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CONSTRUCTION OF A KERNEL DENSITY ESTIMATOR OF

ROSENBLATT-PARZEN TYPE BY CONDITIONALLY INDEPENDENT

OBSERVATIONS

ZURAB KVATADZE AND BEKNU PARJIANI

Abstract. On the probabilistic space (Ω, F, P ), we consider the conditionally independent sequence

{Xi}i≥1 controlled by the sequence {ξi}i≥1. The members of {ξi}i≥1 are independent, identically

distributed random variables ξi = b1I(ξ1=b1) + b2I(ξ1=b2) + · · · + brI(ξ1=br). The elements of

the sequence {Xi}i≥1 are the observations of some random variable X. Conditional distributions

PXi|ξi=bi , i = 1, r, have unknown densities fi(x), i = 1, r, respectively. Using observations {Xi}i≥1,

a kernel density estimator f̄ (x) =
r∑
i=1

pifi (x) of Rosenblatt-Parzen type is constructed, where

pi = P (ξ1 = bi). The accuracy of approximation of the constructed estimator to the unknown

function f̄ (x) is established.

Distribution density estimators are intensively studied by many authors. In this paper, a non-
parametric density estimator is constructed by dependent observations. The class of conditionally
independent observations is considered. The nonparametric density estimators which have so far been
considered are constructed by independent samples.

Below we present some definitions and auxiliary facts for nonparametric estimates of a distribution
density which were constructed by independent observations.

Let the values Xi, xi ∈ R, i=1,2,. . . , be independent observations of some random value Xi with
unknown density g (x). Various methods are available for obtaining estimators of g (x). In the works
of M. Rosenblatt and E. Parzen (see [8, 9]) the estimators ofg∗n (x) obtained by the kernel k (x)

g∗n (x, hn) =
1

nhn

n∑
i=1

k

(
(x−Xi)

hn

)
were considered, where {hn}n≥1 is the sequence of positive numbers such that

lim
n→∞

hn = 0; lim
n→∞

nhn =∞,

and the kernel k (x) is some Lebesgue-integrable Borel function. In [5, 7, 10], the results of [9] were
generalized by modifying the conditions on k (x) and using the observations of vectors Xi ∈ Rm

(m > 1).
Along with estimators of Rosenblatt-Parzen type, projection type estimators were also considered

(see [2,7]) using the spectral decomposition of the kernel k (x) with respect to the orthonormal basis of
functions. Applying smoothing functions, L. Devroye and L. Györfi (see [3]) constructed the adaptive
kernel estimators for densities with a finite number of discontinuity points. As a divergence measure of
the constructed estimators of g (x) some authors considered various characteristics in terms of metrics
L1, ([3, 6]); L2 ([7, 9]) and so on.

In [7], E. Nadaraya obtained the sufficient conditions for the uniform convergence of the estimator

ĝn (x, an) =
an
n

n∑
i=1

k (an (x−Xi))
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to g (x) with probability 1. The divergence measure between g (x) and ĝn (x, an) is the value

E

∞∫
−∞

[ĝn (x, an)− g (x)]
2
dx,

where {an}n≥1 is the sequence of positive numbers such that

lim
n→∞

an =∞, an = o (n) . (1)

Definition 1. Denote by Hs (s ≥ 2; s is an even number) a set of functions k (x) satisfying the
conditions

k (−x) = k (x) ,

∞∫
−∞

k (x) dx = 1, sup |k (x)| ≤ A <∞,

∞∫
−∞

xik (x) dx = 0, i = 1, 2, . . . , s− 1;

∞∫
−∞

xsk (x) dx 6= 0,

∞∫
−∞

xs |k (x)| dx <∞. (2)

Definition 2. Denote by Ws a set of functions ϕ (x) having derivatives up to the s-th order (s ≥ 2)
inclusive, and note that ϕ(s) (x) is a continuous bounded function from the class L2 (−∞,∞).

Lemma (see [7]). If the variables Xi, xi ∈ R, i = 1, 2, . . . , are independent observations of some
random variable X with unknown density g (x), g (x) ∈ Ws ∩ L2 (−∞,∞), k (x) ∈ Hs ∩ L2 (−∞,∞)
and

ĝn (x, an) =
an
n

n∑
i=1

k (an (x−Xi)),

then for n→∞, the equalities

∞∫
−∞

Dĝn (x, an) dx =
an
n

∞∫
−∞

k2 (x) dx+O
(an
n

)
, (3)

∞∫
−∞

[Eĝn (x, an)− g (x)]
2
dx = a−2sn

α2

(s!)
2

∞∫
−∞

[
g(s) (x)

]2
dx+O

(
a−2sn

)
(4)

hold, where {an}n≥1 is the sequence (1), and

α =

∞∫
−∞

xsk (x) dx.

Let us present our result.
In practice we encounter the situation when at random moments of time the distribution of the

observed variable X changes depending on the conditions (of the controlling sequence {ξi}i≥1). This

brings about changes of the densities of observations {Xi}i≥1. For example, in stock-exchange trans-
actions the price of some commodities changes depending on a season, though this price is fixed at
the auction. As a result, the flow of revenues due to such transactions also changes, and so on.

In such situations, to estimate the density X it is appropriate to consider dependent observations.
Here we consider the class of conditionally independent observations.
On the probability space (Ω, F, P ), let us consider the two-component stationary (in the narrow

sense) sequence of random variables

{ξi, Xi}i≥1, (5)

where ξi : Ω→ Ξ, Xi : Ω→ Rm and Ξ is some space.
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Definition 3. The sequence {Xi}i≥1 from (4) is called a conditionally independent sequence (see [1])

controlled by the sequence {ξi}i≥1 if for any natural n and the fixed trajectory ξ1n = (ξ1, ξ2, . . . , ξn),
the values X1, X2, . . . , Xn become independent and for all natural numbers i, k, n, j1, j2, . . . , jk,
(2 ≤ k ≤ n; i ≤ n; 1 ≤ j1 < j2 <, · · · , < jk ≤ n) the equalities

P (Xj1 ,Xj2 ,...,Xjk)|ξ1n = PXj1 |ξj1 × PXj2 |ξj2 × · · · × PXjk |ξjk ,

PXi|ξ1n = PXi|ξi ,

are fulfilled, where PX|Y is the conditional distribution of the variable X under the condition Y .

Consider the sequence (5). Let ξi, i = 1, 2, . . . , be independent, identically distributed random
variables and let

Ξ = {b1, b2, . . . , br} ; P (ξ1 = bi) = pi, i = 1, r, p1 + p2 + · · ·+ pr = 1,

{Xi}i≥1 is the conditionally independent sequence whose elements are observations of the variable

X. It is assumed that the conditional distributions PX1|ξ1=bi , i = 1, r, have unknown densities

fi(x), i = 1, r, respectively. The sum f̂n (x, an) = an
n

n∑
j=1

k (an (x−Xj)) constructed by conditionally

independent observations is considered as the density estimator f̄ (x) =
r∑
i=1

pifi (x), while the estimator

accuracy is established by the expression u (an) = E
∞∫
−∞

[
f̂n (x, an)− f̄ (x)

]2
dx.

On the fixed trajectory ξ1n = (ξ1, ξ2, . . . , ξn) of the sequence {ξi}i≥1, we denote by νn (1), νn (2) , . . . ,

νn (r) the frequencies for which the first n members of the sequence adopt the values b1, b2, . . . , br.

Theorem. Let us consider the sequence (5). The elements of the controlling sequence {ξi}i≥1(ξi :

Ω → {b1, b2, . . . , br}) are independent, identically distributed values ξi =
r∑
i=1

biI(ξ1=bi). Assume that

for every function Ψ : Ξ→ R1, for which EΨ (ξi) <∞ as n→∞, we have the convergence

1

n

n∑
j=1

Ψ(ξi)→ EΨ (ξ1) a.s. (6)

The elements of the conditionally independent sequence {Xi}i≥1 are observations of the variable X.

The conditional distributions PX1|ξ1=bi , i = 1, r , have unknown densities fi(x), i = 1, r , respectively.

Assume fi (x) ∈Ws∩L2 (−∞,∞) and k (x) ∈ Hs∩L2 (−∞,∞). If for the frequencies νn (i), i = 1, r,
the inequalities

D

(
νn (i)

n

)
≤ ci√

n
, i = 1, r (7)

are fulfilled, then for any natural n the estimator of the density f̄ (x) =
r∑
i=1

pifi (x) is the sum

f̂n (x, an) =
an
n

n∑
j=1

k (an (x−Xj)) (8)

and the following asymptotic equality

u (an) ≤
( r∑
i=1

Mi

)2

+
an
n

∞∫
−∞

k2 (x) dx+

( r∑
i=1

(Cin
−1/2 + pi

2)

)
O
(an
n

)
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is valid, where

Mi = T
1/2
i +

(
Cin

−1/2
∞∫
−∞

f2i (x) dx

) 1
2

Ti = (a−2sn

α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+O(a−2sn ))(Cin

−1/2 + p2i ) i = 1, r

and

α =

∞∫
−∞

xsk (x) dx.

Proof. The proof of the theorem is based on the decomposition of f̂n (x, an) (the trajectory ξ1nis
assumed to be fixed) into independent sums of random variables. For the fixed trajectory ξ1n we
enumerate individually the moments of time at which the first n members of the sequence {ξi}i≥1
take the value bi, i = 1, r, respectively,

τ0(i) = 0, τm(i) = min{j|τm−1 < j ≤ n; ξi = bi}; m = 1, νn (i), i = 1, r.

We obtain the sequence of indices

τ1(i), τ2(i), . . . , τνn(i)(i) i = 1, r

for which the equalities

ξτm(i) = bi m = 1, νn (i), i = 1, r

are valid.
When the trajectory ξ1n is fixed, the sum (8) can be decomposed as follows

f̂n (x, an) =

r∑
i=1

νn (i)

n
f̂in (x, an),

where

f̂in (x, an) =
an
νn (i)

νn(i)∑
m=1

k
(
an
(
x−Xτm(i)

))
i = 1, r.

Naturally, if νn (i) = 0, then the summand f̂in (x, an), i = 1, r, does not exist. Let us prove the

finiteness of Ef̂n (x, an) and Df̂n (x, an). On the fixed trajectory ξ1n, we represent Ef̂n (x, an) as a
conditional mathematical expectation

Ef̂n (x, an) = E{E(f̂n (x, an) |ξ1n)} = E

{
E

( r∑
i=1

νn (i)

n
f̂in (x, an) |ξ1n

)}
.

In proving the theorem, we take into account that νn (i), i = 1, r, are measurable functions with
respect to the σ-algebra which is generated when the probability space Ω is partitioned as a result
of fixing the trajectory ξ1n. Therefore these functions can be taken outside the sign of mathematical
expectation. In the above equality and in the sequel we keep in mind the fact that the following
equality

E
νn (i)

n
= pi

is fulfilled by virtue of conditions (6), and applying condition (7), we obtain the estimator

E

(
νn (i)

n

)2

= D

(
νn (i)

n

)
+

(
E
νn (i)

n

)2

≤ n−1/2ci + p2i . (9)
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Hence, using conditions (2), after replacing the variable under the integration sign, we see that the
following chain of equalities

Ef̂n (x, an) =

r∑
i=1

E

{
νn (i)

n
E

(
an
νn (i)

νn(i)∑
m=1

k
(
an
(
x−Xτm(i)

))
|ξ1n

)}

=

r∑
i=1

E

{
νn (i)

n
E
( an
νn (i)

νn (i) k
(
an
(
x−Xτm(i)

))
|ξ
τm(i)

)}

=

r∑
i=1

an

∞∫
−∞

k(an(x− u))fi(u)duE
νn (i)

n
=

r∑
i=1

pi

∞∫
−∞

k(t)fi

( t

an
+ x
)
dt

is valid.
Sincefi(x) is the density and |k(t)| is bounded by the infinite constant A, we conclude that

Ef̂n (x, an) is finite.

On the fixed trajectory ξ1n, the sums f̂in (x, an), i = 1, r, and their constituent summands too, are
independent and the following equalities

Df̂n (x, an) = E{E([f̂n (x, an)− Ef̂n (x, an)]2|ξ1n)}

= E

{
E

([ r∑
i=1

νn (i)

n
f̂in (x, an)− E

r∑
i=1

νn (i)

n
f̂in (x, an)

]2
|ξ1n

)}

= E

{
E

([ r∑
i=1

νn (i)

n
(f̂in (x, an)− Ef̂in (x, an))

]2
|ξ1n

)}

= E

{
E

([ r∑
i=1

(νn (i)

n

)2
f̂in (x, an)− Ef̂in (x, an)

]2
|ξ1n

)}

=

r∑
i=1

{
E
(νn (i)

n

)2
E([f̂in (x, an)− Ef̂in (x, an)]2|ξ1n)

}

=

r∑
i=1

E

{(νn (i)

n

)2
E

[ νn(i)∑
j=1

an
νn (i)

(
k
(
an
(
x−Xτj(i)

))
− Ek

(
an
(
x−Xτj(i)

))) ]2
|ξ1n

}

=

r∑
i=1

E

{(νn (i)

n

)2( an
νn (i)

)2
E

( νn(i)∑
j=1

[k
(
an
(
x−Xτj(i)

))
− Ek

(
an
(
x−Xτj(i)

))
]2|ξ1n

)}

=
r∑
i=1

E
(νn (i)

n

)2( an
νn (i)

)2
νn (i)

+∞∫
−∞

[
k (an (x− u))−

+∞∫
−∞

k (an (x− y))fi(y)dy

]2
fi (u) du

are true.
Using equality (9), we obtain for Df̂n (x, an) the following expression:

Df̂n (x, an) =
an
n

2∑
i=1

pi

∞∫
−∞

[k(t)−
∞∫
−∞

k (an (x− y))fi(y)dy]
2
fi

( t

an
+ x
)
dt.

Let us estimate u (an). We apply Fubini’s theorem and divide u (an) into two parts

u (an) =

∞∫
−∞

E
[
f̂n (x, an)− f̄ (x)

]2
dx

=

∞∫
−∞

E
[
f̂n (x, an)− Ef̂n (x, an)

]2
dx+

∞∫
−∞

E
[
Ef̂n (x, an)− f(x)

]2
dx = I1 + I2. (10)
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To estimate I1, we again apply Fubini’s theorem and obtain

I1 =

∞∫
−∞

E
[
f̂n (x, an)− Ef̂n (x, an)

]2
dx =

∞∫
−∞

E{E([f̂n (x, an)− Ef̂n (x, an)]
2
|ξ1n)}dx

= E

+∞∫
−∞

E

([ r∑
i=1

νn (i)

n
f̂in (x, an)− E

r∑
i=1

νn (i)

n
f̂in (x, an)

]2
|ξ1n

)
dx

= E

{ +∞∫
−∞

E

( r∑
i=1

(
νn (i)

n

)2

[f̂in(x, an)− Ef̂in (x, an)]
2
|ξ1n

)
dx

}

= E

{ +∞∫
−∞

r∑
i=1

(
νn (i)

n

)2

E([f̂in(x, an)− Ef̂in (x, an)]
2
|ξ1n)dx

}
.

Using equality (3) from the Lemma, we have

I1 =

r∑
i=1

E

{(
νn (i)

n

)2(
an
νn(i)

+∞∫
−∞

k(x)dx+ o
(an
n

))}

=

r∑
i=1

E
{(νn (i)

n

)2
an
νn (i)

+∞∫
−∞

k2(x)dx
}

+ o
(an
n

) r∑
i=1

E

(
νn (i)

n

)2

=
an
n

+∞∫
−∞

k2(x)dx

r∑
i=1

E

(
νn (i)

n

)
+ o

(an
n

) r∑
i=1

[
D

(
νn (i)

n

)
+

(
E
νn (i)

n

)2]
.

By applying inequality (9), we complete the estimation of I1,

I1 ≤
an
n

+∞∫
−∞

k2(x)dx

r∑
i=1

pi + o
(an
n

) r∑
i=1

(Cin
−1/2 + pi

2)

=
an
n

+∞∫
−∞

k2(x)dx+ o
(an
n

) r∑
i=1

(Cin
−1/2 + pi

2). (11)

Applying Fubini’s theorem once more and decomposing I2 into two sums, we have

I2 =

∞∫
−∞

E
[
Ef̂n (x, an)− f (x)

]2
dx = E

∞∫
−∞

[
Ef̂n (x, an)− f (x)

]2
dx

= E

{
E

( ∞∫
−∞

[
Ef̂n (x, an)− f (x)

]2
dx|ξ1n

)}

= E

{
E

( ∞∫
−∞

[
E

( r∑
i=1

νn (i)

n
f̂in (x, an)

)
−

r∑
i=1

pifi(x)

]2
dx|ξ1n

)}

= E

{
E

( ∞∫
−∞

[ r∑
i=1

(
E
νn (i)

n
f̂in (x, an)− pifi(x)

)]2
dx|ξ1n

)}

= E

{
E

( ∞∫
−∞

( r∑
i=1

(
E
νn (i)

n
f̂in (x, an)− pifi(x)

)2
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+2

r∑
i,j=1
i<j

(
E
νn (i)

n
f̂in (x, an)− pifi(x)

))(
E
νn (j)

n
f̂jn (x, an)− pjfj(x)

))
dx|ξ1n

)}

= E

{
E

( ∞∫
−∞

r∑
i=1

E
νn (i)

n
f̂in (x, an)− pifi(x))2dx|ξ1n

)}

+E

{
E

( ∞∫
−∞

2

r∑
i,j=1
i<j

(
E
νn (i)

n
f̂in (x, an)− pifi(x)

)(
E
νn (j)

n
f̂jn (x, an)− pjfj(x)

)
dx|ξ1n

)}

=

r∑
i=1

E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

]2
dx|ξ1n

)}

+2

r∑
i,j=1
i<j

E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

][νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]
dx|ξ1n

)}
=I21 + I22.

We decompose the sum I21 into three parts

I21 =

r∑
i=1

E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)−νn (i)

n
fi(x) +

νn (i)

n
fi(x)− pifi(x)

]2
dx|ξ1n

)}

=

r∑
i=1

E

{
E

( ∞∫
−∞

(
νn (i)

n

)2

[Ef̂in (x, an)− fi(x)]
2
dx|ξ1n

)}

+

r∑
i=1

E

{
E

( ∞∫
−∞

(
νn (i)

n
− pi

)2

f2i (x)dx|ξ1n
)}

+2

r∑
i=1

E

{
E

( ∞∫
−∞

νn (i)

n

(
νn (i)

n
− pi

)
[Ef̂in (x, an)− fi(x)]fi(x)dx|ξ1n

)}
= A1 +A2 +A3.

Using equality (4) from the Lemma and the estimator (9), we obtain

A1 =

r∑
i=1

E

{(
νn (i)

n

)2

E

( ∞∫
−∞

[Ef̂in (x, an)− fi(x)]
2
dx|ξ1n

)}

=

r∑
i=1

E

{(
νn (i)

n

)2(
a−2sn

α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

)}

=

r∑
i=1

(
a−2sn

α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

)
(Cin

−1/2 + p2i ) =

r∑
i=1

Ti,

where

Ti =

(
a−2sn

α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

)
(Cin

−1/2 + p2i ).

It is not difficult to derive the estimator for the sum A2,

A2 =

r∑
i=1

E

{(νn (i)

n
− pi

)2
E

∞∫
−∞

f2i (x)dx

}
≤

r∑
i=1

Cin
−1/2

∞∫
−∞

f2i (x)dx.
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We use the fact that the values νn(i)
n − pi, i = 1, r, as well as νn(i)

n , are measurable with respect to

the σ-algebra generated by the fixed trajectory ξ1n. By Hölder’s inequality, for the summand A3, we
obtain the following estimator

A3 = 2

r∑
i=1

E

{
νn (i)

n

(νn (i)

n
− pi

)
E

( ∞∫
−∞

[Ef̂in (x, an)− fi(x)]fi(x)dx|ξ1n
)}

≤ 2

r∑
i=1

E

νn (i)

n

(νn (i)

n
− pi

)
E


√√√√√ ∞∫
−∞

[Ef̂in (x, an)− fi(x)]2dx

√√√√√ ∞∫
−∞

fi
2(x)dx|ξ1n




≤ 2

r∑
i=1

√√√√√a−2sn
α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

√√√√√ ∞∫
−∞

fi
2(x)dx× E

{νn (i)

n

(νn (i)

n
− pi

)}

≤ 2

r∑
i=1

√√√√√a−2sn
α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

√√√√√ ∞∫
−∞

fi
2(x)dx×

√
E
(νn (i)

n

)2√
E
(νn (i)

n
− pi

)2

≤ 2

r∑
i=1

√√√√√a−2sn
α2

(s!)
2

∞∫
−∞

[f
(s)
i (x)]

2
dx+ o(a−2sn )

√√√√√ ∞∫
−∞

fi
2(x)dx ·

√
Cin−1/2

√
Cin−1/2 + p2i

≡ 2

r∑
i=1

√
Ti ·

√√√√√Cin−1/2

∞∫
−∞

fi
2(x)dx.

The summation of the estimators A1 A2 and A3 gives

I21 ≤
r∑
i=1

(
√
Ti +

√√√√√Cin−1/2

∞∫
−∞

fi
2(x)dx)

2 ≡
r∑
i=1

M2
i , (12)

where

Mi =
√
Ti +

√√√√√Cin−1/2

∞∫
−∞

fi
2(x)dx.

Consider the sum I22

I22 = 2

r∑
i, j = 1
i < j

E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

][νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]
dx|ξ1n

)}

= 2

r∑
i, j = 1
i < j

Bij .

The summands of this sum are estimated in the same manner as above. Let us estimate one of
them by applying Fubini’s and Hölder’s theorems:

Bij = E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

][νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]
dx|ξ1n

)}
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≤ E

E
√√√√√ ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

]2
dx

√√√√√ ∞∫
−∞

[νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]2
dx|ξ1n


≤ E


√√√√√E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

]2
dx|ξ1n

)

×

√√√√√E

( ∞∫
−∞

[νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]2
dx|ξ1n

)
≤

√√√√√E

{
E

( ∞∫
−∞

[νn (i)

n
Ef̂in (x, an)− pifi(x)

]2
dx|ξ1n

)}

×

√√√√√E

{
E

( ∞∫
−∞

[νn (j)

n
Ef̂jn (x, an)− pjfj(x)

]2
dx|ξ1n

)}
.

Each of the obtained two multipliers is estimated like a summand of the sum I21. Thus we obtain
the estimate Bij

Bij ≤MiMj .

Hence an estimator of the sum I22 has the form

I22 ≤ 2

r∑
i, j = 1
i < j

MiMj . (13)

Thus, in view of the decomposition (10) and the derived estimators (11), (12) and (13), the theorem
is proved. �

Note that the proposed method enables one to construct density estimators for other types of
dependence of observations too, for example, when the controlling sequence {ξi}i≥1 is a Markov

chain, i.e., {Xi}i≥1 are observations with the chain dependence (see [4]).
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