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ALMOST BICOMPLEX STRUCTURES

İBRAHIM ŞENER

Abstract. Bicomplex numbers exist in real 4n-dimensions like quaternions. Also, quaternions are,

as is known, associated to some tensorial structures defined in 4n-dimensions, called almost quater-
nionic structures. In this paper we search the presence of such structures, which we call (almost)

bicomplex structures, associated to bicomplex numbers. However, we can see that bicomplex num-

bers don’t present a relation with the (almost) bicomplex structures because bicomplex numbers
can be defined only in 4n-dimensions even though 2n-dimensions are sufficient to define the almost

bicomplex structures. Two examples for 4- and 6-dimensions show clearly this result. Finally, the
integrability conditions for these structures are investigated.

1. Introduction

Hypercomplex numbers [4,16] or division algebras [3] are of great importance in physics. Of course,
quaternions play a pioneer role in this sense, i.e., the solutions of the SU(2) Yang-Mills theory [1]. As
is well known, the generators of the group SU(2), that is, the Pauli matrices, present a quaternionic
structure and therefore the SU(2)-valued gauge potentials (or connections) are indeed quaternions (or
quaternion valued 1-forms). Other kind of these numbers is known as bicomplex numbers existing in
the real 4n-dimensions [14, 15], and the system of bicomplex numbers is the first non-trivial Clifford
commutative [2] complex.

For similar to the quaternions and corresponding (almost) quaternionic structures there arises the
question: are there some tensorial structures associated to the bicomplex numbers? In this paper we
search an answer to this question. Our result is that bicomplex numbers aren’t associated to any
tensorial structures like quaternions. So, bicomplex numbers can be defined only in 4n-dimensions
even though 2n-dimensions are sufficient to define the (almost) bicomplex structures defined in this
paper. The reason of this result is via Proposition 4.1 given by Obata [13] and Theorem 4.2 by
Hoffmann and Kunze [6]. The bicomplex structures are easily seen in 4– and 6-dimensions in this
paper. Finally, the integrability conditions for these structures are investigated.

2. Bicomplex Numbers

Consider complex numbers field C with imaginary unit i =
√
−1. Let j =

√
−1 be another

imaginary unit satisfying commutative product rule ij = ji = k. Given a set of R-linear tensor
products B = C⊗R C ∼= R4. Therefore, an element of this space is called a bicomplex number and is
written as

q = z1 + jz2, z1, z2 ∈ C, or

q = (x1 + ix2) + j(x3 + ix4), x1, x2, x3, x4 ∈ R.
Bicomplex numbers have the following multiplication rules:

ij = ji = k, ik = ki = −j, jk = kj = −i, k2 = +1

and the addition and subtraction operations are like in the real and complex numbers fields. Also,
the zero and unit (or identity) elements of the bicomplex numbers are

0B =(0 + i0) + j(0 + i0) = 0,

1B =(1 + i0) + j(0 + i0) = 1.
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There is an important difference between C and B: as the complex numbers form a field, the bicomplex
numbers don’t, since they contain the divisors of zero, i.e.,

(1 + ij)(1− ij) = (1− ij)(1 + ij) = 0.

Therefore bicomplex numbers space B is a commutative ring with unit and its algebraic properties
can be seen in [14].

There are three conjugations in bicomplex numbers. Here, (•̄) denotes the complex conjugation
in the complex numbers field C. Then, ∀z1, z2 ∈ C, we have the following i, j and ij conjugations,
respectively:

q̄ = z̄1 + jz̄2, q∗ = z1 − jz2, q† = z̄1 − jz̄2,

Moduli in the bicomplex numbers are defined for two bicomplex numbers w = z1 +z2j = x1 + ix2 +
jx3 + ijx4 in two ways as real B × B → R and complex B × B → C. They are written, respectively,
as follows:

‖w‖2 =(x1)2 + (x2)2 + (x3)2 + (x4)2,

‖w‖2∗ =w∗w = (z1)2 + (z2)2.

More details of the algebra of these numbers and the analysis of bicomplex holomorphic functions can
be found in Refs. [2, 14,15].

3. Some Tensorial Structure on Manifolds

Let M be a smooth manifold of real even n-dimensions. If we write a smooth tensorial field I of
rank (1, 1) on this manifold satisfying the relation

I2 = εI,

where I is the identity matrix and ε is {−1,+1}, then we say that I is

• an almost complex structure for ε = −1, or
• an almost product structure for ε = +1.

Definition 3.1. Given three smooth tensorial fields I1, I2, I3 of rank (1, 1) on an even dimensional
manifold M which satisfy the following rules:

I2
1 = ε1I, I2

2 = ε2I, I2
3 = ε3I,

I2I1 = εI1I2 = −ε3I3,
I3I2 = εI2I3 = −ε1I1,
I1I3 = εI3I1 = −ε2I2,

where

ε = ε1ε2ε3.

Therefore we mention the following cases from Ref. [7]:
I. If ε1 = ε2 = ε3 = −1, then the triplet (I1, I2, I3) is called an almost quaternionic structure,
II. If ε1 = ε2 = −1 and ε3 = +1, we will say that the triplet (I1, I2, I3) is an almost bicomplex

structure,
III. If ε1 = ε2 = ε3 = +1, then the triplet (I1, I2) is called an almost product structure.

If we denote the local coordinates on the manifold M by {xµ} = (xi, yi) ∈ R2n, where i, j = 1, . . . , n,
then the acting of an almost complex structure on their local coordinate bases is written as

I(
∂

∂xi
) = − ∂

∂yi
, I(

∂

∂yi
) =

∂

∂xi
.

Then, we can show the almost complex structure I on R2n by a block matrix (or canonical) represen-
tation such that

I =

(
0 In×n

−In×n 0

)
,

where In×n and O are the unit and zero n× n matrices, respectively.
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4. Almost Bicomplex Structure

The Case II that we call bicomplex structure was handle by Hsu [7] and Liberman [11]. The mutual
point of these authors is that this structure is considered as the distribution of a tangent bundle on a
4n-dimensional manifold, since this structure is handled in the perspective of an almost quaternionic
structure. If there exists a pair of two complex structures (I, J) commuting each other, K = IJ = JI,
then we call it the almost bicomplex structure to the triple (I, J,K). Our claim mentioned above
is whether this structure is associated to bicomplex numbers. Therefore, first we have to present
Obata’ s proposition.

Proposition 4.1 (Obata [13]). Let J̃ ∈ GL(n,C) be a non-singular complex matrix such that

J̃ = A+ iB,

where A,B ∈ GL(n,R). Then the correspondence

J̃ → J =

(
A B
−B A

)
∈ GL(2n,R)

is an isomorphism. The matrix J is commutated by a matrix, independent of n odd or even such that

I =

(
0 In×n

−In×n 0

)
∈ GL(2n,R),

so,
IJ = JI.

If A is unitary, B is orthogonal, and vice versa.

Since an almost complex structure is a diagonalizable matrix, Hoffman and Kunze’ s theorem is
valid.

Theorem 4.2 (Hoffman-Kunze [6]). A set of commuting diagonalizable matrices are simultaneously
diagonalizable.

Therefore, we can say that the matrix J is also a diagonalizable matrix, and so we have the following

Corollary 4.3. Let I and J be two almost complex structures commuting each other on a smooth
manifold of real 2n-dimensions, hence

IJ = JI = K, IK = KI = −J, JK = KJ = −I, K2 = +I2n×2n. (1)

Therefore, if the n× n matrices A and B satisfy the relations

AB +BA =0n×n,

A2 −B2 =− In×n,
then I, J,K are constructed as independent of n odd or even as follows:

I =

(
0 In×n

−In×n 0

)
, J =

(
A B
−B A

)
, K =

(
−B A
−A −B

)
. (2)

For this result we can give two examples in 4– and 6-dimensions to this result. In 4-dimensions,
with respect to equation (2), we get

I =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , J =


0 0 0 p
0 0 p 0
0 −p 0 0
−p 0 0 0

 , K =


0 −p 0 0
−p 0 0 0
0 0 0 −p
0 0 −p 0

 , (3)

where p2 = 1. On the other hand, in 6-dimensions, we have

I =



0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0

 , J =



0 0 s 0 0 0
0 0 0 0 q 0
−s 0 0 0 0 0

0 0 0 0 0 s
0 −q 0 0 0 0
0 0 0 −s 0 0

 , K =



0 0 0 0 0 s

0 −q 0 0 0 0
0 0 0 −s 0 0
0 0 −s 0 0 0

0 0 0 0 −q 0
s 0 0 0 0 0

 , (4)
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where q2 = s2 = 1.

5. Integrability of Almost Bicomplex Structures

In this paper, we use the following geometrical preliminaries . Let M be a smooth manifold of real
even dimensions n with local coordinates {xµ} ∈ Rn, (µ = 1, . . . , n). Given a connection on a tangent
bundle TM by the map ∇ : C∞(TM)→ Λ1(TM) together with the covariant derivative

∇ = d + [Γ, ·],

where Γ ∈ Λ1(End(TM)) is the 1-form connection and d is an exterior derivative operator. The
curvature of this connection is

R = ∇Γ = dΓ + Γ ∧ Γ ∈ Λ2(End(TM)).

Suppose that let M be an almost complex manifold with the almost complex structure I. Given
two vector fields X,Y on this manifold. The torsion tensor of the almost complex structure I, called
also Nijenhuis tensor, is defined as follows:

NI(X,Y ) = [I, I](X,Y ) = 2 {[IX, IY ]− [X,Y ]− I[X, IY ]− I[IX, Y ]} ,

where [X,Y ] = X(Y )− Y (X) is the Lie bracket.
Kobayashi and Nomizu [10] say that every almost complex manifold M admits an almost complex

affine connection such that its torsion T is given by N = 8T , where N is the torsion of the almost
complex structure I on M . Then, an almost complex structure is said to be integrable, dI = 0, if its
torsion vanishes (N = 0) and is parallel, ∇I = 0, with respect to the connection ∇. Thus a complex
structure on Rn=2m is equivalent to a torsion-free GL(m,C)-structure [8].

Definition 5.1. Let I1 and I2 be two tensor fields of (1, 1) type on an even dimensional manifold
satisfying I2

1 = ε1I, I2
2 = ε2I and I1I2 = εI3 for some constants ε, ε1, ε2. They are covariant constant

tensors with respect to the connection ∇ if

∇I1 = 0, ∇I2 = 0, (also ∇I3 = 0).

Thus ∇ is called the (I1, I2)-connection (and, consequently, I3-connection in view of I1I2 = ε3I3).

Suppose for a short time that we have an almost quaternionic structure induced by three almost
complex structures I1, I2, I3 such that I1I2 = −I2I1 = I3. The integrability conditions of the almost
quaternionic structures are shortly given by six vanishing Lie brackets [Ii, Ij ] = 0, (i, j = 1, 2, 3) and
vanishing curvature tensor of symmetric affine connection, that is, Levi-Civita, [12, 17]. Indeed, we
can generalize this for a unique almost complex structure by the following

Theorem 5.2. Let I be an almost complex structure which is a tensor field of (1, 1) type on a
manifold. If this tensor field (or almost complex structure) is parallel with respect to a connection ∇
on this manifold, i.e., ∇I = 0, then this connection is likewise flat.

Proof. Let ∇ = d + [Γ, ]̇ be the covariant derivative of the connection ∇. If ∇I = 0, then dI + ΓI −
IΓ = 0. The exterior derivative of this expression reads as RI = IR, where R = dΓ + Γ ∧ Γ is the
curvature of the connection. Also, we can write R = I−1RI = I−1IR = ±R from I2 = ±I. Therefore,
if I2 = −I, then the curvature of a connection, compatible by (or parallel to) almost complex structure
I, is flat: R = 0. �

From all the above and Theorem 5.2, we can give for the integrability of almost complex structure
the following

Corollary 5.3. An almost complex manifold M admits a torsion free almost complex affine connection
if and only if an almost complex structure has no torsion [10]. On an almost complex manifold there
exists an affine connection whose almost complex structure is a covariant constant [5, 13], and any
connection which is compatible by this almost complex structure is flat.
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We have defined the almost bicomplex structure for two almost complex structures I and J in real
2n-dimensions which commute each other as follows:

IJ = JI = K, IK = KI = −J, JK = KJ = −I, K2 = +I2n×2n.

One can easily see from Definition 5.1 that the almost bicomplex structure (I, J) is parallel with
respect to an affine connection on the manifold. As a natural consequence, K = IJ = JI is also
parallel with respect to the same connection. When this connection is symmetric, that is, Levi Civita,
this almost bicomplex structure is integrable.

On the other hand, in order to investigate another integrability condition of this structure we need
the Lie brackets [I, J ], [I,K], [J,K] and [K,K] as well as the Nijenhuis tensors [I, I] and [J, J ] of the
almost complex structures I and J . Therefore, we consider the following proposition due to Kobayashi
and Nomizu.

Proposition 5.4 (Kobayashi [9]). Let A and B be tensor fields of type (1, 1) and X,Y ∈ Γ(M) vector
fields on the manifold M . Set

S(X,Y ) = [P,Q](X,Y ) =[PX,QY ] + [QX,PY ]− P [X,QY ]− P [QX,Y ]

−Q[X,PY ]−Q[PX, Y ] + (PQ+QP )[X,Y ].

Then the mapping S : Γ(M)×Γ(M)→ Γ(M) is a skew-symmetric tensor field of type (1, 2), S(X,Y ) =
−S(Y,X).

Using Proposition 5.4 and following [17], we investigate the integrability properties of almost bi-
complex structures. Similar theorems were obtained for almost quaternionic manifolds by Yano [17].

On the other hand, we write the following relation:

[P,QR](X,Y ) =[PX,QRY ] + [QRX,PY ]− P ([X,QRY ] + [QRX,Y ])

−QR([X,PY ] + [PX, Y ])− (PQR+QRP )[X,Y ]. (5)

i) If we choose P = Q = I and R = J , considering the commutation relation IJ = K from the
equation (5), we get

[I,K](X,Y ) = I[I, J ](X,Y ) +
1

2
([I, I](JX, Y ) + [I, I](X,JY ]).

Similarly, for P = Q = J and R = I, we have

[J,K](X,Y ) = J [J, I](X,Y ) +
1

2
([J, J ](IX, Y ) + [J, J ](X, IY ]).

Therefore, if [I, I] = 0, then

[I,K](X,Y ) = [I, IJ ](X,Y ) = I[I, J ](X,Y ), (6)

and if [J, J ] = 0, then

[J,K](X,Y ) = [J, JI](X,Y ) = J [J, I](X,Y ), (7)

ii) If we choose P = I, Q = J and R = K, we get

−[I, I](X,Y )− [J, J ](X,Y ) = [I, J ](KX,Y ) + [I, J ](X,KY )

+ I[J,K](X,Y ) + J [I,K](X,Y )

If [I, I] = 0 and [J, J ] = 0 simultaneously, because of equations (6) and (7), then we get

[I, J ](KX,Y ) + [I, J ](X,KY ) = 0,

or shortly,

[I, J ] = [J, I] = [K,K] = IJ − JI = K −K = 0.

Then we can see that the almost complex structures I and J must simultaneously be integrable. Thus,
we have following theorem:
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Theorem 5.5. If I and J are two almost complex structures on a smooth manifold of real 2n-
dimensions which commute each other, IJ = JI = K, then I, J and K must simultaneously be
integrable as follows:

[I, I] = [J, J ] = 0, [I, J ] = [J, I] = [K,K] = 0, [I,K] = [J,K] = 0.

6. Conclusion

When one compares quaternions and bicomplex numbers handled in this paper, although these
numbers live in the real 4n dimensions, the associated almost complex structures to these numbers
behave different concept. So, almost quaternionic structure has to be defined in 4n-dimensions, but
any even dimension is sufficient for the almost bicomplex structure because of Proposition 4.1 given
by Obata [13] and Theorem 4.2 by Hoffmann and Kunze [6]. This means that the almost bicomplex
structures in the concept of this paper don’t relate to the bicomplex numbers. In the quaternions two
anticommuting almost complex structures induce the third almost complex structure, however, two
commuting almost complex structures cannot induce a third almost complex structure. As is shown
from equation (1), if I and J are two almost complex structures having commutations relationship
IJ = JI = K, then K2 = +I, that is K isn’t an almost complex structure. Thus the triplet (I, J,K)
cannot be associated to the bicomplex numbers. Although, in this case, we have used the term ”almost
bicomplex structure” for this triplet. We have shown clearly this situation on the almost complex
structures obtained in 4– and 6-dimensions given in equations (3) and (4), respectively. Consequently,
by Theorem (5.5) we have presented the integrability of the bicomplex structure.
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