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BI–LAPLACE–BELTRAMI EQUATION ON A HYPERSURFACE

MEDEA TSAAVA

Abstract. We investigate the boundary value problems for the bi–Laplace–Beltrami equation on a

smooth bounded surface C with a smooth boundary in non-classical setting in the Bessel potential

space Hs
p(C ) for s >

1

p
, 1 < p < ∞. To the initial BVP we apply a quasi-localization and obtain a

model BVP for the bi-Laplacian. The model BVP on the half-plane is investigated by the potential

method and is reduced to an equivalent system in Sobolev–Slobodečkii space. Boundary integral
equations are investigated in both Bessel potential and Sobolev–Slobodečkii spaces. The property

of the obtained system in the non-classical setting is derived, as well.

Introduction

Let S ⊂ R3 be some smooth closed orientable surface, bordering a compact inner Ω+ and an outer
Ω− := R3 \ Ω+ domain. By C we denote a subsurface of S , which has two faces C− and C + and
inherits the orientation from S : C + borders the inner domain Ω+ and C− borders the outer domain
Ω−. C has the smooth boundary Γ := ∂C .

Let ν(ω) =
(
ν1(ω), ν2(ω), ν3(ω)

)>
, ω ∈ C be the unit normal vector field on the surface C and

∂ν =

3∑
j=1

νj∂j be the normal derivative. Let us consider the bi–Laplace–Beltrami operator in C

written in terms of the Günter’s tangent derivatives (see [7, 9, 10] for more details)

∆2
C :=

3∑
j,k=1

D2
jD

2
k , Dj : = ∂j − νj∂ν , j = 1, 2, 3. (0.1)

Let νΓ(t) = (νΓ,1(t), νΓ,2(t), νΓ,3(t))>, t ∈ Γ, be the unit normal vector field on the boundary Γ, which

is tangential to the surface C and directed outside of the surface. Let, finally, ∂νΓ
:=

3∑
j=1

νΓ,jDj

denote the corresponding normal derivative on the boundary Γ.
We study the following boundary value problem for the bi–Laplace–Beltrami equation

∆2
Cu(t) = f(t), t ∈ C ,

u+(s) = g(s), on Γ,

(∂νΓu)+(s) = h(s), on Γ,

(0.2)

where u+ and (∂νΓ
u)+ denote the traces on the boundary.

We need the Bessel potential Hsp(S ), Hsp(C ), H̃sp(C ) and Sobolev–Slobodečkii Ws
p(S ), Ws

p(C ),

W̃s
p(C ) spaces, where S is a closed smooth surface (without boundary), which contains C as a

subsurface, 1 < p < ∞, s ∈ R. Let us commence with the definition of the Bessel potential space
on the Euclidean space Hsp(Rn), defined as a subset of the space of Schwartz distributions S′(Rn)
endowed with the norm (see [14])∥∥u∣∣Hsp(Rn)

∥∥ : =
∥∥〈D〉su∣∣Lp(Rn)

∥∥,
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where 〈D〉s := F−1(1 + |ξ|2)
s
2 F is the Bessel potential and F , F−1 are the Fourier transformations.

For the definition of the Sobolev–Slobodečkii space Ws
p(Rn) = Bsp,p(Rn) (see [14]).

The spaces Hsp(S ) and Ws
p(S ) are defined, in general, by a partition of the unity {ψj}`j=1 subor-

dinated to some covering {Yj}`j=1 of S and local coordinate diffeomorphisms (see [12,14] for details)

κj : Xj → Yj , Xj ⊂ R2 , j = 1, . . . , `.

The space Ws
p(S ) coincides with the trace space of H

s+ 1
p

p (R3) on S and it is known that Ws(S ) =
Hs(S ) for s ≥ 0, 1 < p <∞ (see [14]).

We use, as common, the notation Hs(S ) and Ws(S ) for the spaces Hs2(S ) and Ws
2(S ) (the case

p = 2).

The space H̃sp(C ) is defined as the subspace of Hsp(S ) of those functions ϕ ∈ Hsp(S ), which

are supported in the closed sub-surface suppϕ ⊂ C , whereas Hsp(C ) denotes the quotient space

Hsp(C ) := Hsp(S )
/
H̃sp(C c), and C c := S \ C is the complemented sub-surface. For s > 1/p − 1 the

space Hsp(C ) can be identified with the space of those distributions ϕ on C which admit extensions
`ϕ ∈ Hsp(S ), while Hsp(C ) is identified with the space rCHsp(S ), where rC is the restriction to the
sub-surface C of S .

For s < 0, the space is defined by duality, e.g., Hsp(C ) =
(
H̃−sq (C )

)′
, where

1

p
+

1

q
= 1. The spaces

W̃s
p(C ) and Ws

p(C ) are defined similarly.

The Bessel potential Hsp(Γ), Hsp(Γ0), H̃sp(Γ0) and Sobolev–Slobodečkii Ws
p(Γ), Ws

p(Γ0), W̃s
p(Γ0)

spaces on a closed contour Γ and an open arc Γ0 are defined also similarly.
It is worth noting that for an integer m = 1, 2, . . . the Bessel potential Hmp (S ) and Sobolev Wm

p (S )
spaces coincide and the equivalent norm in both spaces is defined with the help of the Günter’s
derivatives (see [6, 7, 9] and cf. (0.1) for the Günter’s derivatives D1,D2,D3):∥∥u ∣∣Wm

p (S )
∥∥ :=

[ ∑
|α|6m

∥∥Dαu
∣∣Lp(S )

∥∥p] 1
p

, where Dα : = Dα1
1 Dα2

2 Dα3
3 .

Let us also consider H̃−2
0 (C ), a subspace of H̃−2(C ), orthogonal to

H̃−2
Γ (C ) :=

{
f ∈ H̃−2(Ω)

∣∣ (f, ϕ)L2(Ω) = 0, ϕ ∈ C∞0 (Ω)
}
.

H̃−2
Γ (C ) consists of those distributions from H̃−2(C ) which are supported on Γ and H̃−2(C ) decom-

poses into the following direct sum of the subspaces:

H̃−2(C ) = H̃−2
Γ (C )⊕ H̃−2

0 (C ).

The space H̃−2
Γ (C ) is nontrivial (see [12, §5.1]) and if the right-hand side f is chosen from the or-

thogonal subspace, the space H̃−2
0 (C ) guarantees the unique solvability of BVPs (cf. [12] and the next

Theorem 0.1).
The Lax–Milgram Lemma applied to the BVP (0.2) gives the following result. Similar proofs see

in [15].

Theorem 0.1. The BVP (0.2) has a unique solution in the classical weak setting:

u ∈ H2(C ), f ∈ H̃−2
Γ (C ), g ∈ H3/2(Γ), h ∈ H1/2(Γ). (0.3)

From Theorem 0.1 we cannot even conclude that a solution is continuous. If we succeed in proving
that a solution u belongs to the space H2

p(C ) for some 2 < p < ∞, we can enjoy even a Hölder
continuity of u. It is very important to know maximal smoothness of a solution as, for example, in
designing approximation methods. To this end, we investigate the solvability properties of the BVP
(0.2) in the following non-classical setting:

u ∈ Hsp(C ), f ∈ H̃s−4
p (C ) ∩ H̃−2

0 (C ), g ∈ Hs−1/p
p (Γ), (0.4)

h ∈ Hs−1−1/p
p (Γ), 1 < p <∞, s >

1

p
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and find necessary and sufficient conditions of solvability.
To formulate the main theorem of the present work we need the following definition.

Definition 0.2. The BVP (0.2), (0.4) is Fredholm one if the homogeneous problem f = g = h = 0 has
a finite number of linearly independent solutions and only a finite number of orthogonality conditions
on the data f, g, h ensure the solvability of the BVP.

Theorem 0.3. Let conditions (0.4) hold:
a) Then a solution to the BVP (0.2) is represented by the formula

u(x) =NC f(x) +W (0,Γ)g(x)−W (−1,Γ)h(x) +W (−2,Γ)ϕ(x)

−W (−3,Γ)ψ(x), u ∈ H2
#(C ), x ∈ C . (0.5)

Here NC , W (j,Γ), j = −3, 1 are the Newton’s and layer potentials, defined below (see (1.5)) and ϕ,
ψ in (0.5) are solutions to the following system of boundary pseudodifferential equations{

V 0
(−2,Γ)ϕ− V

0
(−3,Γ)ψ = G on Γ,

V 1
(−1,Γ)ϕ− V

1
(−2,Γ)ψ = H on Γ,

(0.6)

ϕ ∈ H̃rp(Γ), ψ ∈ H̃r−1
p (Γ), G ∈ Hrp(Γ), H ∈ Hr−1

p (Γ), (0.7)

where r = s− 1/p, G and H are the functions given in terms of f , g, and h in (1.11) in §1 below.
b) Vice versa: if u is a solution to the BVP (0.2) in the setting (0.4), then ϕ := u+, ψ := (∂νu)+

are solutions to the system (0.6).

c) The system of equations (0.6) has a unique pair of solutions ϕ ∈ W̃3/2(Γ) and ψ ∈ W̃1/2(Γ) in
the classical setting for p = 2, s = 2.

The proof of Theorem 0.3 is exposed in §1.
The system of boundary pseudodifferential equations (0.6) we will consider also in the Sobolev–

Slobodečkii space setting

ϕ ∈ W̃r
p(Γ), ψ ∈ W̃r−1

p (Γ), G ∈Wr
p(Γ), H ∈Wr−1

p (Γ). (0.8)

To formulate the theorem, consider the following model system of singular integral equations (SIEs)
in two settings: {

iSRψ0(t) = G0(t),

iSRϕ0(t) = H0(t), t ∈ R
(0.9)

in the Sobolev–Slobodečkii

ϕ0, ψ0 ∈ W̃r−1
p (R), G0, H0 ∈Wr−1

p (R) (0.10a)

and the Bessel potential space

ϕ0, ψ0 ∈ H̃r−1
p (R), G0, H0 ∈ Hr−1

p (R) (0.10b)

settings. Here

SRv(t) :=
1

πi

∞∫
−∞

v(τ)dτ

τ − t
, v ∈ Lp(R) (0.11)

is understood in the sense of Cauchy’s principal value.

Theorem 0.4. Let 1 < p <∞, r = s− 1

p
> −1. The system of boundary pseudodifferential equations

(0.6) is Fredholm one in the Sobolev–Slobodečkii (0.7) and Bessel potential (0.8) space settings if the
system of boundary integral equations (0.9) is locally invertible at 0 in the settings (0.10a) and (0.10b),
respectively.
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Remark 0.5. Theorem 0.4 is proved at the end of §1. For the proof we apply a quasi-localization of
the BVP (0.2) with the corresponding model BVP on the half-space (see Lemma 1.5). The constraint
r > −1 is then natural since we deal with the boundary value problem.

In a forthcoming paper the problem will be treated by a direct application of the local quasi-
equivalence to the equation (0.6).

A quasi-localization means “freezing coefficients” and “rectifying” underling contours and surfaces.
For details of a quasi-localization we refer the reader to papers [13] and [1], where the quasi-localization
is well described for singular integral operators and for BVPs, respectively. We also refer to [8, §3],
where a short introduction to quasi-localization is exposed.

In the present case under consideration we get 2 different model problems by localizing the mixed
BVP (0.2) to:

1 inner points of C ;
2 inner points on the boundary Γ.

The model BVPs obtained by a quasi-localization, are well investigated in the first case and such
model problems have unique solutions without additional constraints. In the second case we get a
mixed BVP on the half-plane for the bi-Laplace equation (cf. (1.13) below). System (0.9) is related
to this model problem (1.13) just as the BVP (0.2) is related to system (0.6).

1. Potential Operators and Boundary Integral Equations

Let S be a closed, sufficiently smooth orientable surface in Rn. We use the notation Xsp(S ) for
either the Bessel potential Hsp(S ) or the Sobolev–Slobodečkii Ws

p(S ) spaces for S closed or open

and a similar notation X̃sp(S ) for S open.
Consider the space

Xsp,#(S ) : =
{
ϕ ∈ Xsp(S ) : (ϕ, 1) = 0

}
, (1.1)

where (·, ·) denotes the duality pairing between the adjoint spaces. It is obvious that Xsp,#(S ) does

not contain nonzero constants: if c0 = const ∈ Xsp,#(S ) then

0 = (c0, 1) = c0(1, 1) = c0mes S

and c0 = 0. Moreover, Xsp(S ) decomposes into the direct sum

Xsp(S ) = Xsp,#(S ) + {const} (1.2)

and the dual (adjoint) space is(
Xsp,#(S )

)∗
= X−sp′,#(S ), p′ : =

p

p− 1
. (1.3)

The following is a part of Theorem 10 proved in [10].

Theorem 1.1. Let S be `-smooth, ` = 1, 2, . . . , 1 < p < ∞, and |s| 6 `. Let Xsp,#(S ) be the same

as in (1.1)–(1.3). The bi–Laplace–Beltrami operator ∆2
S := ∆S ∆S is invertible between the spaces

with detached constants

∆2
S : Xs+1

p,# (S )→ Xs−1
p,# (S ), (1.4)

i.e., has the fundamental solution KS in the setting (1.4).

Let C ⊂ S be a subsurface with a smooth boundary Γ := ∂C . With the fundamental solution
KS of the bi–Laplace–Beltrami operator at hand we can consider on the surface C the standard layer
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potentials:

NC v(x) : =

∫
C

KS (x, y)v(y) dσ

W (0,Γ)v(x) : =

∫
Γ

(∂νΓ
∆KS )(x, τ)v(τ)dτ,

W (−1,Γ)v(x) : =

∫
Γ

(∆KS )(x, τ)v(τ)dτ, x ∈ C ,

W (−2,Γ)v(x) : =

∫
Γ

(∂νΓ(τ)KS )(x, τ)v(τ)dτ, x ∈ C ,

W (−3,Γ)v(x) : =

∫
Γ

KS (x, τ)v(τ)dτ, x ∈ C .

(1.5)

The potential operators, defined above, have standard boundedness properties

NC : Hsp,#(C ) −→ Hs+4
p,# (C ) ,

W (0,Γ) : Hsp,#(Γ) −→ H
s+3+ 1

p

p,# (C ) ,

W (−1,Γ) : Hsp,#(Γ) −→ H
s+2+ 1

p

p,# (C ),

W (−2,Γ) : Hsp,#(Γ) −→ H
s+1+ 1

p

p,# (C ),

W (−3,Γ) : Hsp,#(Γ) −→ H
s+ 1

p

p,# (C )

and any solution to the mixed BVP (0.2) in the space H2
#(C ) := H2

2,#(C ) is represented as follows:

u(x) =NC f(x) +W (0,Γ)u
+(x)−W (−1,Γ)(∂νΓu)+(x) +W (−2,Γ)(∆u)+(x)

−W (−3,Γ)(∂νΓ
∆u)+(x), u ∈ H2

#(C ), x ∈ C . (1.6)

Since Xsp = Xsp,# + {const}, we can extend layer potentials to the entire space as follows:

for ϕ = ϕ0 + c, ϕ0 ∈ Xsp,#, c = const,

we set W (j,Γ)ϕ = W (j,Γ)ϕ0 + c, NC f = NC f0 + c, j = −3, 0
(1.7)

i.e., by setting W (j,Γ)c = NC c = c.

Lemma 1.2. The representation formula (1.6) remains valid for a solution in the space H2(C ),
provided the potentials are extended as in (1.7).

Proof. Indeed, since u = u0 + c, u0 ∈ Hsp,#(C ), u ∈ Hsp(C ), we apply the extension formulae (1.7),

the representation formula (1.6) for a solution in the space H2
#(C ) and get the representation formula

(1.6) for a solution in the space H2(C ):

u(x) =u0(x) + c = NC f0(x) +W (0,Γ)u
+
0 (x)−W (−1,Γ)(∂νΓ

u0)+(x)

+W (−2,Γ)(∆u0)+(x)−W (−3,Γ)(∂νΓ
∆u0)+(x) + c

=NC (f(x)− c) +W (0,Γ)(u− c)+(x)−W (−1,Γ)(∂νΓ
(u− c))+(x)

+W (−2,Γ)(∆(u− c))+(x)−W (−3,Γ)(∂νΓ
∆(u− c))+(x) + c

=NC f(x) +W (0,Γ)u
+(x)−W (−1,Γ)(∂νΓu)+(x)

+W (−2,Γ)(∆u)+(x)−W (−3,Γ)(∂νΓ
∆u)+(x), u ∈ H1(C ), x ∈ C . (1.8)

The lemma is proof. �
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Proof of Theorem 0.3. Let us recall the Plemelji formulae

(W (0,Γ)v)±(t) = ±1

2
v(t) +W (0,Γ)v(t), (∂νΓ

V 0
(0,Γ)ψ)±(t) = V 1

(+1,Γ)v(t),

(W (−1,Γ)v)±(t) = V 0
(−1,Γ)v(t), (∂νΓ

W (−1,Γ))
±(t) = ∓1

2
v(t) + V 1

(0,Γ)v(t),

(W (−2,Γ)v)±(t) = V 0
(−2,Γ)v(t), (∂νΓW (−2,Γ))

±(t) = V 1
(−1,Γ)v(t),

(W (−3,Γ)v)±(t) = V 0
(−3,Γ)v(t), (∂νΓW (−3,Γ))

±(t) = V 1
(−2,Γ)v(t),

(1.9)

where t ∈ ∂Ωα and

V 0
(−3,Γ)v(t) : =

∫
Γ

KS (t, τ)v(τ)dτ, t ∈ Γ,

V 0
(−2,Γ)v(t) : =

∫
Γ

(∂νΓ(τ)KS )(t, τ)v(τ)dτ,

V 1
(−2,Γ)v(t) : =

∫
Γ

(∂νΓ(t)KS )(t, τ)v(τ)dτ,

V 1
(−1,Γ)v(t) : =

∫
Γ

(∂νΓ(t)∂νΓ(τ)KS )(t, τ)v(τ)dτ,

(1.10)

are pseudodifferential operators on Γ, have orders −3, −2, −2 and −1, respectively, and represent the
direct values of the corresponding potentials W−3,Γ, W−2,Γ, ∂νΓ

W−3,Γ and ∂νΓ
W−2,Γ.

By applying the Plemelji formulae (1.9) to (1.6), we get

u+(t) = g(t) = (NC f)+ +
1

2
g(t) + V 0

(0,Γ)g(t)− V 0
(−1,Γ)h(t)

+V 0
(−2,Γ)ϕ(t)− V 0

(−3,Γ)ψ(t),

(∂νΓ
u)+(t) = h(t) = (∂νΓ

NC f)+ + V 1
(+1,Γ)g(t) +

1

2
h(t)− V 1

(0,Γ)h(t)

+V 1
(−1,Γ)ϕ(t)− V 1

(−2,Γ)ψ(t), t ∈ Γ.

We obtain system (0.6), where

G : =

[
1

2
g − (NC f)+ − V 0

(0,Γ)g + V 0
(−1,Γ)h

]
∈ Hs−1/p

p (Γ),

H : =

[(
1

2
h− ∂νΓ

NC f

)
)+ − V 1

(0,Γ)g + V 1
(−1,Γ)h

]
∈ Hs−1−1/p

p (Γ).

(1.11)

Thus, we have proved the inverse assertion of Theorem 0.3: if u is a solution to the BVP (0.2), the
functions ϕ and ψ are solutions to system (0.6).

The direct assertion is even easier to prove:

• the function in (1.8) represented by the potentials, satisfies the equation (0.2);
• if ϕ and ψ are solutions to system (0.6), using Plemelji formulae (1.9), it can easily be verified

that u in (1.8) satisfies the boundary conditions in (0.2).

The existence and uniqueness of a solution to the BVP (0.2) in the classical setting (0.3) is stated
in Theorem 0.1, while for system (0.6) it follows from the equivalence with the BVP (0.2). �

The remainder of the paper is devoted to the proof of solvability properties of the system (0.6) in
the non-classical setting (0.4).

On the 2-dimensional Euclidean space we consider the following equation:

∆2u = f0 on R2, u ∈ Hsp(R2), f0 ∈ Hs−4
p (R2), (1.12)
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also the model 
∆2u(x) = f1(x), x ∈ R2

+,

u+(t) = g1(t), t ∈ R,
−(∂2u)+(t) = h1(t), t ∈ R.

(1.13)

boundary value problems for the Laplace equation on the upper half plane R2
+ := R × R+, where

∂νΓ
= −∂2 is the normal derivative on the boundary of R2

+.
The BVP (1.13) will be treated in the non-classical setting:

f1 ∈ H̃s−4
p (R2

+) ∩ H̃−2
0 (R2

+), g1 ∈ Hs−1/p
p (R), h1 ∈ Hs−1−1/p

p (R), (1.14)

1 < p <∞, s >
1

p
.

Proposition 1.3. The bi-Laplace equation (1.12) has a unique solution, as well.

Proof. The assertion is a well-known classical result available in many textbooks on partial differential
equations (see e.g. [12]). �

As a particular case of Theorem 0.1 (can easily be proved with the Lax–Milgram Lemma), we have
the following

Proposition 1.4. The BVP (1.13) has a unique solution u in the classical weak setting

u ∈ H2(R2
+), f1 ∈ H̃−2

0 (R2
+), g1 ∈ H3/2(R), h1 ∈ H1/2(R),

Lemma 1.5. The BVP (0.2) is Fredholm one in the non-classical setting (0.4) if the model mixed
BVP (1.13) is locally Fredholm (i.e., is locally invertible) at 0 in the non-classical setting (1.14).

Proof. We apply quasi-localization of the boundary value problem (0.2) in the more general non-
classical setting (0.4), which includes the classical setting (0.3) as a particular case (see [1, 3] for
details of quasi-localization of boundary value problems and also [2, 11, 13] for general results on
localization and quasi-localization).

Prior proceeding with the quasi-localization let us explain shortly why the quasi-localization can
be performed in the Bessel potential (Besov) spaces.

Localizing classes consist of multiplication operators by smooth functions and since localization is
performed in quotient spaces modulo compact operators it suffices to note that smooth functions com-
mute with the Bessel potential in quotient algebra (see [3]) and, therefore, their norms coincide with
the norm in Lp-space, i.e., with the supremum-norm. This makes localization (“freezing coefficients”)
easy.

Concerning the “rectification”: since the difference of “pull-back” of the original operator and its
local representative is locally compact in Lp and is bounded in the Bessel potential spaces Hsp, it is
locally compact in all Hrp-spaces for r < s (Krasnoselskij theorem).

By quasi-localization at the point ω ∈ C we first localize to the tangential plane R2(ω) (tangential
half- plane R2

+(ω)) to C at ω ∈ C (at ω ∈ Γ = ∂C , respectively). The differential operators remain
the same

∆2
R2 : =

3∑
j,k=1

D2
jD

2
k , Dj = ∂j − νj∂ν ,

∂ν =

3∑
j=1

νj∂j , ∂νΓ
=

3∑
j=1

νΓ,jDj ,

(1.15)

but the normal vector ν(ω) to the tangent plane R2 and the normal vector νΓ(ω) to the boundary
of the tangent plane R(ω) = ∂R2

+(ω) are now constant. Next, we rotate the tangent planes R2(ω)
and R2

+(ω) to match them to the planes R2 and R2
+. The normal vector fields will transform into

ν = (0, 0, 1) and νΓ = (0,−1, 0). The rotation is an isomorphism of the spaces Wr
p(R2(ω))→Wr

p(R2),
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Wr
p(R2

+(ω))→Wr
p(R2

+), W̃r
p(R2

+(ω))→ W̃r
p(R2

+) etc., and transforms the operators in (1.15) into the
operators

∆2
R2(ω) → ∆2 : =

2∑
j,k=1

∂2
j ∂

2
k, Dj → ∂j , j, k = 1, 2, D3 → 0,

∂ν(ω) → ∂3, ∂νΓ(ω) → −∂2,

and we get (1.12), (1.13) as a local representatives of BVP (0.2).
For the BVP (0.2) in the non-classical setting (0.4) we get the following local quasi-equivalent

equations and BVPs at different points of the surface ω ∈ C :
i. the equation (1.12) at 0 if ω ∈ C is an inner points of the surface;
iv. the mixed BVP (1.13) in the non-classical setting (1.14) at 0 if ω ∈ Γ.
The main conclusion of the present theorem on Fredholm properties of BVPs (0.2) and (1.13)

follows from Proposition 1.3 and the general theorem on quasi-localizaion (see [1–3,11,13]): The BVP
(0.2), (0.4) is Fredholm one if all local representatives (1.12) and (1.13) in non-classical settings are
locally Fredholm (i.e., are locally invertible). �

Now we concentrate on the model mixed BVP (1.13). To this end, let us recall that the function

K 2
∆(x) : =

1

8π
|x− y|2 ln |x− y|

is the fundamental solution to the bi-Laplace’s equation in two variables

∆2K 2
∆(x) = δ(x), x ∈ R2,

∆2 = (∂2
1 + ∂2

2)2 = (∂2
ν + ∂2

` )2.
(1.16)

Standard Newton and layer potential operators (cf. (1.5)) acquire the following forms:

NR2
+
v(x) : =

1

8π

∫
R2

+

|x− y|2 ln |x− y|v(y) dy,

W (0,R)v(x) : = − 1

8π

∫
R

∂y2(∂2
y1

+ ∂2
y2

)
∣∣(x1, x2)− (τ, y2)

∣∣2 ln
∣∣(x1, x2)− (τ, y2)

∣∣∣∣∣
y2=0

v(τ) dτ,

W (−1,R)v(x) =
1

8π

∫
R

(∂2
y1

+ ∂2
y2

)
∣∣(x1, x2)− (τ, y2)

∣∣2 ln
∣∣(x1, x2)− (τ, y2)

∣∣∣∣∣
y2=0

v(τ) dτ,

W (−2,R)v(x) : = − 1

8π

∫
R

∂y2

∣∣(x1, x2)− (τ, y2)
∣∣2 ln

∣∣(x1, x2)− (τ, y2)
∣∣∣∣∣
y2=0

v(τ) dτ,

W (−3,R)v(x) : =
1

8π

∫
R

∣∣x− (τ, 0)
∣∣2 ln

∣∣x− (τ, 0)
∣∣v(τ) dτ.

The pseudodifferential operators on V 0
−3,R, V 0

−2,R, V 1
−2,R and V 1

−1,R associated with the layer
potentials (see (1.10)), acquire the form

V 0
(−3,R)v(x) : =

1

8π

∫
R

(
(x1 − τ)2 + x2

2

)
ln
(
(x1 − τ)2 + x2

2

)1/2
v(τ)dτ, t ∈ R,

V 0
(−2,R)v(x) : = − 1

8π

∫
R

∂y2

(
(x1 − τ)2 + (x2 − y2)2

)
ln
(
(x1 − τ)2 + (x2 − y2)2

)1/2∣∣∣
y2=0

v(τ)dτ

: =
(x2 − y2)

8π

∫
R

(
2 ln

(
(x1 − τ)2 + (x2 − y2)2

)1/2
+ 1
)∣∣∣
y2=0

v(τ)dτ



BI–LAPLACE–BELTRAMI EQUATION ON A HYPERSURFACE 155

: =
x2

8π

∫
R

(
2 ln

(
(x1 − τ)2 + x2

2

)1/2
+ 1
)
v(τ)dτ,

V 1
(−2,R)v(x) : = − 1

8π

∫
R

∂x2

(
(x1 − τ)2 + (x2 − y2)2

)
ln
(
(x1 − τ)2 + (x2 − y2)2

)1/2∣∣∣
y2=0

v(τ)dτ

: =
(y2 − x2)

8π

∫
R

(
2 ln

(
(x1 − τ)2 + (x2 − y2)2

)1/2
+ 1
)∣∣∣
y2=0

v(τ)dτ

: = −x2

8π

∫
R

(
2 ln

(
(x1 − τ)2 + x2

2

)1/2
+ 1
)
v(τ)dτ,

V 1
(−1,R)v(x) : = − 1

8π

∫
R

∂2
x2

(
(x1 − τ)2 + (x2 − y2)2

)
ln
(
(x1 − τ)2 + (x2 − y2)2

)1/2∣∣∣
y2=0

v(τ)dτ

: = − 1

4π

∫
R

(
ln
(
(x1 − τ)2 + (x2 − y2)2

)1/2
+

(y2 − x2)2

(x1 − τ)2 + (x2 − y2)2
+

1

2

)∣∣∣
y2=0

v(τ)dτ

: = − 1

4π

∫
R

(
ln
(
(x1 − τ)2 + x2

2

)1/2
+

x2
2

(x1 − τ)2 + x2
2

+
1

2

)
v(τ)dτ,

and when x2 → 0, we get

V (−3,R)v(t) : = lim
x2→0

V 0
(−3,R)v(x) =

1

8π

∫
R

(t− τ)2 ln |t− τ |v(τ)dτ,

V (−2,R)v(t) : = lim
x2→0

V 0
(−2,R)v(x) = 0, V ∗(−2,R)v(t) := lim

x2→0
V 1

(−2,R)v(x) = 0, (1.17)

V (−1,R)v(t) : = lim
x2→0

V 1
(−1,R)v(x) = − 1

4π

∫
R

(
ln |t− τ |+ 1

2

)
v(τ)dτ.

Now we prove the following

Lemma 1.6. Let 1 < p < ∞, s >
1

p
. Let g1 ∈ Hs−1/p

p (R) and h1 ∈ Hs−1−1/p
p (R) (non-classical

formulation (1.14)). A solution to the BVP (1.13) is represented by the formula

u(x) = NR2
+
f(x) +W (0,R)g1(x)−W (−1,R)h1(x) +W (−2,R)ϕ0(x)

−W (−3,R)ψ0(x), x ∈ R2 (1.18)

and ϕ0 and ψ0 are the solutions to the system of pseudodifferential equations{
V 0

(−2,R)ϕ0 − V 0
(−3,R)ψ0 = G0 on R,

V 1
(−1,R)ϕ0 − V 1

(−2,R)ψ0 = H0 on R,
(1.19)

ϕ0 ∈ H̃s−1/p
p (R), ψ0 ∈ H̃s−1−1/p

p (R),

G0 ∈ Hs−1/p
p (R), H0 ∈ Hs−1−1/p

p (R), (1.20)

where

G0 : =

[
1

2
g1 − (NR2

+
f)+ − V 0

(0,R)g1 + V 0
(−1,R)h1

]
∈ Hs−1/p

p (R),

H0 : =

[(1

2
h1 − ∂νΓ

NR2
+
f
)+

− V 1
(0,R)g1 + V 1

(−1,R)h1

]
∈ Hs−1−1/p

p (Γ).

The system of boundary pseudodifferential equations (1.19) has a unique pair of solutions ϕ0 and
ψ0 in the classical setting p = 2, s = 1.



156 M. TSAAVA

Proof. By repeating word by word the proof of Theorem 0.3, we prove the equivalence via the rep-
resentation formulae (1.18) of the BVP (1.13) in the non-classical setting (1.14) and of the system
(1.19).

The existence and uniqueness of a solution to the BVP (1.13) in the classical setting (1.14) is
stated in Proposition 1.4, while for system (1.19) it follows from the proved equivalence with the BVP
(1.13). �

Lemma 1.7. Let 1 < p < ∞, s >
1

p
. The system of boundary pseudodifferential equations (1.19)

is locally invertible at 0 if and only if the system (0.9) is locally invertible at 0 in the non-classical

setting (0.10a) and the space parameters are related as follows: r = s− 1

p
> 0.

Proof. Due to the equalities (1.17) V 0
(−2,R)ϕ0 = 0, V 1

(−2,R)ψ0 = 0 and the equation in (1.19) acquires
the form 

− 1

8π

∫
R

(t− τ)2 ln |t− τ |ψ0(τ)dτ = G(t), t ∈ R,

− 1

4π

∫
R

(
ln |t− τ |+ 1

2

)
ϕ0(τ)dτ = H(t), t ∈ R.

Multiply both equations by -4, apply to the first equation the differentiation ∂3
t and to the second

equation ∂t. We get 
1

π

∫
R

ψ0(τ)dτ

τ − t
= G(t),

1

π

∫
R

ϕ0(τ)dτ

τ − t
= H(t), t ∈ R.

The obtained equation coincides with system (0.9).
Invertibility of the singular integral operator follows from the following equality (see [4, 5, 11])

FSRϕ(ξ) = − sign ξϕ(ξ),

since SRϕ(ξ) = F−1(− sign ξ)F , we get

S2
Rϕ(ξ) = F−1(− sign ξ)FF−1(− sign ξ)Fϕ(ξ)

= F−1(− sign ξ)2Fϕ(ξ) = F−1Fϕ(ξ) = ϕ(ξ).

Here

Fu(ξ) : =

∫
Rn

eiξxu(x)dx, ξ ∈ Rn,

is the Fourier transform and

F−1v(ξ) : =
1

(2π)n

∫
Rn

e−iξxv(ξ)dξ, x ∈ Rn,

is its inverse transform.
To prove the local equivalence at 0 of systems (1.19) and (0.9) we note that the differentiation

∂t : =
d

dt
: Hrp(R)→ Hr−1

p (R), ∂t : H̃rp(R)→ H̃r−1
p (R)

is invertible at any finite point x ∈ R and the inverse operator is

( d
dt

)−1

ϕ(t) =

t∫
−∞

ϕ(τ)dτ. �
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Proof of Theorem 0.4. By Theorem 0.3, system (0.6) is Fredholm one in the Bessel potential space
setting (0.7) if the BVP (0.2) is Fredholm in the non-classical setting (0.4). On the other hand, by
Lemma 1.5 the BVP (0.2) is Fredholm in the non-classical setting (0.4) if the BVP (1.13) is locally
invertible at 0 in the non-classical setting (1.14). And, finally, by Lemma 1.6 and Lemma 1.7, the
BVP (1.13) is locally invertible in the non-classical setting (1.14) if the system of boundary integral
equations (0.9) is locally invertible at 0 in the Bessel potential space setting (0.10b). �
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