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FUBINI’S TYPE PHENOMENON FOR CONVERGENT IN PRINGSHEIM

SENSE MULTIPLE FUNCTION SERIES

SHAKRO TETUNASHVILI1,2 AND TENGIZ TETUNASHVILI2,3

Abstract. In the present paper ε-uniqueness multiple function systems are considered. A theorem
representing a possibility of calculation of the limit of a convergent in the Pringsheim sense multiple

function series with respect to an ε-uniqueness multiple function system via application of iterated

limits is formulated.

Let d ≥ 2 be a natural number, Rd be the d-dimensional Euclidean space, Zd
0 be the set of all

points in Rd with integer nonnegative coordinates. By x = (x1, . . . , xd) we denote the points of the
unit cube [0, 1]d and by m = (m1, . . . ,md) and n = (n1, . . . , nd) those from the set Zd

0 . The symbol
m → ∞ means that mj → ∞ for every j, 1 ≤ j ≤ d independently of each other. µ is the linear
Lebesgue measure. E1 × E2 × · · · × Ed is the Cartesian product of the sets Ej , where j = 1, 2, . . . , d
and Ej ⊂ [0, 1].

Let φ = {ϕi(t)}∞i=0 be a system of measurable and finite functions defined on [0, 1]. So,

|ϕi(t)| <∞, t ∈ [0, 1], i = 0, 1, 2, . . . .

Definition 1. A set A ⊂ [0, 1] is called an U set of the system φ = {ϕi(t)}∞i=0 if the convergence of

a series
∞∑
i=0

aiϕi(t) to zero on the set [0, 1]\A implies that ai = 0 for every i ≥ 0.

Definition 2. The system φ = {ϕi(t)}∞i=0 is called an ε-uniqueness system if the number ε ∈ (0, 1]
and any set A ⊂ [0, 1] with µA < ε is an U set of φ = {ϕi(t)}∞i=0.

The expression Φ ∈ U(ε) means, that Φ is an ε-uniqueness system.
Note, that if 0 < ε < ε1 ≤ 1 and Φ ∈ U(ε1), then Φ ∈ U(ε).
Examples of an ε-uniqueness systems are a lacunary trigonometric system defined on [0, 1], with

ε = 1 (see [3]) and Rademacher system, with ε = 1
2 (see [1]).

Let Φ(j) =
{
ϕ
(j)
nj (xj)

}∞

nj=0
be a system of measurable and finite on [0, 1] functions for every j,

where 1 ≤ j ≤ d.
Let

φn(x) =

d∏
j=1

ϕ(j)
nj

(xj), x = (x1, . . . , xd) ∈ [0, 1]d

for every n ∈ Zd
0 .

Consider the d-multiple series with respect to the system φ = {φn(x)}n∈Zd
0
,

∞∑
n=0

anφn(x) =

∞∑
n1=0

· · ·
∞∑

nd=0

an1,...,nd

d∏
j=1

ϕ(j)
nj

(xj). (1)

By Sm(x) we denote rectangular partial sums of the series (1), i. e.,

Sm(x) =

m1∑
n1=0

· · ·
md∑

nd=0

an1,...,nd

d∏
j=1

ϕ(j)
nj

(xj).
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The convergence of the series (1) at the point x means that there exists a finite Pringsheim limit,
i. e.,

−∞ < lim
m→∞

Sm(x) <∞.

Let {j1, j2, . . . , jd} be a rearrangement of {1, 2, . . . , d}, then it holds the following Fubini-type
Theorem. Let for any j, 1 ≤ j ≤ d, the system Φ(j) be an εj-uniqueness system and a set

Ej ⊂ [0, 1] be such that µEj > 1− εj. If there exists

lim
m→∞

Sm(x), when x ∈ E1 × E2 × · · ·Ed,

then for any {j1, j2, . . . , jd} there exists iterated limit

lim
mj1

→∞

(
lim

mj2
→∞

(
· · ·
(

lim
mjd

→∞
Sm(x)

)
· · ·
))

when x ∈ E1 × E2 × · · ·Ed

and

lim
m→∞

Sm(x) = lim
mj1→∞

(
lim

mj2→∞

(
· · ·
(

lim
mjd

→∞
Sm(x)

)
· · ·
))

for any x ∈ E1 × E2 × · · ·Ed.
Remark. Note, that the theorem presented in [2] is a direct consequence of the above formulated

theorem when ε1 = ε2 = · · · = εd = ε.
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