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BICRITICAL POINTS IN PROBLEM ON THE STABILITY OF

HEAT-CONDUCTING FLOWS BETWEEN HORIZONTAL POROUS CYLINDERS

LUIZA SHAPAKIDZE

Abstract. The stability of heat-conducting flow between horizontal porous rotating cylinders with
a constant azimuthal pressure gradient is studied. It is assumed that the flow is subjected to the

action of a radial flow through the cylinder walls and a radial temperature gradient. The aim of

this paper is to find the intersection points of neutral curves that correspond to flow instability and
appearance of complex regimes.

1. Formulation of the Problem

We consider the steady heat-conducting flow between horizontal porous rotating cylinders with
a constant azimuthal pressure gradient maintained by a pumping of a fluid around the annulus at
cylinders. It is assumed that the cylinders heated up to different temperatures and the flow is subjected
to the action of a radial converging and diverging fluid through the permeable cylinder walls and radial
temperature gradient. External mass forces absent, the fluid inflow through the wall of one cylinder
is equal to the fluid outflow through the other one.

We denote the radii, angular velocities and temperature of the inner and outer cylinders by R1, Ω1,
T1, and R2, Ω2, T2, respectively. Assume that on the surface of the cylinders the following boundary
conditions

v′r = U0, v′ϕ = Ω1R1, v′z = 0, T ′ = T1 (r = R1),

v′r =
U0

R
, v′ϕ = Ω2R2, v′z = 0, T ′ = T2 (r = R2)

(1.1)

are fulfilled, where R = R2

R1
, V ′(v′r, v

′
θ, v
′
z) is the velocity vector, U0 is the radial velocity through the

wall of the inner cylinder.
Under the above assumption, using the Navier–Stokes system, heat transfer, continuity equations

and an equation of state [5] in terms of cylindrical coordinates r, θ, z with z-axis coinciding with that
of cylinders we obtain the following exact solution for the velocity V0, temperature T0, pressure Π0:

V0 = {u0(r), v0(r), 0}, T0 = c1 + c2r
κPr ,

u0(r) =
R1U0

r
, v0(r) =


K

κ

(
arκ+1 +

b

r
− r
)

+Arκ+1 +
B

r
, κ 6= −2,

K

2

(a1 ln r + b1
r

)
+
A1 ln r +B1

r
, κ = −2,

∂Π0

∂r
=
ρ(u20 + v20)

r
,

(1.2)

where

K =
1

2ρν

(∂Π0

∂θ

)
0

= const , a =
R2 − 1

(Rκ+2 − 1)Rκ
1

, a1 =
R2

1(R2 − 1)

lnR
,

b =
R2

2(Rκ − 1)

Rκ+2 − 1
, b1 = −R

2
1 lnR2 −R2

2 lnR1

lnR
,
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A =
Ω1(ΩR2 − 1)

(Rκ+2 − 1)Rκ
1

, A1 =
Ω1R

2
1(ΩR2 − 1)

lnR
,

B =
Ω1R

2
2(Rκ − Ω)

Rκ+2 − 1
, B1 = −Ω1R

2
1(lnR2 − ΩR2 lnR1)

lnR
,

c1 =
T1R

Prκ − T2
Rκ Pr − 1

, c2 =
T2 − T1

Rκ Pr
1 (Rκ Pr − 1)

,

κ = U0R1

ν is the radial Reynolds number, Pr = ν
χ is the Prandtl number, ρ is the fluid density, ν

and χ are, respectively, the coefficients of kinematic viscosity and thermal diffusion. The radial flow
is inward for κ < 0 (converging flow) and outward for κ > 0 (diverging flow).

The flow with the velocity vector V0, temperature T0 and pressure Π0 is called the main stationary
flow. This flow is a superposition of the heat-conducting flow in the transverse direction(maintained
by a pumping fluid round the cylinders) and a distribution of angular velocities (maintained by the
rotation of the two cylinders). Our aim is to find the intersection points of neutral curves which
correspond to flow instability and appearance of complex regimes.

2. Neutral Curves

Let the perturbed state be taken as

V ′ = V0 + V (vr, vθ, vz), T ′ = T0 + τ, Π′ = Π0 + Π. (2.1)

Taking into account that the main stationary flow consists a rotating shear flow, we denote rotation
shear S by Vm

d , where Vm is an average velocity in the azimuthal direction, d = R2−R1 is a gap width
between cylinders. Introducing dimensionless variables for time, velocity, temperature and pressure
by S, R2, SR2, T2 − T1, νρ′S in the system of Navier-Stokes equations, for the vector-functions
F = {vr, vθ, vz, τ} and F1 = {ur, uθ, uz, T1}, we obtain the following nonlinear problem of finding
perturbations V , τ and Π:

∂F

∂t
+NF − 1

Ta
MF +

1

Ta
∇1Π = −L(F, F1),

(∇1, rF ) = 0, F
∣∣
r=1,R

= 0,
(2.2)

where

MF =
{

∆1vr −
1− κ
r2

vr −
2

r2
∂vθ
∂θ

,∆1vθ −
1 + κ
r2

vθ +
2

r2
∂vr
∂θ

,∆1vz,
1

Pr
∆1τ

}
,

NF = ω1
∂F

∂θ
+
{

Raω2τ − 2 Taω1vθ,−g1vr, 0,
g2
Pr
vr,
}
,

L(F, F1) =
{

(F,∇1)ur −
vθuθ
r

, (F,∇1)uθ +
vruθ
r

, (F,∇1)uz, (F,∇1)T1

}
,

∆1 =
∂2

∂r2
+

1− κ
r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
, ∇1 =

{ ∂

∂r
,

1

r

∂

∂θ
,
∂

∂z
, 0
}
,

Ta =
Ω1R

2
2

2
is Taylor number,

Ra =
µ

λ
, µ =

β(T2 − T1)

2
, β is coefficient of thermal expansion,

λ =
Vm

Ω1R2
is ratio of the average velocities of pumping liquid and rotation,

Vm = K
R1R

2

R− 1
D(R), D(R) =

Rκ − 1

Rκ+2 − 1
lnR− κ(R2 − 1)

2R2(κ + 2)
,

ω1 =
v0(r)

r
= λg(r) + g0(r), ω2 = ω2

1r,

g(r) =
d

R2

D1(R)rκ+2 +D2(R)− r2

rD(R)
, g0(r) = D3(R)rκ+1 +

D4(R)

r
,
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g1(r) =
dv0
dr

+
v0
r

=
d

R2

D1(R)(κ + 2)rκ − 2

D(R)
+ (κ + 2)rκD3(R),

D1(R) =
(R2 − 1)Rκ

Rκ+2 − 1
, D2(R) = 1−D1(R),

D3(R) =
(ΩR2 − 1)Rκ

Rκ+2 − 1
, D4(R) =

Rκ − Ω

Rκ+2 − 1
,

g2(r) =
κ Pr2Rκ Pr

Rκ Pr − 1
rκ Pr−1.

Problem (2.2) is written in terms of the Boussinesq approximation, which is based on the assumption
that the thermal expansion coefficient is small [1]. In the sequel it will always be assumed that the
velocity, temperature and pressure components are periodic with respect to z and θ with the known
periods 2π/α and 2π/m, respectively.

The theoretical and experimental studies have shown that after the loss of stability of main flow
between rotating cylinders there occured secondary modes either axisymmetric or nonaxisymmetric
disturbances as vortices and oscillatory modes in the form of traveling waves.

To study the transition to complex regimes of special attention are the points of intersection of
neutral curves, corresponding to the two above-mentioned kinds of the secondary flows, since at these
points with a high probability may appear various regimes, including the complex one [2, 4].

Let (Ra0,Ta0) be the point lying on the plane of parameters (Ra,Ta) and corresponding to the
intersection of the neutral curves corresponding to the monotonic (m = 0) axisymmetric and oscillatory
nonaxisymmetric loss of stability of main flow (1.2). Under the definite values of parameters of the
problem, the neutral curves may be nonintersecting that indicates that under the corresponding values
of parameters of the problem we cannot expect the appearance of complex regimes.

To construct neutral curves, we assume that the perturbations V , temperature τ and pressure Π
are infinitely small. The neutral curves, which corresponds to the bifurcation of vortex and azimuthal
waves are found by solving the spectral problems:

(M − TaN)Φ0 = ∇1p0, (∇1, rΦ0) = 0, Φ0

∣∣
r=1,R

= 0, (2.3)

and

(M − TaN − icTa)Φ1 = ∇1p1, (∇1, rΦ1) = 0, Φ1

∣∣
r=1,R

= 0, (2.4)

where

Φ0 =
{
u0(r), v0(r), iw0(r), τ0(r)

}
eiαz, p0 = q0(r)eiαz, (2.5)

Φ1 =
{
u1(r), v1(r), w1(r), τ1(r)

}
e−i(mθ+αz), p1 = q1(r)e−i(mθ+αz), (2.6)

c – unknow frequency of neutral azimuthal waves.
Problems of eigenvalues (2.3) and (2.4) have been solved by the shooting method for fixed λ, κ,

α,R, m, Pr, Ω. Thus, for the fixed values of these parameters we established the dependence of the
critical value of the number Ta, Ra and the neutral mode frequency c corresponding to the bifurcation
of vortices and azimuthal waves origination on a number Ω. Further, using the Newton method, we
minimize the difference between the obtained critical values of Ta0. This allows us to calculate with
sufficient exactness the values Ta0,Ra0 and c0 corresponding to the point of intersection of neutral
curves.

The calculations in this paper were performed for the case R = 2 (radius of the outer cylinders is
two times greater than that of the inner ones), m = 0, 1, for various values of axial wave number α,
Pr = 7 (the working medium is water) and for small absolute values κ (−2 < κ < 2). The results of
calculations are presented in Tables 1 and 2.

3. Conclusions

As our calculations show, these intersections of neutral curves take place especially when the liquid
pumping is in the direction of the rotation inner cylinder.
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When the liquid pumping and the inner cylinder rotate in the same direction we can expect the
occurrence of complex modes. In the case where the outer cylinder is rest (Table 1) we find that
intersections of neutral curves take place when temperature of the inner cylinder is higher than that
of the outer for different axial wave numbers. If the liquid pumping and both cylinders rotate in
the same direction, we can expect the occurrence of complex modes when temperature of the outer
cylinder is higher than that of the inner one. But for the opposite rotating cylinders when the inner
cylinder rotates in the same direction as of the pumping, there arise complex regimes, if temperature
of the inner cylinder exceeds that of the outer one for both diverging and converging flows (Table 2).

When the pumping flow is directed to the opposite direction of the rotating inner cylinder, the
neutral curves do not intersect and thus it is difficult to expect the occurrence of complex regimes. In
this case we find very high frequency of neutral azimuthal waves.

Table 1. The points of intersection of neutral curves λ = 1, Ω = 0

κ
α = 5 α = 8

Ra0 Ta0 c0 Ra0 τ0 c0
−1.9 −2.2118 60.9357 2.5582 −0.5292 48.736 2.6613

−1.5 −0.607 59.501 2.5798 −0.209 49.592 2.6649

−1.1 −0.1559 60.7709 2.5911 −0.0695 51.14 2.665

−0.5 −0.03525 65.1397 2.5924 −0.0184 53.989 2.6618

−0.2 −0.02168 67.8398 2.59219 −0.0117 55.599 2.66

0.5 −0.01567 75.1248 2.5938 −0.0083 59.809 2.657

1 −0.02122 81.1659 2.59819 −0.01068 69.227 2.6567

1.5 −0.03486 87.971 2.60578 −0.01674 67.025 2.6587

2 −0.060456 495.619 2.617139 −0.0283 71.2452 2.6635

Table 2. The points of intersection of neutral curves λ = 1, α = 4

κ
Ω = 0.1

κ
Ω = −0.2

Ra0 Ta0 c0 Ra0 Re0 c0
0.2 0.626 76.221 4.247 2 −0.105 115.42 2.48

0.18 0.6784 71.69 4.20716 1.5 −0.0602 104.8 2.459

0.16 0.7165 68.69 4.17436 1 −0.0035 95.57 2.445

−0.2 0.9096 57.835 4.003 −0.1 −0.0307 79.244 2.426

−0.5 1.1257 55.508 3.906 −1.5 −2.129 74.297 2.355

−0.8 1.4729 54.938 3.818 −1.9 −7.345 78.84 2.317
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