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A NOTE ON THE BILINEAR FRACTIONAL INTEGRAL OPERATOR ACTING

ON MORREY SPACES

NAOYA HATANO1 AND YOSHIHIRO SAWANO2

Abstract. The boundedness of the bilinear fractional integral operator is investigated. This bilinear
fractional integral operator goes back to Kenig and Stein. The paper is oriented to the boundedness

of the operator on products of Morrey spaces. This paper uses some averaging techniques to control

the Morrey norm. Compared to the earlier work by He and Yan, one feels that the technique can
be applied to other function spaces. Among others, the averaging operator will reduce the matters

to the existing results.

1. Introduction

Recently, He and Yan investigated fractional integral operators of Grafakos type acting on Morrey
spaces [8]. In this paper, by using some known results, we propose to simplify their proofs. Let
0 < q ≤ p <∞. Define the Morrey norm ‖ · ‖Mp

q
by∥∥f∥∥Mp

q
≡ sup

{∣∣Q∣∣ 1p− 1
q
∥∥f∥∥

Lq(Q)
: Q is a dyadic cube in Rn

}
for a measurable function f .

The Morrey space Mp
q(Rn) is the set of all the measurable functions f for which

∥∥f∥∥Mp
q

is finite.

We recall the definition of the dyadic cubes precisely in Section 2. A simple geometric observation
shows that ∥∥f∥∥Mp

q
∼ sup

{∣∣Q∣∣ 1p− 1
q
∥∥f∥∥

Lq(Q)
: Q is a cube in Rn

}
for any measurable function f . Here let us content ourselves with the intuitive understanding that p
serves as the global integrability, as is hinted by the dilation mapping f 7→ f(t·), and that q serves as
the local integrability. We handle the following bilinear operator defined in [5, 13].

Definition 1.1. The bilinear fractional integral operator of Grafakos type Jα, 0 < α < n is given by

Jα
[
f1, f2

]
(x) ≡

∫
Rn

f1(x+ y) f2(x− y)

|y|n−α
dy (x ∈ Rn),

where f1, f2 are non-negative integrable functions defined in Rn.

The operator Iα[f1, f2], 0 < α < 2n, defined by

Iα[f1, f2](x) ≡
∫

Rn×Rn

f1(y1) f2(y2)(
|x− y1|+ |x− y2|

)2n−α dy (x ∈ Rn)

for non-negative integrable functions f1 and f2 defined in Rn, is a contrast to Jα[f1, f2]. These two
operators with 0 < α < n pass the fractional integral operator Iα in the bilinear case, where Iα is the
fractional integral operator

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn)

for a nonnegative measurable function f : Rn → [0,∞].
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Here and below we assume that the functions are non-negative to ignore the issue of the convergence
of the integral definining Jα[f1, f2](x).

The operator Iα[f1, f2] acting on Morrey spaces is investigated by many authors in many settings
such as the generalized Morrey spaces [1], the weighted setting [6, 10], the case equipped with the
rough kernel [9, 20] and the non-doubling setting [11,21]. See also [3, 22] for the case of commutators
generated by Iα and other functions. However we do not find so much about the action of the operator
Jα on Morrey spaces. Works [4, 8] considered the boundedness property of Jα. Our aim here is to
prove the following estimate

Theorem 1.2. Let

0 < α < n, 1 < q1 ≤ p1 <∞, 1 < q2 ≤ p2 <∞, 1 ≤ t ≤ s <∞.
Define p and q by

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
.

Assume that
1

s
=

1

p
− α

n
,

q

p
=
t

s
, s < min(q1, q2) .

Then for all f1 ∈Mp1
q1 (Rn) and f2 ∈Mp2

q2 (Rn),∥∥Jα[f1, f2]
∥∥
Ms

t
.
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

.

As is pointed out in [8], the assumption q
p = t

s is essential.

Theorem 1.2 partially extends the following result by Kenig and Stein [13, Theorem 2]

Proposition 1.3. Let 0 < α < n and 1 < p1, p2 < ∞. Assume that
1

p1
+

1

p2
>
α

n
, so we can define

s > 0 by
1

s
=

1

p1
+

1

p2
− α

n
. Then for all f1 ∈ Lp1(Rn) and f2 ∈ Lp2(Rn),∥∥Jα[f1, f2]

∥∥
Ls
.
∥∥f1∥∥Lp1 ∥∥f2∥∥Lp2 .

In the first half of [8], He and Yan proved the boundedness of the operator and used the Hölder
inequality under the assumption

q1
p1

=
q2
p2
,

1

max
(
q′1,

α
np1
) +

1

max
(
q′2,

α
np2
) > 1, (1.1)

so
q

p
=
q1
p1

=
q2
p2

and there exists u ∈ (1,∞) such that

α

n
p1 < u <

(α
n
p2

)′
, (q2)′ < u < q1.

Define s1, s2, t1 and t2 by

u

s1
=

u

p1
− α

n
,

u′

s2
=
u′

p2
− α

n
,

t1
s1

=
q1
p1
,

t2
s2

=
q2
p2
,

so 1 < t1 ≤ s1 <∞ and 1 < t2 ≤ s2 <∞. Then

1

s
=

1

s1
+

1

s2
,

1

t
=

1

t1
+

1

t2
,

since
q

p
=
q1
p1

=
q2
p2
.

Meanwhile, by the Hölder inequality we have

Jα[f1, f2](x) ≤
(∫
Rn

|f1(x+ y)|u

|y|n−α
dy

) 1
u
(∫
Rn

|f2(x− y)|u′

|y|n−α
dy

) 1
u′
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for any 1 < u <∞. Consequently, by the Hölder inequality once again, we obtain∥∥Jα[f1, f2]
∥∥
Ms

t
≤
∥∥I(u)α f1

∥∥
Ms1

t1

∥∥I(u′)α f2
∥∥
Ms2

t2

,

where I
(v)
α f ≡ (Iα[|f |v])

1
v . If we use the Adams theorem, asserting that I

(v)
α mapsMP

Q(Rn) boundedly

to MS
T (Rn) whenever v < Q ≤ P <∞, v < T ≤ S <∞, v

S = v
P −

α
n and P

Q = S
T , we obtain∥∥Jα[f1, f2]

∥∥
Ms

t
.
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

.

Thus Theorem 1.2 is significant when (1.1) fails. See [4, Theorem 2.2] for the bilinear fractional
integral operator of Kenig–Stein type equipped with the rough kernel.

The operator Jα has a lot to do with the bilinear Hilbert transform defined by

H[f1, f2](x) = lim
ε↓0

∫
R\(−ε,ε)

f1(x+ y) f2(x− y)

y
dy (x ∈ R),

where f1 and f2 are the locally integrable functions. One of the important problems in harmonic
analysis is to investigate the boundedness property of the bilinear Hilbert transform. A conjecture
of Calderón in 1964 concerned possible extensions of H to a bounded bilinear operator on products
of Lebesgue spaces. A remarkable fact is that H maps Lp1(R) × Lp2(R) to Lp(R) boundedly if

1 < p1 ≤ ∞, 1 < p2 ≤ ∞,
2

3
< p < ∞ and

1

p
=

1

p1
+

1

p2
[16, 17]. To understand the boundedness

property of this operator, we consider its counterpart to fractional integral operators.
After the authors wrote this article, we were aware that Theorem 1.2 is an unweighted version

of [8, Theorem 4.6]. However, our proof differs from theirs in that we use an inequality for norms,
while He and Yan used a weighted local estimate. It seems that our results can be extended to Orlicz
spaces by using [19, Theorem 7.5]. The details are left for the future works.

2. Preliminaries

For a measurable function f defined on Rn, define a function Mf by

Mf(x) ≡ sup
B∈B

χB(x)

|B|

∫
B

∣∣f(y)
∣∣ dy (x ∈ Rn). (2.1)

The mapping M : f 7→ Mf is called the Hardy–Littlewood maximal operator. It is known that the
Hardy–Littlewood maximal operator is bounded on Mp

q(Rn) if 1 < q ≤ p < ∞ [2]. A dyadic cube is
a set of the form Qjk for some j ∈ Z, k = (k1, k2, . . . , kn) ∈ Zn. The set of all dyadic cubes is denoted
by D; D ≡ {Qjk : j ∈ Z, k ∈ Zn} . For j ∈ Z, the set of dyadic cubes of the j-th generation is given
by

Dj = Dj(Rn) ≡
{
Qjk : k ∈ Zn

}
=
{
Q ∈ D : `(Q) = 2−j

}
.

The following lemma can be located as a standard estimate to handle this bilinear fractional integral
operator.

Lemma 2.1. Let f1, f2 ≥ 0 be measurable functions. Then we have

Jα[f1, f2](x) .
∞∑

l=−∞

∑
Q∈Dl

2l(n−α)χQ(x)

∫
B(2−l)

f1(x+ y) f2(x− y) dy (x ∈ Rn).
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Proof. We will follow the idea used in [13, Theorem 2]. See also [18, Theorem 3.2] and [14, 15]. We
decompose

Jα[f1, f2](x) =

∫
Rn

f1(x+ y) f2(x− y)

|y|n−α
dy

=

∞∑
l=−∞

∫
B(2−l)\B(2−l−1)

f1(x+ y)f2(x− y)

|y|n−α
dy

∼
∞∑

l=−∞

2l(n−α)
∫

B(2−l)\B(2−l−1)

f1(x+ y)f2(x− y) dy

≤
∞∑

l=−∞

2l(n−α)
∫

B(2−l)

f1(x+ y)f2(x− y) dy.

Observe that for each l ∈ N, there uniquely exists a dyadic cube Q ∈ Dl such that x ∈ Q. Thus, we
obtain the desired result. �

We now recall the averaging technique.

Lemma 2.2. Suppose that the parameters p, q, s, t satisfy

1 < q ≤ p <∞, 1 < t ≤ s <∞, q < t, p < s

or

1 = q ≤ p <∞, 1 = t ≤ s <∞, p < s.

Assume that
{
Qj
}∞
j=1
⊂ D(Rn),

{
aj
}∞
j=1
⊂Ms

t (Rn) and
{
λj
}∞
j=1
⊂ [0,∞) fulfill

supp(aj) ⊂ Qj ,
∥∥∥∥ ∞∑
j=1

λjχQj

∥∥∥∥
Mp

q

<∞. (2.2)

Then f =

∞∑
j=1

λjaj converges in S ′(Rn) ∩ Lqloc(Rn) and satisfies

∥∥f∥∥Mp
q
.p,q,s,t

∥∥∥∥∥
∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s χQj

∥∥∥∥∥
Mp

q

. (2.3)

Proof. This estimate is essentially obtained in [12] if q > 1 and in [7] if q = 1. Although we dis-
tinguished these cases in these papers, we can combine them, since the case of q = 1 can almost be
emerged into the case of q > 1.

Let us suppose q > 1 for the time being. Let 0 < η <∞. We will use the powered Hardy–Littlewood
maximal operator M (η) defined by

M (η)f(x) ≡ sup
R>0

(
1∣∣B(x,R)

∣∣ ∫
B(x,R)

∣∣f(y)
∣∣ηdy) 1

η

for a measurable function f : Rn → C. If η = 1, then we write M instead of M (η). To prove this,
we resort to the duality. For the time being, we assume that there exists N ∈ N such that λj = 0
whenever j ≥ N . Let us assume in addition that the aj ’s are non-negative. Fix a non-negative

function g that is supported on a cube Q such that ‖g‖Lq′ ≤ |Q|
1
q′−

1
p′ . By duality, we will show

∫
Rn

f(x) g(x) dx .p,q,s,t

∥∥∥∥∥
∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s χQj

∥∥∥∥∥
Mp

q

, (2.4)
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to obtain ∥∥f∥∥Mp
q
.p,q,s,t

∥∥∥∥∥
∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s χQj

∥∥∥∥∥
Mp

q

.

Assume first that each Qj contains Q as a proper subset. If we group the j’s such that Qj are identical,
we can assume that each Qj is a j-th parent of Q for each j ∈ N. Then we have∫

Rn

f(x) g(x) dx =

∞∑
j=1

λj

∫
Q

aj(x) g(x) dx ≤
∞∑
j=1

λj
∥∥aj∥∥Lq(Q)

∥∥g∥∥
Lq′ (Q)

from f =
∑∞
j=1 λjaj . By the size condition of aj and g, we obtain∫
Rn

f(x) g(x) dx ≤
∞∑
j=1

λj
∥∥aj∥∥Ms

t

∣∣Q∣∣ 1q− 1
s
∣∣Q∣∣ 1

q′−
1
p′ =

∞∑
j=1

λj
∥∥aj∥∥Ms

t

∣∣Q∣∣ 1p− 1
s .

Note that ∥∥∥∥∥
∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s χQj

∥∥∥∥∥
Mp

q

≥

∥∥aj0∥∥Ms
t∣∣Qj0 ∣∣ 1s
∥∥λj0 χQj0∥∥Mp

q
=
∥∥aj0∥∥Ms

t

∣∣Qj0 ∣∣ 1p− 1
sλj0

for each j0 ∈ N. Consequently, it follows from the condition p < s that∫
Rn

f(x) g(x) dx ≤
∞∑
j=1

∣∣Q∣∣ 1p− 1
s
∣∣Qj∣∣ 1s− 1

p ·

∥∥∥∥∥
∞∑
k=1

λk

∥∥ak∥∥Ms
t∣∣Qk∣∣ 1s χQk

∥∥∥∥∥
Mp

q

.

∥∥∥∥∥∥
∞∑
j=1

λj
‖aj‖Ms

t

|Qj |
1
s

χQj

∥∥∥∥∥∥
Mp

q

.

Conversely, assume that Q contains each Qj . Then we have∫
Rn

f(x) g(x) dx =

∞∑
j=1

λj

∫
Qj

aj(x) g(x) dx ≤
∞∑
j=1

λj
∥∥aj∥∥Lt(Qj)∥∥g∥∥Lt′ (Qj).

By the condition of aj , we obtain∫
Rn

f(x) g(x) dx =

∞∑
j=1

λj

∫
Qj

aj(x) g(x) dx ≤
∞∑
j=1

λj
∥∥aj∥∥Ms

t

∣∣Qj∣∣ 1t− 1
s
∥∥g∥∥

Lt′ (Qj)
.

Thus, in terms of the Hardy–Littlewood maximal operator M , we obtain∫
Rn

f(x) g(x) dx ≤
∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s
∣∣Qj∣∣× inf

y∈Qj
M (t′)g(y)

≤
∫
Rn

( ∞∑
j=1

λj

∥∥aj∥∥Ms
t∣∣Qj∣∣ 1s χQj (y)

)
M (t′)g(y) dy

≤
∫
Rn

( ∞∑
j=1

λj

∥∥aj∥∥Ms
t

|Qj |
1
s

χQj (y)

)
χQ(y)M (t′)g(y)dy.

Hence, we obtain (2.4) by the Hölder inequality, since ‖χQM (t′)g‖Lq′ . |Q|
1
p−

1
q . Thus the proof for

the case of q > 1 is complete.
The case of q = 1 is a minor modification of the above proof. First, if each Qj contains Q as a proper

subset, the same argument as above works. If each Q contains Qj , then we can take g = |Q|
1
p−1χQ

to obtain ∫
Q

f(x) g(x) dx .p,s

∥∥∥∥∥∥
∞∑
j=1

λj

∥∥aj∥∥Ms
1∣∣Qj∣∣ 1s χQj

∥∥∥∥∥∥
Mp

1

.
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We go through the same argument as before, where we will replace M (t′)g by 1. Since ‖χQ1‖L∞ = 1,

we do not have to resort to the boundedness of the maximal operator M (t′) as we did in the estimate

‖χQM (t′)g‖Lq′ . |Q|
1
p−

1
q . So, the proof is complete in this case. �

Lemma 2.3. Let

0 < α < 2n, 1 < qj ≤ pj <∞, 0 < q ≤ p <∞, 0 < t ≤ s <∞

for j = 1, 2. Assume

1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
,

1

s
=

1

p
− α

n
,

q

p
=
t

s
.

Then ∣∣R∣∣ 1s− 1
t

∥∥∥∥∥ ∑
Q∈D

χQ
`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2

∥∥∥∥∥
Lt(R)

.
2∏
j=1

∥∥fj∥∥Mpj
qj

(2.5)

for any cube R and for all non-negative measurable functions f1, f2.

See the proof of [4, Theorem 2.2] for a similar approach.

Proof. Let L = L(x) be a positive number that is specified shortly. We decompose∑
Q∈D

χQ(x)

`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2

=
∑

Q∈D,`(Q)≤L

χQ(x)

`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2

+
∑

Q∈D,`(Q)>L

χQ(x)

`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2 =: S1 + S2.

First, we estimate the quantity S1:

S1 .
∑

Q∈D,`(Q)≤L

χQ(x) `(Q)αMf1(x)Mf2(x) ∼ LαMf1(x)Mf2(x).

Next, we estimate the quantity S2. By Hölder’s inequality,

S2 .
∑

Q∈D,`(Q)>L

χQ(x)

`(Q)2n−α
∣∣Q∣∣ 1

q′1
∥∥f1∥∥Lq1 (3Q)

·
∣∣Q∣∣ 1

q′2
∥∥f1∥∥Lq2 (3Q)

.
∑

Q∈D,`(Q)>L

χQ(x)
∣∣Q∣∣− 1

s
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

∼ L−ns
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

.

Hence we obtain∑
Q∈D

χQ(x)

`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2 . L
αMf1(x)Mf2(x) + L−

n
s

∥∥f1∥∥Mp1
q1

∥∥f2∥∥Mp2
q2

.

In particular, choose the constant L = L(x) to optimize the right-hand side:

L =

(∥∥f1∥∥Mp1
q1

∥∥f2∥∥Mp2
q2

Mf1(x)Mf2(x)

) p
n

.

Then we have∑
Q∈D

χQ(x)

`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2 . (Mf1(x)Mf2(x))
p
s

(∥∥f1∥∥Mp1
q1

∥∥f2∥∥Mp2
q2

)1− ps
.
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Therefore, using Hölder’s inequality for Morrey spaces, the Mp1
q1 (Rn)-boundedness of M and the

Mp1
q1 (Rn)-boundedness of M , we have∣∣R∣∣ 1s− 1

t

∥∥∥∥ ∑
Q∈D

χQ
`(Q)2n−α

∫
(3Q)2

f1(y1) f2(y2) dy1 dy2

∥∥∥∥
Lt(R)

.
∥∥∥(Mf1 ·Mf2

) p
s

∥∥∥
Ms

t

(∥∥f1∥∥Mp1
q1

∥∥f2∥∥Mp2
q2

)1− ps
=
∥∥Mf1 ·Mf2

∥∥ ps
Mp

q

(∥∥f1∥∥Mp1
q1

∥∥f2∥∥Mp2
q2

)1− ps
≤
(∥∥Mf1

∥∥
Mp1

q1

∥∥Mf2
∥∥
Mp2

q2

) p
s
(∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

)1− ps
.
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

. �

3. Proof of Theorem 1.2

Let v ∈ (s,min(q1, q2)). Let x ∈ Q ∈ Dl. By the Minkowski inequality and the Hölder inequality,∥∥∥∥ ∫
B(2−l)

f1(·+ y) f2(· − y)dy

∥∥∥∥
Lv(Q)

≤
∫

B(2−l)

∥∥f1(·+ y) f2(· − y)
∥∥
Lv(Q)

dy ≤
∣∣B(2−l)

∣∣ 1
v′

( ∫
B(2−l)

∥∥f1(·+ y) f2(· − y)
∥∥
Lv(Q)

vdy

) 1
v

.
∣∣B(2−l)

∣∣ 1
v′
∥∥f1∥∥Lv(Q(x,3·2−l))

∥∥f2∥∥Lv(Q(x,3·2−l)) .
∣∣B(2−l)

∣∣1+ 1
v inf
y1∈Q

M (v)f1(y1) inf
y2∈Q

M (v)f2(y2).

Then owing to Theorem 2.2,

∥∥Jα[f1, f2]
∥∥
Ms

t
.

∥∥∥∥∥
∞∑

l=−∞

∑
Q∈Dl

2l(n−α)
χQ

|Q| 1v

∥∥∥∥ ∫
B(2−l)

f1(·+ y) f2(· − y) dy

∥∥∥∥
Lv(Q)

∥∥∥∥∥
Ms

t

.

∥∥∥∥∥
∞∑

l=−∞

∑
Q∈Dl

2−lα
χQ
|Q|

∫
3Q

M (v)f1(y1) dy1 ·
1

|Q|

∫
3Q

M (v)f2(y2) dy2

∥∥∥∥∥
Ms

t

.

Thus, we are again in the position of using (2.5) to have∥∥Jα[f1, f2]
∥∥
Ms

t
.
∥∥M (v)f1

∥∥
Mp1

q1

∥∥M (v)f2
∥∥
Mp2

q2

.

Since v < q1, q2, we are in the position of using the boundedness of M on Morrey spaces obtained
by Chiarenza and Frasca [2]. If we use the boundedness of the Hardy–Littlewood maximal operator,
then we obtain ∥∥Jα[f1, f2]

∥∥
Ms

t
.
∥∥f1∥∥Mp1

q1

∥∥f2∥∥Mp2
q2

.

This is the desired result.
To conclude the paper, we remark that Fan and Gao obtained an estimate to control∥∥∥∥ ∫

B(2−l)

f1(·+ y) f2(· − y) dy

∥∥∥∥
Lv(Q)

in [4, Lemma 2.1].

Acknowledgement

The second-named author was supported by Grant-in-Aid for Scientific Research (C) (16K05209),
the Japan Society for the Promotion of Science. The authors are thankful to Dr. Toru Nogayama
for his careful reading the paper and his pointing out some typos. The authors are also thankful to
Professor Komori–Furuya Yasuo for his kind introduction to [14,15].



44 N. HATANO AND Y. SAWANO

References

1. W. S. Budhi, J. Lindiarti, Boundedness of multilinear generalized fractional integral operators in generalized Morrey

space. Far East J. Math. Sci. (FJMS) 57 (2011), no. 1, 91–104.

2. F. Chiarenza, M. Frasca, Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. 7 (1987), no.
3–4, 273–279 (1988).

3. Y. Ding, T. Mei, Boundedness and compactness for the commutators of bilinear operators on Morrey spaces.
Potential Anal. 42 (2015), no. 3, 717–748.

4. Y. Fan, G. Gao, Some estimates of rough singular bilinear fractional integral. J. Funct. Spaces Appl. (2012), Art.

ID 406540.
5. L. Grafakos, On multilinear fractional integrals. Studia Math. 102 (1992), no. 1, 49–56.

6. V. S. Guliyev, M. N. Omarova, Multilinear singular and fractional integral operators on generalized weighted Morrey

spaces. Azerb. J. Math. 5 (2015), no. 1, 104–132.
7. V. S. Guliyev, S. G. Hasanov, Y. Sawano, T. Noi, Non-smooth atomic decompositions for generalized Orlicz-Morrey

spaces of the third kind. Acta Appl. Math. 145 (2016), 133–174.

8. Q. He, D. Yan, Bilinear fractional integral operators on Morrey spaces. arXiv preprint arXiv:1805.01846 (2018).
9. T. Iida, Weighted inequalities on Morrey spaces for linear and multilinear fractional integrals with homogeneous

kernels. Taiwanese J. Math. 18 (2014), no. 1, 147–185.

10. T. Iida, Various inequalities related to the Adams inequality on weighted Morrey spaces. Math. Inequal. Appl. 20
(2017), no. 3, 601–650.

11. T. Iida, E. Sato, Y. Sawano, H. Tanaka, Multilinear fractional integrals on Morrey spaces. Acta Math. Sin. (Engl.
Ser.) 28 (2012), no. 7, 1375–1384.

12. T. Iida, Y. Sawano, H. Tanaka, Atomic decomposition for Morrey spaces. Z. Anal. Anwend. 33 (2014), no. 2,

149–170.
13. C. E. Kenig, E. M. Stein, Multilinear estimates and fractional integration. Math. Res. Lett. 6 (1999), 1–15.

14. Y. Komori-Furuya, Weighted Estimates for Bilinear Fractional Integral Operators. Math. Nachr. 2019.

15. Y. Komori-Furuya, Weighted estimates for bilinear fractional integral operators A necessary and sufficient condition
for power weights. Collect. Math. 2019. https://doi.org/10.1007/s13348-019-00246-5.

16. M. Lacey, C. Thiele, On Calderón’s conjecture. Ann. of Math. (2) 149 (1999), no. 2, 475–496.

17. M. Lacey, The bilinear maximal functions map into Lp for 2/3 < p ≤ 1. Ann. of Math. (2) 151 (2000), no. 1, 35–57.
18. K. Moen, New weighted estimates for bilinear fractional integral operators. Trans. Amer. Math. Soc. 366 (2014),

no. 2, 627–646.

19. Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy Spaces for Ball Quasi-Banach Function Spaces. Dissertationes Math.
525 (2017), 1–102.

20. Y. Shi, Z. Si, X. Tao, Y. Shi, Necessary and sufficient conditions for boundedness of multilinear fractional integrals

with rough kernels on Morrey type spaces. J. Inequal. Appl. (2016), Paper no. 43, 19 pp.
21. X. X. Tao, T. T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling

measures. NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 287–308.
22. Y. Xiao, S. Z. Lu, Olsen-type inequalities for the generalized commutator of multilinear fractional integrals. Turkish

J. Math. 42 (2018), no. 5, 2348–2370.

(Received 11.03.2019)

1Department of Mathematics, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail address: n18012@gug.math.chuo-u.ac.jp

2Department of Mathematical Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji,
Tokyo, 192-0397, Japan

E-mail address: yoshihiro-sawano@celery.ocn.ne.jp


