N : xn ∈ U} /∈ I. Choose n0 ∈ {n ∈ N : xn ∈ U} such that xn0

6= x0, then xn0
∈ A ∩ (U − {x0})

and so, A ∩ (U − {x0}) 6= ∅. This shows that for any semi-open set U containing the point x0, we
have A ∩ (U − {x0}) 6= ∅. �

Corollary 2.12. If I is an admissible ideal and if there exists a sequence {xn} of distinct elements
in a subset A ⊂ X which is S-I-convergent to x0 ∈ X, then x0 ∈ sCl(A).

Corollary 2.13. If I is an admissible ideal and if there exists a sequence {xn} of distinct elements
in a subset A ⊂ X which is S-I-convergent to x0 ∈ X, then x0 is a limit point of A.

Definition 2.14. Let X be a topological space and {xn} be a sequence in X. We say that a point
x ∈ X is a semi-cluster point of the sequence {xn} if for every semi-open set U containing x, there
exist infinitely many natural numbers n such that xn ∈ U .

Theorem 2.15. If I is an admissible ideal and {xn} is a sequence having a S-I-convergent subse-
quence, then {xn} has a semi-cluster point.

Proof. By the hypothesis, {xn} has a subsequence
{
xk(n)

}
which is S-I-convergent, say to x0. We

will show that x0 is a semi-cluster point of {xn}. Let U be any semi-open set containing x0, then{
n ∈ N : xk(n) /∈ U

}
∈ I, and since I is an admissible ideal, we have

{
n ∈ N : xk(n) ∈ U

}
is an infinite

set. Thus, U has infinite terms of the subsequence
{
xk(n)

}
and hence, of the sequence {xn}. This

shows that x0 is a semi-cluster point of {xn}. �
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Theorem 2.16. If B ⊂ X is a semi-closed set, then for any sequence in B which is S-I-convergent
to x0, we have x0 ∈ B.

Proof. Suppose that B ⊂ X is a semi-closed set and {xn} is any sequence in B which is S-I-convergent
to the point x0, but x0 /∈ B. Since B is semi-closed, we have sCl(B) = B and thus, x0 /∈ sCl(B).
Then there exists a semi-open set U containing x0 such that B ∩ U = ∅. By the hypothesis, we have
{n ∈ N : xn /∈ U} ∈ I and {n ∈ N : xn ∈ U} /∈ I, which imply that {n ∈ N : xn ∈ U} 6= ∅. Thus, there
exists n0 ∈ {n ∈ N : xn ∈ U}, which is xn0 ∈ U . Since {xn} is a sequence in B, hence xn0 ∈ B, as
well. Therefore, xn0 ∈ B ∩ U and so B ∩ U 6= ∅, which is a contradiction. �

Corollary 2.17. If B ⊂ X is a closed set, then for any sequence in B which is S-I-convergent to x0,
we have x0 ∈ B.

Theorem 2.18. Let f : X → Y be a semi-continuous function. If {xn} is a sequence in X which is
S-I-convergent to x0 ∈ X, then {f(xn)} is an I-convergent sequence to f(x0).

Proof. Assume that {xn} is a sequence in X which is S-I-convergent to x0 ∈ X and let V be an
open set in Y containing the point f(x0). By Theorem 1.5, there exists U ∈ SO(X) containing x0

such that f(U) ⊂ V . We claim that {n ∈ N : f(xn) /∈ V } ⊂ {n ∈ N : xn /∈ U}. In effect, if n0 ∈
{n ∈ N : f(xn) /∈ V }, then f(xn0

) /∈ V and so f(xn0
) /∈ f(U), it follows that xn0

/∈ U and hence
n0 ∈ {n ∈ N : xn /∈ U}. Since {xn} is S-I-convergent to x0, we have {n ∈ N : xn /∈ U} ∈ I and,
consequently, {n ∈ N : f(xn) /∈ V } ∈ I. This shows that {f(xn)} is I-convergent to f(x0). �

It is clear that the condition that f : X → Y is semi-continuous does not guarantee that if {xn} is
an S-I-convergent sequence in X, then {f(xn)} is an S-I-convergent sequence in Y . In the following
theorem, we show that the S-I-convergence is preserved by irresolute functions.

Theorem 2.19. Let f : X → Y be an irresolute function. If {xn} is a sequence in X which is
S-I-convergent to x0 ∈ X, then {f(xn)} is an S-I-convergent sequence to f(x0).

Proof. The proof is similar to that of Theorem 2.18. Just the use is made of the characterization of
an irresolute function given in Theorem 1.6. �

Example 2.20. Let I be the collection of all finite subsets of N, X = R with the usual topology,
Y = {0, 1} with the Sierpinski topology, f : X → Y the function defined by f(x) = 0 and {xn} the
sequence in X defined as xn = (−1)n. Note that f is a semi-continuous (resp. irresolute) function
such that {f(xn)} is I-convergent (resp. S-I-convergent) to 0 ∈ Y , but {xn} do not S-I-converge to
any point of X.

3. Compactness and S-I-convergence

Proposition 3.1. Let X be a topological space and I be an admissible ideal that does not contain
infinite sets. If any sequence {xn} in X has a subsequence which is S-I-convergent, then (X, τ) is a
sequentially compact space.

Proof. This is an immediate consequence of Proposition 2.5. �

Proposition 3.2. Let X be a topological space and I be an admissible ideal. If for any infinite subset
A of X, there exists a sequence {xn} of distinct elements in A, which is S-I-convergent in X, then
(X, τ) is a limit point compact space.

Proof. This is an immediate consequence of Corollary 2.10. �

Recall that a point p of a topological space X is said to be an ω-accumulation point of A ⊂ X
if for every open set U containing p, U ∩ A is an infinite set. On the other hand, a point p ∈ X
is said to be an I-cluster point [11] of a sequence {xn} in X if for every open set U containing
p, {n ∈ N : xn ∈ U} /∈ I. In the following two definitions we introduce some modifications of these
concepts using semi-open sets.

Definition 3.3. Let X be a topological space and {xn} be a sequence in X. A point p ∈ X is called
a S-I-cluster point of {xn} if for any semi-open set U containing p, {n ∈ N : xn ∈ U} /∈ I.
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Definition 3.4. Let X be a topological space and A ⊂ X. We say that p ∈ X is a semi-ω-
accumulation point of A if for every semi-open set U containing p, U ∩A is an infinite set.

Theorem 3.5. Let X be a topological space and I be an admissible ideal. If every sequence {xn} in
X has an S-I-cluster point, then every infinite subset of X has a semi-ω-accumulation point. The
converse is true if I does not contain infinite sets.

Proof. Suppose that every sequence in X has an S-I-cluster point and let A be an infinite subset of
X, then there exists a sequence {xn} of distinct points in A. Let p be an S-I-cluster point of {xn}
and U be any semi-open set U containing p, then {n ∈ N : xn ∈ U} /∈ I. Using the fact that I is an
admissible ideal, it follows that {n ∈ N : xn ∈ U} is an infinite subset; as a consequence, U contains
infinitely many points of {xn} and hence of A, that is, U ∩ A is an infinite set. This shows that p is
a semi-ω-accumulation point of A.

Conversely, suppose that every infinite subset of X has a semi-ω-accumulation point. Let {xn} be
any sequence in X and let A be the range of {xn}. If A is infinite, then by the hypothesis, A has a
point of semi-ω-accumulation, say p. Let U be any semi-open set U containing p, then U ∩ A is an
infinite set, and it follows that U has infinitely many points of A and hence, of the sequence {xn},
which implies that {n ∈ N : xn ∈ U} is an infinite set. Since I is an admissible ideal that does not
contain infinite sets, we conclude that {n ∈ N : xn ∈ U} /∈ I, that is, p is an S-I-cluster point of {xn}.
On the other hand, if A is finite, then there exists a point p ∈ X such that xn = p for infinitely many
subindexes n. Therefore, for every semi-open set U containing p, the set {n ∈ N : xn ∈ U} is infinite
and so, {n ∈ N : xn ∈ A} /∈ I, which implies that p is an S-I-cluster point of {xn}. �

Corollary 3.6. Let X be a topological space and I be an admissible ideal. If every sequence {xn} has
an S-I-cluster point, then every infinite subset of X has an ω-accumulation point.

Theorem 3.7. Let X be a topological space and I be an admissible ideal. If X is a semi-Lindelöff
space such that every sequence in X has an S-I-cluster point, then X is a semi-compact space.

Proof. Suppose that X is a semi-Lindelöff space such that every sequence in X has an S-I-cluster point
and let U = {Uλ : λ ∈ Λ} be a semi-open cover of X. Since X is a semi-Lindelöff space, U contains a
countable subcover, say U ′ = {U1, U2, . . . , Um, . . . }. Proceeding by induction, let A1 = U1 and for each
m > 1, let Am be the first member of the sequence of U ’s which is not covered by U1∪U2∪· · ·∪Um−1.
We claim that in the above selection, there exists m0 such that for all m > m0 it is impossible to
continue with the algorithm. In effect, if in the above selection it is possible to do this for all n > 1, we
choose a point an ∈ An for all n ∈ N such that an /∈ Ak for k < n. Now, consider the sequence {am}
and let p be an S-I-cluster point of {an}. Then p ∈ Aj for some j. By the definition of an S-I-cluster
point and the admissibility of the ideal I, we have {n ∈ N : an ∈ Aj} /∈ I and {n ∈ N : an ∈ Aj} must
be an infinite set of N. Thus, there exists r > j such that r ∈ {n ∈ N : an ∈ Aj}; that is, there exists
some r > j such that ar ∈ Aj , which is a contradiction. As a consequence, there exists m0 such that
for all m > m0 it is impossible to continue the algorithm and, therefore, {A1, A2, . . . , Am0

} is a finite
subcover of X. �

Corollary 3.8. Let X be a topological space and I be an admissible ideal. If X is a semi-Lindelöff
space such that every sequence in X has an S-I-cluster point, then X is a compact space.

4. The I-convergence in the Product Space

Theorem 4.1. Let {(Xα, τα) : α ∈ ∆} be an indexed family of topological spaces,
∏
α∈∆

Xα be the

product space and {xα(n)} be a sequence in Xα for all α ∈ ∆. Then {xα(n)} is I-convergent to pα
for all α ∈ ∆ if and only if {(xα(n))α∈∆} is I-convergent to (pα)α∈∆.

Proof. Let A be an open set in
∏
λ∈Λ

Xα containing the point (pα)α∈∆, then there exists a basic open

set B =
∏
α∈∆

Bα such that (pα)α∈∆ ∈ B ⊂ A. It follows that pα ∈ Bα for all α ∈ ∆. Since
∏
α∈∆

Bα

is a basic open set in the product space
∏
α∈∆

Xα, it follows that Bα = Xα, except for a finite number
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of indexes, say α1, . . . , αk. Thus, pαi
∈ Bαi

for i ∈ {1, . . . , k} and pα ∈ Xα for α 6= α1, . . . , αk. Since
{xα(n)} is I-convergent to pα for all α ∈ ∆, therefore {n ∈ N : xα(n) /∈ Bα} ∈ I for all α ∈ ∆ and
hence ⋃

α∈∆

{n ∈ N : xα(n) /∈ Bα} =

k⋃
i=1

{n ∈ N : xαi(n) /∈ Bαi} ∈ I.

We claim that {n ∈ N : (xα(n))α∈∆ /∈ B} ⊂
k⋃
i=1

{n ∈ N : xαi
(n) /∈ Bαi

}.

In effect, let n0 ∈ {n ∈ N : (xα(n))α∈∆ /∈ B}, then we have (xα(n0))α∈∆ /∈ B =
∏
α∈∆

Bα, which implies

that there exists α0 ∈ ∆ such that xα0(n0) /∈ Bα0 and since Bα = Xα for α 6= α1, . . . , αk, necessarily
α0 ∈ {α1, . . . , αk}, otherwise there would be a contradiction; now, as xα0(n0) /∈ Bα0 , we have

n0 ∈ {n ∈ N : xα0
(n) /∈ Bα0

} ⊂
k⋃
i=1

{n ∈ N : xαi
(n) /∈ Bαi

} .

Therefore, {n ∈ N : (xα(n))α∈∆ /∈ B} ⊂
k⋃
i=1

{n ∈ N : xαi
(n) /∈ Bαi

}. On the other hand, the fact that

B =
∏
α∈∆

Bα ⊂ A implies that

{n ∈ N : (xα(n))α∈∆ /∈ A} ⊂ {n ∈ N : (xα(n))α∈∆ /∈ B}

⊂
k⋃
i=1

{n ∈ N : xαi
(n) /∈ Bαi

} .

Since

k⋃
i=1

{n ∈ N : xαi(n) /∈ Bαi} ∈ I, it follows that

{n ∈ N : (xα(n))α∈∆ /∈ A} ∈ I,

which shows that {(xα(n))α∈∆} is I-convergent to (pα)α∈∆.

Conversely, let β be an arbitrary element of ∆ and consider the set {n ∈ N : xβ(n) /∈ Bβ}, where
Bβ is an arbitrary open set of Xβ containing the point pβ ∈ Xβ . Now, let B =

∏
α∈∆

Bα a basic open

set in the product space
∏
α∈∆

Xα containing the point (pα)α∈∆ such that πβ
( ∏
α∈∆

Bα
)

= Bβ . By the

hypothesis, the set {n ∈ N : (xα(n))α∈∆ /∈ B} ∈ I. On the other hand, since B =
∏
α∈∆

Bα is a basic

open set, therefore Bα = Xα except for a finite number of indexes, say α1, . . . , αk. Suppose that
β = αj for some 1 ≤ j ≤ k (if β 6= αj for all 1 ≤ j ≤ k, the result is trivial). We claim that

k⋃
i=1

{n ∈ N : xαi
(n) /∈ Bαi

} ⊂ {n ∈ N : (xα(n))α∈∆ /∈ B} .

In effect, let n0 ∈
k⋃
i=1

{n ∈ N : xαi(n) /∈ Bαi}, then there exists α0 ∈ ∆ such that n0 ∈ {n ∈ N :

xα0
(n) /∈ Bα0

}, which implies that xα0
(n0) /∈ Bα0

and so, (xα(n0))α∈∆ /∈ B =
∏
α∈∆

Bα, hence

n0 ∈ {n ∈ N : (xα(n))α∈∆ /∈ B}. As {n ∈ N : (xα(n))α∈∆ /∈ B} ∈ I, then

k⋃
i=1

{n∈N :xαi
(n) /∈Bαi

}∈I

and, consequently, {n ∈ N : xβ(n) /∈ Aβ} ∈ I. This shows that {xβ(n)} is I-convergent to pβ , and
since β ∈ ∆ is arbitrary, the proof is complete. �
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Corollary 4.2. Let {(Xα, τα) : α ∈ ∆} be an indexed family of topological spaces,
∏
α∈∆

Xα be the

product space and {xα(n)} be a sequence in Xα for all α ∈ ∆. If {xα(n)} is S-I-convergent to pα for
all α ∈ ∆, then {(xα(n))α∈∆} is I-convergent to (pα)α∈∆.

Corollary 4.3. Let {(Xα, τα) : α ∈ ∆} be an indexed family of topological spaces,
∏
α∈∆

Xα be the

product space and {xα(n)} be a sequence in Xα for all α ∈ ∆. If {(xα(n))α∈∆} is S-I-convergent to
(pα)α∈∆, then {xα(n)} is S-I-convergent to pα for all α ∈ ∆.

Recall that if {Iα}α∈∆ is a chain of ideals on X, then
⋃
α∈∆ Iα is an ideal on X [15]. Next, we give

two immediate consequences related to a chain of ideals on N.

Corollary 4.4. Let {Iα}α∈∆ be a chain of nontrivial ideals on N,
∏
α∈∆

Xα be the product space of

a family of topological spaces {(Xα, τα) :α∈∆} and {xα(n)} be a sequence in Xα for all α ∈ ∆. If
{xα(n)} is Iα-convergent to pα for all α ∈ ∆, then {(xα(n))α∈∆} is I-convergent to (pα)α∈∆, where
I =

⋃
α∈∆ Iα.

Corollary 4.5. Let {Iα}α∈∆ be a chain of nontrivial ideals on N,
∏
α∈∆

Xα be the product space of

a family of topological spaces {(Xα, τα) :α∈∆} and {xα(n)} be a sequence in Xα for all α ∈ ∆. If
{(xα(n))α∈∆} is Iα-convergent to (pα)α∈∆, then {xα(n)} is I-convergent to pα for all α ∈ ∆, where
I =

⋃
α∈∆ Iα.
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