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SOLUTIONS OF SOME DIOPHANTINE EQUATIONS IN TERMS OF

HORADAM SEQUENCE

REFİK KESKİN1, ZAFER ŞİAR2, AND MERVE GÜNEY DUMAN3

Abstract. Let a, b, and P be integers such that (a, b) 6= (0, 0). In this study, we give all solutions

of the equations x2 − Pxy − y2 = ±
(
b2 − Pab− a2

)
, x2 − (P 2 + 4)y2 = ±4(b2 − Pab − a2),

x2−(P 2+4)y2 = ±4(b2−Pab−a2)2, x2−Pxy+y2 = b2−Pab+a2, x2−(P 2−4)y2 = 4(b2−Pab+a2),
and x2 − (P 2 − 4)y2 = 4(b2 − Pab + a2)2 in terms of the second order recurrence sequences when

|b2 − Pab± a2| is odd prime.

1. Introduction

The second order recurrence sequence {Wn} = {Wn(a, b;P,Q)} is defined by

W0 = a, W1 = b, and Wn = PWn−1 +QWn−2 for n ≥ 2,

where a, b, P, and Q are integers with PQ 6= 0 and (a, b) 6= (0, 0). Particular cases of {Wn} are the
Lucas sequence of the first kind {Un(P,Q)} = {Wn(0, 1;P,Q)} and the Lucas sequence of the second
kind {Vn(P,Q)} = {Wn(2, P ;P,Q)} . Now we define the sequence {Xn} = {Xn(a, b;P,Q)} by

X0 = 2b− aP, X1 = bP + 2aQ, and Xn = PXn−1 +QXn−2 for n ≥ 2.

It is convenient to consider {Xn} to be the companion sequence of {Wn} , in the same way that {Vn}
is the companion sequence of {Un} . Let α and β be the roots of the equation x2−Px−Q = 0. Then

α = (P +
√
P 2 + 4Q)/2 and β = (P −

√
P 2 + 4Q)/2. Clearly, α + β = P, α − β =

√
P 2 + 4Q, and

αβ = −Q. Assume that P 2 + 4Q 6= 0. Then Binet formulas of {Wn} and {Xn} are given by

Wn =
Aαn −Bβn

α− β
and Xn = Aαn +Bβn, (1.1)

where A = b − aβ and B = b − aα. It can be seen that AB = b2 − abP − a2Q. Moreover, it can be
easily shown that there are the following relations between the terms of the sequences {Wn} , {Xn} ,
{Un} , and {Vn} given by

Xn = Wn+1 +QWn−1 = PWn + 2QWn−1, (1.2)

(P 2 + 4Q)Wn = Xn+1 +QXn−1, (1.3)

Wn = bUn + aQUn−1 and Xn = bVn + aQVn−1 (1.4)

for n ≥ 1. It is well known that the numbers Un and Vn for negative subscripts are defined as

U−n =
−Un

(−Q)
n and V−n =

Vn
(−Q)

n

for n ≥ 1. By using (1.1) together with (1.4), it is convenient to define the numbers Wn and Xn for
negative subscripts by

W−n =
Aα−n −Bβ−n

α− β
and X−n = Aα−n +Bβ−n.

Then it follows that

W−n =
−bUn + aUn+1

(−Q)
n and X−n =

bVn − aVn+1

(−Q)
n (1.5)
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and therefore

W−n = bU−n + aQU−n−1 and X−n = bV−n + aQV−n−1.

Thus it is seen that identities (1.2), (1.3), and (1.4) hold for all integers n. For more information about
the sequence one can consult [2, 10,11,13,15].

In the literature, integer solutions of the equations x2 − Pxy − y2 = 1, x2 − Pxy − y2 = −1,
x2 − (P 2 + 4)y2 = 4, x2 − (P 2 + 4)y2 = −4, x2 − Pxy + y2 = 1, and x2 − (P 2 − 4)y2 = 4 are given
in terms of the sequences {Un(P,±1)} and {Vn(P,±1)}(see [4–9, 12, 16]). More clearly, we can state
them by

Equations Solutions

x2 − Pxy − y2 = 1 (x, y) = ±(Un(P, 1), Un−1(P, 1)) with n odd,

x2 − Pxy − y2 = −1 (x, y) = ±(Un(P, 1), Un−1(P, 1)) with n even,

x2 − (P 2 + 4)y2 = 4 (x, y) = ±(Vn(P, 1), Un(P, 1)) with n even,

x2 − (P 2 + 4)y2 = −4 (x, y) = ±(Vn(P, 1), Un(P, 1)) with n odd,

x2 − Pxy + y2 = 1 (x, y) = ±(Un(P,−1), Un−1(P,−1)),

x2 − (P 2 − 4)y2 = 4 (x, y) = ±(Vn(P,−1), Un(P,−1)).

Moreover, if P 2 ± 4 is square free, then all integer solutions of the equations x2 − Pxy − y2 =
P 2 + 4, x2−Pxy−y2 = −(P 2 + 4), and x2−Pxy+y2 = −(P 2−4) are given in terms of the sequence
{Vn(P,±1)}(see [7]). When P 2 ± 4 is square free, we get

Equations Solutions

x2 − Pxy − y2 = P 2 + 4 (x, y) = ±(Vn(P, 1), Vn−1(P, 1)) with n even,

x2 − Pxy − y2 = −(P 2 + 4) (x, y) = ±(Vn, (P, 1), Vn−1(P, 1)) with n odd,

x2 − Pxy + y2 = −(P 2 − 4) (x, y) = ±(Vn(P,−1), Vn−1(P,−1)).

In this paper, we give all integer solutions of the equations

x2 − Pxy − y2 =b2 − Pab− a2, x2 − Pxy − y2 = −(b2 − Pab− a2)

x2 − (P 2 + 4)y2 =4(b2 − Pab− a2), x2 − (P 2 + 4)y2 = −4(b2 − Pab− a2),

x2 − (P 2 + 4)y2 =4(b2 − Pab− a2)2, x2 − (P 2 + 4)y2 = −4(b2 − Pab− a2)2,

x2 − Pxy + y2 =b2 − Pab+ a2, x2 − (P 2 − 4)y2 = 4(b2 − Pab+ a2),

and

x2 − (P 2 − 4)y2 = 4(b2 − Pab+ a2)2

in terms of second order recurrence sequences when |b2−Pab±a2| is odd prime. In the second section,
we give some identities between the sequence {Wn} and its companion sequence {Xn}. After that,
we give our main theorem in the third section.

2. Preliminaries

In this section, we give some identities, theorems, and lemmas, which will be used later. The
following identities concerning the sequence {Wn} and its companion sequence {Xn} hold.

X2
n − (P 2 + 4Q)W 2

n = 4(−Q)n(b2 − Pab−Qa2), (2.1)

W 2
n+1 − PWn+1Wn −QW 2

n = (−Q)n(b2 − Pab−Qa2), (2.2)

W 2
n − PWn+1Wn−1 = (−Q)n−1(b2 − Pab−Qa2), (2.3)

X2
n+1 − PXn+1Xn −QX2

n = −(−Q)n(P 2 + 4Q)(b2 − Pab−Qa2), (2.4)

and

Xn+1Xn−1 −X2
n = (−Q)n−1(P 2 + 4Q)(b2 − Pab−Qa2). (2.5)



SOLUTIONS OF SOME DIOPHANTINE EQUATIONS 81

One can find the above identities in [2] and [15]. Let

W ∗
n = bWn + aQWn−1 and X∗

n = bXn + aQXn−1. (2.6)

Then it can be shown that

bWn − aWn+1 = (b2 − Pab− a2Q)Un and bXn − aXn+1 = (b2 − Pab− a2Q)Vn (2.7)

(X∗
n)

2 − (P 2 + 4Q) (W ∗
n)

2
= 4(−Q)n(b2 − Pab−Qa2)2, (2.8)(

W ∗
n+1

)2 − PW ∗
n+1W

∗
n −Q (W ∗

n)
2

= (−Q)n(b2 − Pab−Qa2)2, (2.9)

and (
X∗

n+1

)2 − PX∗
n+1X

∗
n −Q (X∗

n)
2

= −(−Q)n(P 2 + 4Q)(b2 − Pab−Qa2)2 (2.10)

by (2.1), (2.2), (2.3), (2.4), and (2.5).
From now on, we write Wn, Xn, Un, and Vn instead of Wn(a, b;P, 1), Xn(a, b;P, 1), Un(P, 1), and

Vn(P, 1), respectively. We represent Wn(a, b;P,−1), Xn(a, b;P,−1), Un(P,−1), and Vn(P,−1) by
wn, xn, un, and vn, respectively. We write x∗n and w∗

n instead of X∗
n (a, b;P,−1) and W ∗

n(a, b;P,−1),
respectively. The following three theorems are given in [7].

Theorem 2.1. Let u and v be integers. Then u2− (P 2 + 4)v2 = ±4 if and only if (u, v) = ∓(Vn, Un)
for some n ∈ Z.

Theorem 2.2. Let P > 3. Then all integer solutions of the equation u2 − (P 2 − 4)v2 = 4 are given
by (u, v) = ∓(vn, un) with n ∈ Z.

Theorem 2.3. Let P > 3. Then the equation u2 − (P 2 − 4)v2 = −4 has no integer solutions.

3. Main Theorems

3.1. Solutions of some Diophantine equations for Q = 1. In this subsection, we will assume
that Q = 1, P ≥ 1, and ∆ = b2 − Pab− a2 such that |∆| > 2 and |∆| is prime.

Theorem 3.1. Let x and y be integers. Then x2−(P 2+4)y2 = ±4∆ if and only if (x, y) = ±(Xn,Wn)
or ±((−1)n−1Xn, (−1)nWn) for some n ∈ Z.

Proof. If (x, y) = ±(Xn,Wn) or ±((−1)n−1Xn, (−1)nWn), then it follows that x2 − (P 2 + 4)y2 =
±4∆ by (2.1). Now let x2 − (P 2 + 4)y2 = ±4∆. Assume that ∆|y. Then ∆|x and this shows that
∆2|x2 − (P 2 + 4)y2. Then we get ∆2|4∆, but this is impossible, since |∆| > 2 and |∆| is prime.
Therefore ∆ - y.

It is obvious that 4∆ = (2b− Pa)2 − (P 2 + 4)a2. Thus

∆|[(2b− Pa)2 − (P 2 + 4)a2] (3.1)

and
∆|[x2 − (P 2 + 4)y2]. (3.2)

From (3.1) and (3.2), we get

∆|[a2
(
x2 − (P 2 + 4)y2

)
− y2

(
(2b− Pa)2 − (P 2 + 4)a2

)
],

i.e.,
∆|[ax+ y(2b− Pa)][ax− y(2b− Pa)].

Since |∆| is prime, it follows that
∆|[ax+ y(2b− Pa)]

or
∆|[ax− y(2b− Pa)].

Also, from (3.1) and (3.2), we get

∆|[a2(P 2 + 4)
(
x2 − (P 2 + 4)y2

)
+ x2

(
(2b− Pa)2 − (P 2 + 4)a2

)
],

i.e.,
∆|[(2b− Pa)x− ay(P 2 + 4)][(2b− Pa)x+ ay(P 2 + 4)].
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This implies that

∆|[(2b− Pa)x− ay(P 2 + 4)]

or

∆|[(2b− Pa)x+ ay(P 2 + 4)].

Hence, we have

∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 + 4)] (3.3)

or

∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 + 4)], (3.4)

and

∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 + 4)] (3.5)

or

∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 + 4)]. (3.6)

Now assume that (3.3) is satisfied. Then we get

∆|[x (ax+ y(2b− Pa))− y
(
(2b− Pa)x− ay(P 2 + 4)

)
],

i.e.,

∆ | a[x2 + (P 2 + 4)y2].

This implies that ∆|a or ∆|
(
x2 + (P 2 + 4)y2

)
. Assume that ∆|a. Then ∆|b since ∆ = b2 −Pab− a2.

Thus ∆2|∆ and this shows that ∆|1, but this is impossible. Therefore ∆|
(
x2 + (P 2 + 4)y2

)
. Then we

see that ∆|2(P 2 + 4)y2, since ∆|
(
x2 − (P 2 + 4)y2

)
. Hence, ∆|2(P 2 + 4), since ∆ - y. Then it follows

that

∆|
[
(P 2 + 4)2ay + (2b− Pa)x− ay(P 2 + 4)

]
,

i.e.,

∆|[(2b− Pa)x+ ay(P 2 + 4)].

In this case, (3.3) coincides with (3.6). Similarly, it is seen that (3.4) coincides with (3.5).
Now, let us show that 2|[(2b−Pa)x±ay(P 2 +4)] and 2|[ax±y(2b−Pa)]. It is seen that x2 ≡ (Py)2

(mod4) from the equation x2 − (P 2 + 4)y2 = ±4∆. This implies that x and Py have the same parity.
Therefore, we see that 2|[(2b− Pa)x± ay(P 2 + 4)] and 2|[ax± y(2b− Pa)].

Consequently, we should examine two cases

2∆|[(2b− Pa)x− ay(P 2 + 4)] and 2∆|[ax− y(2b− Pa)] (3.7)

and

2∆|[(2b− Pa)x+ ay(P 2 + 4)] and 2∆|[ax+ y(2b− Pa)]. (3.8)

Assume that (3.7) is satisfied. Let

u =
(2b− Pa)x− ay(P 2 + 4)

2∆
and v =

[(2b− Pa)y − ax]

2∆
.

Then it follows that [
u
v

]
=

1

2∆

[
2b− Pa −a(P 2 + 4)
−a 2b− Pa

] [
x
y

]
and so a simple computation shows that[

2b− Pa a(P 2 + 4)
a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
. (3.9)

By using the identities

x2 − (P 2 + 4)y2 = ±4∆ and 4∆ = (2b− Pa)2 − (P 2 + 4)a2,

it is seen that

u2 − (P 2 + 4)v2 = ±4.
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Thus we have (u, v) = ∓(Vn, Un) for some n ∈ Z by Theorem 2.1. Then 2x = ±((2b− Pa)Vn +
a(P 2 + 4)Un) and 2y = ±(aVn + (2b− Pa)Un) by (3.9). By using (1.2), (1.3), and (1.4), we get

x =±
(
(2b− Pa)Vn + a(P 2 + 4)Un

)
/2 = ± (2bVn − PaVn + aVn+1 + aVn−1) /2

=± (bVn + aVn−1) = ±Xn

and

y =± (aVn + (2b− Pa)Un) /2 = ± (aUn+1 + aUn−1 + 2bUn − PaUn) /2

=± (bUn + aUn−1) = ±Wn.

Now assume that (3.8) is satisfied. Let

u =
(2b− Pa)x+ ay(P 2 + 4)

2∆
and v =

[(2b− Pa)y + ax]

2∆
.

Then we can see by a simple computation that[
2b− Pa −a(P 2 + 4)
−a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
and

u2 − (P 2 + 4)v2 = ±4.

Thus we have (u, v) = ∓(Vm, Um) for some m ∈ Z by Theorem 2.1. Similarly, it can be shown that
(x, y) = ±((−1)mX−m, (−1)m+1W−m). Taking n = −m, it is seen that

(x, y) =± ((−1)−nXn, (−1)−n+1Wn) = ±((−1)−n−1Xn, (−1)−nWn)

=± ((−1)n−1Xn, (−1)nWn). �

From the above theorem and (2.1), the following corollaries can be given.

Corollary 1. All integer solutions of the equation x2 − (P 2 + 4)y2 = 4∆ are given by (x, y) =
±(X2n,W2n) or ±(−X2n,W2n) with n ∈ Z.

Corollary 2. All integer solutions of the equation x2 − (P 2 + 4)y2 = −4∆ are given by (x, y) =
±(X2n−1,W2n−1) or ±(X2n−1,−W2n−1) with n ∈ Z.

Theorem 3.2. Let x and y be integers. Then x2−Pxy−y2 = ±∆ if and only if (x, y) = ±(Wn+1,Wn)
or ±

(
(−1)nWn, (−1)n+1Wn+1

)
for some n ∈ Z.

Proof. If (x, y) = ±(Wn+1,Wn) or ±
(
(−1)nWn, (−1)n+1Wn+1

)
, then it follows that x2−Pxy−y2 =

±∆ by (2.2). Assume that x2−Pxy−y2 = ±∆. Completing the square gives (2x−Py)2−(P 2+4)y2 =
±4∆.This implies that (2x − Py, y) = ±(Xn,Wn) or ±((−1)n−1Xn, (−1)nWn) for some n ∈ Z by
Theorem 3.1. If (2x − Py, y) = ±(Xn,Wn), then we get (x, y) = ±(Wn+1,Wn). If (2x − Py, y) =
±((−1)n−1Xn, (−1)nWn), then (x, y) = ±

(
(−1)n−1Wn−1, (−1)nWn

)
. �

From the above theorem and (2.2), the following corollaries can be given.

Corollary 3. All integer solutions of the equation x2 − Pxy − y2 = ∆ are given by (x, y) =
±(W2n+1,W2n) or ± (−W2n+1,W2n+2) with n ∈ Z.

Corollary 4. All integer solutions of the equation x2 − Pxy − y2 = −∆ are given by (x, y) =
±(W2n,W2n−1) or ± (W2n,−W2n+1) with n ∈ Z.

Since b2 − 3ab+ a2 = (b− a)2 − (b− a)a− a2, we can give the following corollaries.

Corollary 5. Let |b2 − 3ab + a2| be a prime number. Then all integer solutions of the equation
x2−xy− y2 = b2− 3ab+ a2 are given by (x, y) = ±(W2n+1,W2n) or ± (−W2n+1,W2n+2) with n ∈ Z,
where Wn = Wn(a, b− a, 1, 1).

Corollary 6. Let |b2 − 3ab + a2| be a prime number. Then all integer solutions of the equation
x2−xy−y2 = −(b2−3ab+a2) are given by (x, y) = ±(W2n,W2n−1) or ± (W2n,−W2n+1) with n ∈ Z,
where Wn = Wn(a, b− a, 1, 1).
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Theorem 3.3. Let P 2 + 4 be square free. Then x2 − Pxy − y2 = ±(P 2 + 4)∆ for some integers x
and y if and only if (x, y) = ±(Xn+1, Xn) or ±((−1)nXn−1, (−1)n−1Xn) for some n ∈ Z.

Proof. If (x, y) = ±(Xn+1, Xn) or ±((−1)nXn−1, (−1)n−1Xn), then it follows that x2 − Pxy − y2 =
±(P 2 + 4)∆ by (2.4). Now assume that P 2 + 4 is square free and x2 − Pxy − y2 = ±(P 2 + 4)∆ for
some integers x and y. Then (2x− Py)2 − (P 2 + 4)y2 = ±4(P 2 + 4)∆. Since P 2 + 4 is square free, it
is seen that (P 2 + 4)|(2x− Py). Therefore, if we take

u =
2x− Py
P 2 + 4

and v = y,

then we get v2−
(
P 2 + 4

)
u2 =±4∆. This implies that (v, u)=∓ (Xn,Wn) or±((−1)n−1Xn, (−1)nWn)

for some n ∈ Z by Theorem 3.1. If (v, u) = ∓ (Xn,Wn) , then it follows that y = v = ±Xn and

x =
((
P 2 + 4

)
u+ Pv

)
/2 = ±

((
P 2 + 4

)
Wn + PXn

)
/2

=± (Xn+1 +Xn−1 + PXn) /2

=±Xn+1

by (1.3). Similarly, it can be seen that (x, y) = ±((−1)nXn−1, (−1)n−1Xn) if (v, u) = ±((−1)n−1Xn,
(−1)nWn). �

We can give the following corollaries from the above theorem and (2.4).

Corollary 7. Let P 2 + 4 be square free. Then all integer solutions of the equation x2 − Pxy − y2 =
(P 2 + 4)∆ are given by (x, y) = ±(X2n+2, X2n+1) or ±(−X2n, X2n+1) with n ∈ Z.

Corollary 8. Let P 2 + 4 be square free. Then all integer solutions of the equation x2 − Pxy − y2 =
−(P 2 + 4)∆ are given by (x, y) = ±(X2n+1, X2n) or ±(X2n−1,−X2n) with n ∈ Z.

Theorem 3.4. Let x and y be integers. Then x2 − (P 2 + 4)y2 = ±4∆2 if and only if (x, y) = ±
(X∗

n,W
∗
n), ±((−1)n−1X∗

n, (−1)nW ∗
n), or ±(∆Vn,∆Un) for some n ∈ Z.

Proof. If (x, y) = ±(X∗
n,W

∗
n),±((−1)n−1X∗

n, (−1)nW ∗
n), or ±(∆Vn,∆Un), then it follows that x2 −

(P 2 + 4)y2 = ±4∆2 by (2.1) and (2.8). Let x2 − (P 2 + 4)y2 = ±4∆2. Now we divide the proof into
two cases:

Case I: Assume that ∆ - y.
It is obvious that 4∆ = (2b− Pa)2 − (P 2 + 4)a2. Thus

∆|[(2b− Pa)2 − (P 2 + 4)a2] (3.10)

and
∆|[x2 − (P 2 + 4)y2]. (3.11)

From (3.10) and (3.11), we get

∆|[a2
(
x2 − (P 2 + 4)y2

)
− y2

(
(2b− Pa)2 − (P 2 + 4)a2

)
],

i.e.,
∆|[ax+ y(2b− Pa)][ax− y(2b− Pa)].

Since |∆| is a prime number, it follows that

∆|[ax+ y(2b− Pa)]

or
∆|[ax− y(2b− Pa)].

Also, from (3.10) and (3.11), we get

∆|[a2(P 2 + 4)
(
x2 − (P 2 + 4)y2

)
+ x2

(
(2b− Pa)2 − (P 2 + 4)a2

)
],

i.e.,
∆|[(2b− Pa)x− ay(P 2 + 4)][(2b− Pa)x+ ay(P 2 + 4)].

This implies that
∆|[(2b− Pa)x− ay(P 2 + 4)]
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or

∆|[(2b− Pa)x+ ay(P 2 + 4)].

Hence, we have

∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 + 4)] (3.12)

or

∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 + 4)] (3.13)

and

∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 + 4)] (3.14)

or

∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 + 4)]. (3.15)

Now assume that (3.12) is satisfied. Then we get

∆|[x (ax+ y(2b− Pa))− y
(
(2b− Pa)x− ay(P 2 + 4)

)
],

i.e.,

∆ | a[x2 + (P 2 + 4)y2].

This implies that ∆|a or ∆|
(
x2 + (P 2 + 4)y2

)
. Assume that ∆|a. Then ∆|b, since ∆ = b2−Pab−a2.

Thus ∆2|∆ and this shows that ∆|1, which is impossible. Therefore ∆|
(
x2 + (P 2 + 4)y2

)
. Then we

see that ∆|2(P 2 + 4)y2 since ∆|
(
x2 − (P 2 + 4)y2

)
. Hence ∆|2(P 2 + 4) since ∆ - y. Then it follows

that

∆|
[
(P 2 + 4)2ay + (2b− Pa)x− ay(P 2 + 4)

]
,

i.e.,

∆|[(2b− Pa)x+ ay(P 2 + 4)].

In this case, (3.12) coincides with (3.15). Similarly, it is seen that (3.13) coincides with (3.14).
It can be seen that 2|[(2b− Pa)x± ay(P 2 + 4)] and 2|[ax± y(2b− Pa)].
Consequently, we should examine two cases

2∆|[(2b− Pa)x− ay(P 2 + 4)] and 2∆|[ax− y(2b− Pa)] (3.16)

and

2∆|[(2b− Pa)x+ ay(P 2 + 4)] and 2∆|[ax+ y(2b− Pa)]. (3.17)

Assume that (3.16) is satisfied. Let

u =
(2b− Pa)x− ay(P 2 + 4)

2∆
and v =

[(2b− Pa)y − ax]

2∆
.

Then it follows that [
u
v

]
=

1

2∆

[
2b− Pa −a(P 2 + 4)
−a 2b− Pa

] [
x
y

]
and so a simple computation shows that[

2b− Pa a(P 2 + 4)
a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
. (3.18)

By using the equalties

x2 − (P 2 + 4)y2 = ±4∆2 and 4∆ = (2b− Pa)2 − (P 2 + 4)a2,

it is seen that

u2 − (P 2 + 4)v2 = ±4∆.

Thus we have (u, v) = ±(Xn,Wn) or ±((−1)n−1Xn, (−1)nWn) for some n ∈ Z by Theorem 3.1. If
(u, v) = ±(Xn,Wn), then 2x = ±((2b− Pa)Xn + a(P 2 + 4)Wn) and 2y = ±(aXn + (2b− Pa)Wn)
by (3.18). By using (1.2), (1.3), and (2.6), we get

x =±
(
(2b− Pa)Xn + a(P 2 + 4)Wn

)
/2 = ± (2bXn − PaXn + aXn+1 + aXn−1) /2

=± (bXn + aXn−1) = ±X∗
n
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and

y =± (aXn + (2b− Pa)Wn) /2 = ± (aWn+1 + aWn−1 + 2bWn − PaWn) /2

=± (bWn + aWn−1) = ±W ∗
n .

Assume that (u, v) = ± ((−1)n−1Xn, (−1)nWn). Then from (3.18) and (2.7), we get

y =±
(
a(−1)n−1Xn + (2b− Pa) (−1)nWn

)
/2

=± (−1)n (−aWn+1 − aWn−1 + 2bWn − PaWn) /2

=± (−1)n (bWn − aWn+1) = ±(−1)n∆Un.

However, this is impossible since ∆ - y.
Now assume that (3.17) is satisfied. Let

u =
(2b− Pa)x+ ay(P 2 + 4)

2∆
and v =

[(2b− Pa)y + ax]

2∆
.

Then we can see by a simple computation that[
2b− Pa −a(P 2 + 4)
−a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
and

u2 − (P 2 + 4)v2 = ±4∆.

Thus we have (u, v) = ±(Xn,Wn) or ±((−1)n−1Xn, (−1)nWn) for some n ∈ Z by Theorem 3.1.
Similarly, it can be shown that (x, y) = ±((−1)n−1X∗

n, (−1)nW ∗
n).

Case II. Assume that ∆|y. Then ∆|x and therefore

(x/∆)2 − (P 2 + 4)(y/∆)2 = ±4.

Thus we get (x, y) = ±(∆Vn,∆Un) for some integer n by Theorem 2.1. �

Now, we can give the following results by using (2.8) and Theorem 3.4.

Corollary 9. All integer solutions of the equation x2 − (P 2 + 4)y2 = 4∆2 are given by (x, y) = ±
(X∗

2n,W
∗
2n), ±(−X∗

2n,W
∗
2n), or ±(∆V2n,∆U2n) with n ∈ Z.

Corollary 10. All integer solutions of the equation x2 − (P 2 + 4)y2 = −4∆2 are given by (x, y) = ±
(X∗

2n+1,W
∗
2n+1), ±(X∗

2n+1,−W ∗
2n+1), or ±(∆V2n+1,∆U2n+1) with n ∈ Z.

Theorem 3.5. Let x and y be integers. Then x2 − Pxy − y2 = ±∆2 if and only if (x, y) =
±(W ∗

n+1,W
∗
n),±((−1)n−1W ∗

n−1, (−1)nW ∗
n), or ±(∆Un+1,∆Un) for some n ∈ Z.

Proof. If (x, y) = ±(W ∗
n+1,W

∗
n),±((−1)n−1W ∗

n−1, (−1)nW ∗
n), or ±(∆Un+1,∆Un), then it follows that

x2−Pxy− y2 = ±∆2 by (2.2) and (2.9). Assume that x2−Pxy− y2 = ±∆2 for some integers x and
y. Then

(2x− Py)2 − (P 2 + 4)y2 = ±4∆2.

Taking

u = 2x− Py and v = y, (3.19)

we get

u2 − (P 2 + 4)v2 = ±4∆2.

Hence, (u, v) = ± (X∗
n,W

∗
n), ±((−1)n−1X∗

n, (−1)nW ∗
n), or ±(∆Vn,∆Un) for some n ∈ Z by The-

orem 3.4. If (u, v) = ± (X∗
n,W

∗
n), then we get (x, y) = ±(W ∗

n+1,W
∗
n) by (3.19) and (1.2). If

(u, v) = ±((−1)n−1X∗
n, (−1)nW ∗

n), then it is seen that (x, y) = ±((−1)n−1W ∗
n−1, (−1)nW ∗

n). If (u, v) =
±(∆Vn,∆Un), it can be shown that (x, y) = ±(∆Un+1,∆Un). �

From (2.9) and Theorem 3.5, we have the following immediate corollaries.

Corollary 11. All integer solutions of the equation x2 − Pxy − y2 = ∆2 are given by (x, y) =
±(W ∗

2n+1,W
∗
2n),±(−W ∗

2n−1,W
∗
2n), or ±(∆U2n+1,∆U2n) with n ∈ Z.



SOLUTIONS OF SOME DIOPHANTINE EQUATIONS 87

Corollary 12. All integer solutions of the equation x2 − Pxy − y2 = −∆2 are given by (x, y) =
±(W ∗

2n+2,W
∗
2n+1),±(W ∗

2n,−W ∗
2n+1), or ±(∆U2n+2,∆U2n+1) with n ∈ Z.

Theorem 3.6. Let P 2 + 4 be square free. Then x2 − Pxy − y2 = ±(P 2 + 4)∆2 for some integers x
and y if and only if (x, y) = ±(X∗

n+1, X
∗
n), ±((−1)nX∗

n−1, (−1)n−1X∗
n), or ±(∆Vn+1,∆Vn) for some

n ∈ Z.

Proof. If (x, y) = ±(X∗
n+1, X

∗
n),±((−1)nX∗

n−1, (−1)n−1X∗
n), or ±(∆Vn+1,∆Vn), then it follows that

x2−Pxy−y2 = ±(P 2+4)∆2 by (2.4) and (2.10). Assume that P 2+4 is square free, and x2−Pxy−y2 =
±(P 2 + 4)∆2 for some integers x and y. Then

(2x− Py)2 − (P 2 + 4)y2 = ±4(P 2 + 4)∆2.

Since P 2 + 4 is square free, we get (P 2 + 4)|(2x− Py). Let

u =
2x− Py
P 2 + 4

and v = y. (3.20)

Then it can be seen that
v2 −

(
P 2 + 4

)
u2 = ±4∆2.

This implies that (v, u) = ± (X∗
n,W

∗
n), ±((−1)n−1X∗

n, (−1)nW ∗
n), or ±(∆Vn,∆Un) for some n ∈ Z

by Theorem 3.4. The result follows from (1.3). �

We can give the following results from (2.5) and the above theorem.

Corollary 13. Let P 2 + 4 be square free. Then all integer solutions of the equation x2 −Pxy− y2 =
(P 2 + 4)∆2 are given by (x, y) = ±(X∗

2n, X
∗
2n−1), ±(−X∗

2n, X
∗
2n+1), or ±(∆V2n,∆V2n−1) with n ∈ Z.

Corollary 14. Let P 2 + 4 be square free. Then all integer solutions of the equation x2 −Pxy− y2 =
−(P 2 +4)∆2 are given by (x, y) = ±(X∗

2n+1, X
∗
2n), ±(X∗

2n−1,−X∗
2n), or ±(∆V2n+1,∆V2n) with n ∈ Z.

3.2. Solutions of some Diophantine equations for Q = −1. In this subsection, we will assume
that P > 3, Q = −1, and ∆ = b2 − Pab+ a2 such that |∆| > 2 and |∆| is prime.

Theorem 3.7. All integer solutions of the equation x2 − (P 2 − 4)y2 = 4∆ are given by (x, y) =
±(xn, wn) or ±(−xn, wn) with n ∈ Z.

Proof. If (x, y) = ±(xn, wn) or ±(−xn, wn), it follows that x2 − (P 2 − 4)y2 = 4∆ by (2.1). Now let
x2 − (P 2 − 4)y2 = 4∆ for some integers x and y. It can be shown that ∆ - y.

It is obvious that 4∆ = (2b− Pa)2 − (P 2 − 4)a2. Thus

∆|[(2b− Pa)2 − (P 2 − 4)a2] (3.21)

and
∆|[x2 − (P 2 − 4)y2]. (3.22)

From (3.21) and (3.22), we get

∆|[a2
(
x2 − (P 2 − 4)y2

)
− y2

(
(2b− Pa)2 − (P 2 − 4)a2

)
],

i.e.,
∆|[ax+ y(2b− Pa)][ax− y(2b− Pa)].

Since |∆| is prime, it follows that
∆|[ax+ y(2b− Pa)]

or
∆|[ax− y(2b− Pa)].

Also, from (3.21) and (3.22), we get

∆|[a2(P 2 − 4)
(
x2 − (P 2 − 4)y2

)
+ x2

(
(2b− Pa)2 − (P 2 − 4)a2

)
],

i.e.,
∆|[(2b− Pa)x− ay(P 2 − 4)][(2b− Pa)x+ ay(P 2 − 4)].

This implies that
∆|[(2b− Pa)x− ay(P 2 − 4)]
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or
∆|[(2b− Pa)x+ ay(P 2 − 4)].

Hence, we have
∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 − 4)] (3.23)

or
∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 − 4)] (3.24)

and
∆|[ax− y(2b− Pa)] and ∆|[(2b− Pa)x− ay(P 2 − 4)] (3.25)

or
∆|[ax+ y(2b− Pa)] and ∆|[(2b− Pa)x+ ay(P 2 − 4)]. (3.26)

Now assume that (3.23) is satisfied. Then we get

∆|[x (ax+ y(2b− Pa))− y
(
(2b− Pa)x− ay(P 2 − 4)

)
],

i.e.,
∆ | a[x2 + (P 2 − 4)y2].

This implies that ∆|a or ∆|
(
x2 + (P 2 − 4)y2

)
. Assume that ∆|a. Then ∆|b, since ∆ = b2−Pab+a2.

Thus ∆2|∆ and this shows that ∆|1, which is impossible. Therefore ∆|
(
x2 + (P 2 − 4)y2

)
. Then we

see that ∆|2(P 2 − 4)y2 since ∆|
(
x2 − (P 2 − 4)y2

)
. Hence, ∆|2(P 2 − 4), since ∆ - y. Then it follows

that
∆|
[
(P 2 − 4)2ay + (2b− Pa)x− ay(P 2 − 4)

]
,

i.e.,
∆|[(2b− Pa)x+ ay(P 2 − 4)].

In this case, (3.23) coincides with (3.26). Similarly, it is seen that (3.24) coincides with (3.25).
Now, let us show that 2|[(2b−Pa)x±ay(P 2−4)] and 2|[ax±y(2b−Pa)]. It is seen that x2 ≡ (Py)2

(mod4) from the equation x2 − (P 2 − 4)y2 = 4∆. This implies that x and Py have the same parity.
Therefore, we see that 2|[(2b− Pa)x± ay(P 2 − 4)] and 2|[ax± y(2b− Pa)].

Consequently, we should examine two cases

2∆|[(2b− Pa)x− ay(P 2 − 4)] and 2∆|[ax− y(2b− Pa)] (3.27)

and
2∆|[(2b− Pa)x+ ay(P 2 − 4)] and 2∆|[ax+ y(2b− Pa)]. (3.28)

Assume that (3.27) is satisfied. Let

u =
(2b− Pa)x− ay(P 2 − 4)

2∆
and v =

[(2b− Pa)y − ax]

2∆
.

Then it follows that [
u
v

]
=

1

2∆

[
2b− Pa −a(P 2 − 4)
−a 2b− Pa

] [
x
y

]
and so a simple computation shows that[

2b− Pa a(P 2 − 4)
a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
. (3.29)

Since x2 − (P 2 − 4)y2 = 4∆, using the equalty

4∆ = (2b− Pa)2 − (P 2 − 4)a2,

it is seen that
u2 − (P 2 − 4)v2 = 4.

Thus we have (u, v) = ∓(vn, un) for some n ∈ Z by Theorem 2.2. Then 2x = ±((2b− Pa) vn +a(P 2−
4)un) and 2y = ±(avn + (2b− Pa)un) by (3.29). By using (1.2), (1.3), and (1.4), we get

x =±
(
(2b− Pa) vn + a(P 2 − 4)un

)
/2 = ± (2bvn − Pavn + avn+1 − avn−1) /2

=± (bvn − avn−1) = ±xn
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and

y =± (avn + (2b− Pa)un) /2 = ± (aun+1 − aun−1 + 2bun − Paun) /2

=± (bun − aun−1) = ±wn.

Now assume that (3.28) is satisfied. Let

u =
(2b− Pa)x+ ay(P 2 − 4)

2∆
and v =

[(2b− Pa)y + ax]

2∆
.

Then we can see by a simple computation that[
2b− Pa −a(P 2 − 4)
−a 2b− Pa

] [
u
v

]
=

[
2x
2y

]
and

u2 − (P 2 − 4)v2 = 4,

since x2−(P 2−4)y2 = 4∆. Thus we have (u, v) = ∓(vn, un) for some n ∈ Z by Theorem 2.2. Similarly,
it can be shown that (x, y) = ±(x−n,−w−n). �

Since the equation x2 − (P 2 − 4)y2 = −4 has no integer solutions by Theorem 2.3, using the same
argument in the proof of the above theorem, we can give the following theorem.

Theorem 3.8. The equation x2 − (P 2 − 4)y2 = −4∆ has no integer solutions.

Corollary 15. The equation x2 − Pxy + y2 = −∆ has no integer solutions.

Proof. Assume that x2 − Pxy + y2 = −∆ for some integers x and y. Completing the square gives
(2x− Py)2 − (P 2 − 4)y2 = −4∆, which is impossible by Theorem 3.8. �

We can give the following corollaries from Theorem 3.8.

Corollary 16. The equation x2 − (P 2 − 4)y2 = −∆ has no integer solutions.

Corollary 17. Let P be odd. Then the equation x2 − (P 2 − 4)y2 = −16∆ has no integer solutions.

Proof. Assume that P is odd and x2 − (P 2 − 4)y2 = −16∆ for some integers x and y. Then it is seen
that x and y are even and this implies that (x/2)2 − (P 2 − 4)(y/2)2 = −4∆, which is impossible by
Theorem 3.8. �

Corollary 18. Let P be odd. Then the equation x2 − Pxy + y2 = −4∆ has no integer solutions.

Proof. Since x2−Pxy+y2 = −4∆ if and only if (2x−Py)2−(P 2−4)y2 = −16∆, the proof follows. �

Theorem 3.9. All integer solutions of the equation x2 − Pxy + y2 = ∆ are given by (x, y) =
±(wn+1, wn) with n ∈ Z.

Proof. If (x, y) = ±(wn+1, wn), then it follows that x2 − Pxy + y2 = ∆ by (2.2). Assume that
x2 − Pxy + y2 = ∆. Completing the square gives (2x − Py)2 − (P 2 − 4)y2 = 4∆. This implies that
(2x− Py, y) = ±(xn, wn) or±(xn,−wn) for some n ∈ Z by Theorem 3.7. Hence, (x, y) = ±(wn+1, wn)
or ±(wn−1, wn). Since the role of x and y is symmetric, the proof follows. �

Theorem 3.10. Let P 2−4 be square free. Then all integer solutions of the equation x2−Pxy+y2 =
−(P 2 − 4)∆ are given by (x, y) = ±(xn+1, xn) with n ∈ Z.

Proof. If (x, y) = ±(xn+1, xn), then it follows that x2 − Pxy + y2 = −(P 2 − 4)∆ by (2.4). Now
assume that P 2 − 4 is square free and x2 − Pxy + y2 = −(P 2 − 4)∆ for some integers x and y. Then
(2x−Py)2− (P 2−4)y2 = −4(P 2−4)∆. Since P 2−4 is square free, it is seen that (P 2−4)|(2x−Py).
Therefore, taking

u =
2x− Py
P 2 − 4

and v = y,

we get v2−
(
P 2 − 4

)
u2 = 4∆. This implies that (v, u) = ±(xn, wn) or ±(−xn, wn) for some n ∈ Z by

Theorem 3.7. Hence, the proof follows from (1.2) and (1.3). �
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From Theorem 3.8, we can give the following corollary.

Corollary 19. Let P 2 − 4 be square free. Then the equation x2 − Pxy + y2 = (P 2 − 4)∆ has no
integer solutions.

Since the proof of the following theorem is similar to that of Theorem 3.4, we omit it.

Theorem 3.11. All integer solutions of the equation x2 − (P 2 − 4)y2 = 4∆2 are given by (x, y) = ±
(x∗n, w

∗
n),±(−x∗n, w∗

n), or ±(∆vn,∆un) with n ∈ Z.

Corollary 20. All integer solutions of the equation x2 − Pxy + y2 = ∆2 are given by (x, y) =
±(w∗

n+1, w
∗
n) or ±(∆un+1,∆un) with n ∈ Z.

Theorem 3.12. The equation x2 − (P 2 − 4)y2 = −4∆2 has no integer solutions.

Proof. If we follow the way as in the proof of Theorem 3.4, then we have the equation u2 − (P 2 −
4)v2 = −4∆, where u =

[
(2b− Pa)x+ ay(P 2 − 4)

]
/2∆ and v = [(2b− Pa)y + ax] /2∆ or u =[

(2b− Pa)x− ay(P 2 − 4)
]
/2∆ and v = [(2b− Pa)y − ax] /2∆. Since the equation u2− (P 2− 4)v2 =

−4∆ is impossible by Theorem 3.8, the equation x2−(P 2−4)y2 = −4∆2 has no integer solutions. �

Corollary 21. Let P 2 − 4 be square free. Then all integer solutions of the equation x2 − Pxy + y2 =
−(P 2 − 4)∆2 are given by (x, y) = ±(x∗n+1, x

∗
n) or ±(∆vn+1,∆vn) with n ∈ Z.

Corollary 22. The equation x2 − Pxy + y2 = −∆2 has no integer solutions.

Corollary 23. The equation x2 − (P 2 − 4)y2 = −∆2 has no integer solutions.

Corollary 24. Let P be odd. Then the equation x2 − (P 2 − 4)y2 = −16∆2 has no integer solutions.

Corollary 25. Let P be odd. Then the equation x2 − Pxy + y = −4∆2 has no integer solutions.

Corollary 26. Suppose that |b2 − ba − a2| is prime. Then all integer solutions of the equation
x2−3xy+y2 = b2−ba−a2 are given by (x, y) = ±(W2n+2,W2n) with n ∈ Z, whereWn = Wn(a, b; 1, 1).

Proof. Suppose that (x, y) = ±(W2n+2,W2n). Then it is easy to see that

W 2
2n+2 − 3W2n+2W2n +W 2

2n =(W2n+2 −W2n)2 − (W2n+2 −W2n)W2n −W 2
2n

=W 2
2n+1 −W2n+1W2n −W 2

2n = b2 − ba− a2

by (2.2). Now suppose that x2 − 3xy + y2 = b2 − ba − a2 for some integers x and y. Then (x −
y)2 − y(x− y)− y2 = b2 − ba− a2 and therefore (x− y, y) = ±(W2n+1,W2n) or ± (−W2n+1,W2n+2)
for some n ∈ Z by Corollary 3, where Wn = Wn(a, b; 1, 1). If (x − y, y) = ±(W2n+1,W2n), then
(x, y) = ±(W2n+2,W2n). If (x− y, y) = ± (−W2n+1,W2n+2) , then (x, y) = ±(W2n+2,W2n). Since the
role of x and y is symmetric, the proof follows. �

The following corollary can be proved in a similar way.

Corollary 27. Suppose that |b2 − ba − a2| is prime. Then all integer solutions of the equation
x2 − 3xy + y2 = −(b2 − ba − a2) are given by (x, y) = ±(W2n+1,W2n−1) with n ∈ Z, where Wn =
Wn(a, b; 1, 1).

Corollary 28. Suppose that |b2 − 3ba + a2| is prime. Then all integer solutions of the equation
x2 − 3xy + y2 = b2 − 3ba + a2 are given by (x, y) = ±(W2n+2,W2n) with n ∈ Z, where Wn =
Wn(a, b− a; 1, 1).

Proof. Suppose that (x, y) = ±(W2n+2,W2n) with Wn = Wn(a, b− a; 1, 1). Then it can be seen that

W 2
2n+2 − 3W2n+2W2n +W 2

2n =(W2n+2 −W2n)2 − (W2n+2 −W2n)W2n −W 2
2n

=W 2
2n+1 −W2n+1W2n −W 2

2n

=(b− a)2 − (b− a)a− a2

=b2 − 3ba+ a2
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by (2.2). Now suppose that x2 − 3xy+ y2 = b2 − 3ba+ a2 for some integers x and y. Then (x− y)2 −
y(x − y) − y2 = (b − a)2 − a(b − a) − a2 and therefore (x − y, y) = ±(W2n+1,W2n) or (x − y, y) =
± (−W2n+1,W2n+2) for some n ∈ Z by Corollary 3, where Wn = Wn(a, b − a; 1, 1). Let (x − y, y) =
±(W2n+1,W2n). Then y = ±W2n and x − y = ±W2n+1, which implies that x = ±(W2n+1 + W2n) =
±W2n+2. Let (x − y, y) = ± (−W2n+1,W2n+2) . Then y = ±W2n+2 and x − y = ±(−W2n+1). Thus
x = ±(−W2n+1 +W2n+2) = ±W2n. This completes the proof. �

Corollary 29. Suppose that |b2 − 3ba + a2| is prime. Then all integer solutions of the equation
x2 − 3xy + y2 = −(b2 − 3ba + a2) are given by (x, y) = ±(W2n+1,W2n−1) with n ∈ Z, where Wn =
Wn(a, b− a; 1, 1).

By using Corollaries 1 and 2, we can give the following corollaries.

Corollary 30. Suppose that |b2 − 3ba + a2| is prime. Then all integer solutions of the equation
x2 − 5y2 = 4(b2 − 3ba + a2) are given by (x, y) = ±(X2n,W2n) or ±(−X2n,W2n) with n ∈ Z, where
Wn = Wn(a, b− a; 1, 1) and Xn = Xn(a, b− a; 1, 1).

Corollary 31. Suppose that |b2 − 3ba + a2| is prime. Then all integer solutions of the equation
x2 − 5y2 = −4(b2 − 3ba + a2) are given by (x, y) = ±(X2n−1,W2n−1) or ±(X2n−1,−W2n−1) with
n ∈ Z, where Wn = Wn(a, b− a; 1, 1) and Xn = Xn(a, b− a; 1, 1).
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