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THE BEHAVIOR OF SOLUTIONS OF THE DIRICHLET, NEUMANN AND
MIXED DIRICHLET NEUMANN PROBLEMS IN THE VICINITY OF SHARP
EDGES OF A PIECEWISE SMOOTH BOUNDARY

N. A. TRUBAEV

Abstract. An alternative expression of harmonic function in a three-dimensional case in spherical
coordinates is proposed. We consider the behavior of solutions of the Dirichlet, Neumann and mixed
Dirichlet-Neumann problems in the vicinity of sharp edges of a piecewise smooth boundary. The
conditions of geometry admit only analytical solutions in the vicinity of sharp edges of special type.
Some effects of an ideal fluid model in the vicinity of sharp edges of this type are discussed.

1. INTRODUCTION

In developing a numerical technique the question of proper modelling of corners in a body has
always been a challenge. One can possibly argue, on physical grounds, that a sharp corner in a body
is essentially a mathematical artifact. On the other hand, it is well known that variables of interest
such as flux may change very rapidly around a rounded corner with a small radius of curvature. Hence
for computational efficiency it may be quite advantageous to model a corner as sharp, across which
there is a jump in the unit normal and tangential vectors to the boundary of the body. Another type
of problem involving mixed boundary values is often encountered in real life. This class of problems
involves specifications of incompatible boundary conditions on adjacent segments of the boundary of
a body. Such situations may arise irrespective of the local geometry of the boundary of the body
being investigated. Hence an ability to model corners effectively and efficiently is very important for
numerical techniques for many applications of the Boundary element method (BEM).

A large and growing body of literature exists in this important subject area. It is a difficult task
to acknowledge all the contributions in this field in a research article, especially with several excellent
reviews published earlier. From a large number of research publications devoted to BEM, very few
papers, however, are relevant to the subject of this research. Only publications relevant to the topic
are those where singularity of a derivative of solutions is discussed. The reader is referred here to the
article by Maz’ya for introduction [16].

The subject has theoretical and practical aspects. It should be pointed out that the majority of
researchers consider two-dimensional problems only. Very few manuscripts are devoted to treatments
of singularity of a derivative of the solutions in numerical algorithms in three dimensions. Mainly the
three-dimensional problems are discussed in a way of a numerical experiment. Let us consider only
one representative manuscript written from the sition of numerical algorithms creators [14]; there are
numerous sources for additional reading.

The approach to theoretical basis can be gained from the work of Kondrat’ev [7] where the achieved
result is the form of a solution of an elliptic equation in the vicinity of irregular points of the boundary
(angular or conical points) which consists of a regular function and asymptotic series of solutions of
model problems at zero boundary conditions.

This subject receives significant attention since the problem has numerous scientific and technical
applications. Most of the cited references and literature on BEM application carry out problem solving
without defining a form of the density function of a simple or double layer potential of solutions of the
model problems at zero boundary conditions and treating it as an “unknown” function. There is a
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definite need to build the mathematical basis for the applications in order to clarify the methodology
and aid for computational problem solving.

The conclusions of Kondrat’ev’s work [7] serve as the foundation for the following research publi-
cations that mainly use functional analysis [4-20] (for detailed bibliography see [10], [21]). Georgian
school of applied mathematics and its founder Kupradze are especially noteworthy [4], [24].

This research formulates and uses somewhat different approach to investigation of derivative’s
singularity of solutions of problems under consideration. Most authors of the research cited use
functional analysis as a research method, while our research is concentrated on the consideration of a
harmonic function in comparison with two equivalent forms: the integral form based on the Method of
potential and the form with inclusion of trigonometrical functions. The integral form is convenient for
proving of the existence and uniqueness of solutions of the considered problems. The trigonometrical
functions allow us to use symmetry productively.

The result of this research is formulation of the basis for numerical algorithm as expressions of
density functions of a simple or double layer potential for approximation of the terms of Kondrat’ev
series having singularity of a derivative in the vicinity of angular, conical points and points of boundary
condition’s type change in the Dirichlet, Neumann and mixed Dirichlet-Neumann problems. The
expression of a harmonic function in a two-dimensional case in the vicinity of these points had been
known, but the density function in the expression of the harmonic function by potentials of simple or
double layer was unknown.

In a three-dimensional case, the unknown expressions of harmonic function have been obtained,
these can be used as an alternative of Legendre functions. The expressions of these functions by
potentials of simple and double layer in the vicinity of these points have been proposed.

As any harmonic function satisfying the condition of radiation can be presented by a sum of
simple and double layer potentials, the expressions are sufficient for all solutions of problems under
consideration.

The results of this research in theoretical aspect are the alternative expressions of harmonic function
in a three-dimensional case (3), (4), which have simpler form, than the Legendre functions. Another
result is the relation between solutions of the problems with a smooth and piecewise smooth boundary
which has been discovered. This relation can be obtained by the conformal mapping by a power
function in a two-dimensional case and by two proposed mappings in a three-dimensional case.

Harmonic functions, having singularity of the derivative r*~1, 0 < A < 1, have in two-dimensional
(1), (2) and three-dimensional (3), (4) cases the following expressions:

Artsin(A(0 + 1)), (1)
Br* cos(A(0 +1)), (2)
Ar? sin(\) cos(f), (3)

B cos(\F), (4)

where A, B, \,l are the constants, r,0,5 are variables. The angles 6,5 in (3) are located in two
perpendicular planes: if the angle 6 is measured from the Oxi-axis of local orthogonal system of
coordinates, the angle 3 is measured in the plane Ozoxs. *

Mapping of (1), (2), (3), (4), modificatory the value of the variable A, maps a harmonic function
into a harmonic function. In a two-dimensional case this mapping is conformal by the power function.
2 Below, under the term “conformal mapping” we will mean this case of conformal mappings. In a
three-dimensional case we name it “f8 - mapping”. We define two these mappings.

Definition 1. The Sy-mapping: the mapping of a half-space into an infinite wedge with the boundary
composed of two half-planes, having intersection in one line. In each plane, perpendicular to the line of
intersection, the Sy-mapping corresponds to the conformal mapping in the plane by a power function
with center at the point of crossing this plane with this line.

IExpressions (1), (2) exist for all values of X. The proof of the existence of expressions (3), (4) for all values of A is
in Section 3.
2The conformal mapping by power function w = z¥ is the mapping of a half plane in the angular domain [9].
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Definition 2. The §;-mapping: the mapping of a half-space in the interiority or exteriority of an
infinite cone, which is the space with exception of the infinite cone. In each plane, having the axis
of the cone, the B1-mapping corresponds to the conformal mapping in a plane by the power function
with center at the cone apex. If the index is not marked below, the S-mapping is the substitution of

Bo-mapping or [B1-mapping.

In the domain © with a closed smooth boundary S € C; the harmonic function u € C2(©)NC1(O)
under the condition of radiation:
“
Jr

where ¢ is a constant, r is a distance from S, can be expressed as a sum of potentials of simple and
double layers

. . . c . . .
lu| < as 7 — oo in a two-dimensional case, |u|] < = as r — oo in a three-dimensional case,
T

dutp) = W, + Vs (. 50 ). )
n
where § =2, if pe ©\S,and 6 =1,if p € S.

If © in (5) is finitesimal (internal problem), it is simply connected. If it is not finitesimal (external
problem), © is a complement of some simply connected domain with respect to the plane in a two-
dimensional case and to the space in a three-dimensional case. The condition of radiation is necessary
for external problem only.

The functions V' and W, called as a potential of simple and double layer in a two-dimensional case,
are defined as

Valp) =~ [ W)@, W) =1 [ 5 (mirio) ) eta)is,
S S

the potentials of simple V and double W layer in a three-dimensional case are defined as 3

Vs(p,p) = % / rf;q;)dsqv

S
Tstr:6)= 51 | e () o)
S

where 7 is a distance from the point ¢ to the point p, n is the normal vector to S, external to ©, ¢ is a
function of density. If the index is not marked, we mean the potential in S. The notation n, describes
the normal vector n at the point ¢. In the text below, we omit the first argument of V, W, V, W if the
point of observation p has been specified in the text.

We can find in [26, p. 91] formula (5) for p € ©\S,d = 2, which was obtained for a smooth in
Lyapunov’s sense boundary. It is still true for S € C;. Let us show that the limit of this expression
at approach p to S € Oy for u € C3(©) N C1(O) exists and is equal to (5) for § = 1.

There are the limiting values for the double layer potential W with differentiable density po € C1(S)
and potential of simple layer V' with continuous density ¢1 € Cy(S) on S € C} in two— and in three-
dimensional cases:

W] T e+ W) (6)

Vi) v, )

3The underlining is added for distinguishing between the two-dimensional and three-dimensional cases.
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where the upper index corresponds to the approach from ©, and the lower index corresponds to that
from the region outside of ©, which complements © with respect to the plane or three-dimensional
space.

We can find (5), p € S, taking into account (6), (7), as the limiting value of (5), p € ©\S,asp = S
from inside of ©. °

For o € C1(S), there are the limiting values of normal derivative for p € S(Cy) in the two— and

in three-dimensional cases:

+
o] =0t - o), o)

+
[(W} = +p2(p) + T(2), (10)

where

(1, nq)(w2(q) — w2(p))dSy,

M(my,,my,) = 9 (3T(p17q1)>’

am!h

Y(p,q)
on,,

2
©
[\v]
I
)
[\v]
S
|
w‘ —
n—

©2(q)dSq,

3
&
|
¥
n—_
o5}

in the two-dimensional case, Y(p,q) = in the three-dimensional case;

=3l

2 1
Tp.a) = In(7(p, q)) (p,q)

My, , Mg, are some unit vectors at the points py, ;.

4If we use Gauss’s theorem (8) we can obtain (6) because of continuity of the integral W (s — 2(p1)) when point
p cross the boundary S € Cp at the point p1 € S.

/T(p, ‘I)dsq = _2, p € @\S, /T(pv Q)dsq = 07 p é eu Sv /T(pv Q)dsq = _11 p S Sv (8)
S S S

where

= 1 1
Y(p,q) = 19 (ln ( )) in two-dimensional case,
™ Ong r(p, q)

— 1 0 1
Y(p,q) = —— in three-dimensional case.
2m Ong \r(p,q)

The expression (7) follows from continuity of the integral with weak singularity V.
5The second Green’s formula [26, p. 90], where one of the functions is Newtonian or logarithmic source and the

second is harmonic function u € C2(0) N C1(O), at the point p1 € ©\S in the vicinity of p € S, S € C1, by the Gauss’s
theorem (8) can be represented in the form

2(u(pr) — u(p)) = =W (pr,u — u(p)) +V(p1’ %)

When p; — p, the left hand-side tends to zero, the right-hand side is continuous for p € S,

Ou

,pL=p,pES.
8n)pl b,p

The equivalent of this equation is

ou

u(p) = =W(p,u) + V(p, %) ,pES.
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Q(p2 —p2(p)) is the operator of the function ¢z — @2 (p), w2 € C1(5), integral in the operator exists
inpe S, S e, in the sense of principal value. ° T is singular integral. 7

If u € C,p(©) N Cr(O), m > 2,k > 1, the reasoning is also true right up to m = oo, k = co, when u
is analytical in some region, which includes ©.

In the part below we consider the behavior of the potentials on a piecewise smooth boundary next
to the angular or conical point and to the point of change of type of the boundary conditions in the

function space u € Lél)(G). 89

Definition 3. If
/ (Jul® + |gradu|?)d® < oo, we say that u € Lg”(@).

e
We make generalization of (5) for piecewise smooth boundary by using conformal mapping and S -
mappings and prove expressions 3), (4).

Comparing the expressions (1), (2) and (3), (4) with (5), in the vicinity of these points the following
result can be obtained: geometry of sharp edges of special type allows only analytical solutions in the
Dirichlet, Neumann and mixed Dirichlet-Neumann problems. This result has important consequences,
and as it will be discussed later, can be used in an ideal fluid model in applications, where this model
corresponds to the real physical processes with required degree of accuracy, because the velocity of
potential flow in this model is a solution of the Neumann problem.

2. THE POTENTIALS Vi, (1), Wi (r*) ON THE RAY L.

Let us consider the integral W (¢), ¢ = r*, in the two-dimensional case on the ray located along

the Ox;-axis of the left orthogonal coordinate system for positive values of z1 (L coincides with the
right half of the Oxq)-axis, r is the distance from the point of the ray emergence at the origin of

6Because of the Gauss’s theorem, in the two-dimensional and in three-dimensional cases (8) for p1 € ©\S in the
vicinity of p € S the expression
OW (p1,p2 — w2(p)) _ OW (p1,p2)
= (11
onyp ony
is true. Let us split S in two parts: S = Sg USq, where Sg is a part of S inside of the circle in two-dimensional case or
sphere in the three-dimensional case with small radius R and center at p , S, is the remaining part of S. According to
the condition p2 € C1(5), we can present 2 in p by two terms of Taylor series and addition. When p; — p, because of
the subtracting in (11) the first term has no influence on the integral sum. If S € Cq, when R is small, we can replace
SR by a segment of tangent line in the two-dimensional case and by a circle in a tangent plane in the three-dimensional
case, and the corresponding integral on Sg of the second term is equal to zero, it exists as singular integral. The integral
of the addition on Sk converges as integral with a weak singularity. Therefore in the limiting expression of (11) as
p1 — p the integral exists in the sense of the principal value because there is the limit of the integral sum on S, when
the radius of the circle or sphere tends to zero. It is also true at approaching p1 — p, if p1 ¢ ©. Finally, we get (9),
where integral in the right-hand side exists in the sense of the principal value for p2 € C1(S), S € C1.
"When R, is small we can replace S by a segment of tangent line in the two-dimensional case and by a circle in
a tangent plane in the three-dimensional case. The integral I' on Sg of the second term of Taylor series in p of 2 at
approach p1 — p, p1 € ©\S converges as the integral with a weak singularity. Integral I" of addition on Sk and integral
I" of 2 on S, converges. We have to consider the integral I' of the first term on Sk at approach p; — p. The first
term is a constant, consequently, the integral I" from it coincides on Sg with the integral in Gauss’s theorem (8) with
a different sign. Therefore the gap in p € S of limiting values of the integral from different sides of S is defined by the
integral in the Gauss’s theorem. Finally, we get (10).
The integral I' on Sk of ¢2 is equal to zero because the numerator of I' is equal to zero when the points p and
q belong to one line with normal vector n, in the two-dimensional case or one plane with a normal vector n, in the
three-dimensional case. Consequently, the condition [26, p. 58, (3.20)] of the existence of singular integral is satisfied.
8If the following expression of the first Green’s formula, where both of the functions are equal to u, exists:

m 2
U%dsz/z (ﬂ) 4o
on oxy,
5 e k=t

(m = 2 in the two-dimensional case, m = 3 in the three-dimensional case), the function u € Lg”(@). The quadratic

form in the right part corresponds to the expression of energy. The condition u € Lél) (©) is equivalency of finiteness of
value of energy in applications.
9We define the function space as it has been done in [15, pp. 122-130], this is used for applications in Section 5.
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coordinates, 0 < A < 1. Let us show that the limiting values of W (r*) at approach p from region of
negative values of x5 (upper sign) and from the region of positive values of x5 (lower sign) are equal
to (12) when we mean the normal vector 7 = (0, 1).

+
[WL(T)‘)] = 5. (12)
X,
M/ p N x
R
o ©
P,

FIGURE 1. Approach point p; to the point p €]MNJ.

¢ If we consider potential Winsn(¢), @ € Cn,n > 1, on the segment of straight line [M N] at the
approach point p; to the point p €| M N[ in the local system of coordinates (Figure 1), we find: only
thefirst term of Taylor series of presentation of ¢ at p corresponds to the integral having different
limiting values in the sides of [M N]. Integrals of other terms are continuous when the point p; crosses
the [MN], they are equal to zero for p €|JM N[ when p; coincides with p. Let [MN] consist of two
parts: [MN] = SrUS,, where Sg is a part of [M N| inside of the circle with small radius R and center
at p. The integral of the first term on S, creates continuous in p function, which is equal to zero at
p €]JM N[ when p; coincides with p. The integral Wiy,n1(w) = 0 for p €]JM N[ when p; coincides with
p because the numerator of Wi,y is equal to zero, it is still true, if we replace [MN] by the ray with
the vertex in M. Consequently, we have to consider the integral of the first term on Sg

@/ d dry = sign(d)@ <arctan xl) R

2 2
T x7+d _R

)

Skr
when the point of observation p; approaches p (Figure 1). The arctangent arctan %) in the last
expression is equal to the value of the angle o (Figure 1) which approaches m/2 when the point p;
approaches the point p.

When ¢(p) =7*, 0 < A < 1, p € [MN], r is the distance from the point M, the limiting values of
the last expression at the approach point p; to the point p is equivalent of (12) if we replace [M N]
by the ray with the vertex in M. We can do this because the corresponding integral on the infinite
part of the ray converges at p; as p; — p and this integral is equal to zero when p; coincides with p;
in the vertex of the ray this function ¢(p) = r* is equal to zero.

Let us consider the function

_oasin(A(Q—m) N
A(r,Q) = —r 7sin()\ﬂ') Wr(r?)
and its derivative 94
77 13
Do (13)
in the polar coordinate system:
x1 = rcos(Q), zo = rsin(Q), (14)

the angle € is measured anticlockwise from Oz, the ray L coincides with the right half of the Oz;-
axis. The harmonic function (13) in the domain of plane with a slit in the half of the Oz, z1 > 0-axis,
has zero values in the boundary: in the half of the Ox1,2; > 0-axis, and in the infinite boundary.
Consequently, (13) is zero function. Therefore the function A is a constant. Since A is equal to zero at
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the origin of coordinates, this constant is equal to zero. Thus we have found: the harmonic function
of the potential W (r*) , 0 < A < 1 which is defined on the ray L, has the expression
A Sin(A(2 —m))
ATV T
sin(Ar)
If we consider a derivative of Wi, (r*) by the angle Q in the polar coordinate system in continuation
of ray L at Q = 7, we find that it is equal to *°

Wi () = 0<Q<2m. (15)

Ar?
sin(Ar)’

(16)

This result justifies (15).

Let us consider simple layer V with density r* which is defined on the ray Vi () in the polar
system of coordinates (14). There are the relations between values of derivatives of some function T'
when zo =0 for 2 =0, Q=27, Q=7

oT _or or _or oT . or
Oralgg 0oy Owalg_y, TONg_y,  Oralg_, roQ o
Owing to the last expressions, (15) and the relation
Lr(p) = -Wi(yp), (17)
the function V7 (r*) has to satisfy the conditions !
8VL(T)‘) —7")\ GVL(’I‘A> - 7‘/\ GVL(M) 0
roQ g, B ’ o |g_or roQ)  |g_. '
Only one two-dimensional harmonic function (2) satisfies the conditions, thus:
1 M
Vi(r?) cos((A+1)(2 —m)) +C, (18)

A+ 1sin(\r)
0<A<1,0<Q<2m Cis a constant.

Let the potential W be defined on two rays with one vertex at the origin of coordinates located
under the angles: plus o and minus « from the Oxz;-axis, and have density with an absolute value r*
on each ray and symmetric normal vectors on the rays which coincide with external normal vectors of
the wedge with aperture angle 2a . This potential creates the functions w;}, and u,,, when the density
functions on the rays have symmetric positive values or antisymmetric values: positive values on the
one ray and negative values on the other ray, accordingly.

ut(r,Q) = —( A sin(A(Q—a—7)) + r sin(A(—Q —a+ 7T)))/sin()\7r)7
ws (1, Q) = f( Nsin(MQ — a — 7)) — 1 sin(A(—Q — a + ﬂ)))/sin()ﬂr).

After transformations and substitution § = Q — 7, we get

ut(r,0) = —Wr cos(A0), (19)
uy, (r,0) = — 2 CS?;E;;)@) r sin(A6), (20)

where—m+a <60 <71 —a.

L0 fter substitution Q = 7 the value of the derivative by © has the expression

1 70 AN Vi
7)) (r+b2  sin(\r)’
0
This integral can be calculated by “Wolfram Mathematica 9” (www.wolfram.com):
FullSimplify[Integrate[(r*b ~L)/(r + b) "2, {b, 0, Infinity}]]
HDespite the fact that the functions Vi, (r*), Wi (r*) are defined for 0 < Q < 27, the two-dimensional harmonic

functions (1) , (2) exist for all values of 2, thus the derivatives for Q@ = 0,Q2 = 27 can be considered, the values of
derivatives of V7, (r}) for © = 0,Q = 27 are the limits as aspiration Q — 0 and Q — 2.
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If we consider the potential V on the two rays with same combination of density functions and
normal vector’s directions, we obtain

1 2cos ((A+1)a) A
A+1 sin(Arr)

—1 2sin ((A+1)a) Al
A+1 sin(A) "

ul (r,0) = cos (B(A+ 1)) + Cy, (21)

uy (r,0) =

sin (§(A+ 1)) + Co, (22)

where —m +a < 0 < 7 — a, Cy,Cy are the constants. '2
Let us introduce the notation: ¢ (r,0) = Cyuy,(R,0), Y2(r,0) = Cypuy,(r,0), ¥s(r,0) = Cyuy (r,0),

A+1
Py(r,0) = Cyuy (r,0), where Cy = i

Expressions (19), (20), (21), (22) were obtained for 0 < A < 1. For these values of A, the integrals
Wi (r*), Vi(r*) converge at a point for which r < co.

There are the values A > 1 for which expressions (19), (20), (21), (22) are equal to zero when the
point of observation of the potentials W,V of the two rays belongs to one of the rays. In this case the
values of the potential W,V of the two rays are finite for all points where r < oo despite the potentials
Wi (r"), VL(r*) of one ray do not converge at these points, the rays “counterpoise” each other. We
can consider expressions (19), (20), (21), (22) having zero values at the points of rays for A > 1 as a
result of conformal mapping by power function with center in the common vertex of the rays from the
same expressions for 0 < A < 1. The mapping do not change the zero boundary conditions therefore
the integrals of the potentials converge for A > 1 at the points of the rays after the mapping as they
have zero values there.

The integrals converge in the described sense only. We do not need to calculate these integrals
numerically, since expressions (19), (20), (21), (22) have already been obtained, but we have to take
into account the possibility of changing the multiplier function in different ranges of A\. The functions
(19), (20), (21), (22) can be written in the form

FuNuh (A, 7,0) = By(X, a)r* cos(A0), (23)
fuNug (A, 7, 0) = Ay (X, a)r sin(\f). (24)
foNut (N, 7,0) = By(\, a)r* cos(B(X + 1)) (25)
foNuy (N, 7,0) = Ay(\, @)r* L sin(@(X + 1)) (26)

where f,(A\) =1, fu(A) =A+1at 0 <X <1. If A and « are such that (23), (24), (25), (25) are equal
to zero on the rays, the functions A,,, By, A, B, depend on )\ only, as the values of a are determined
by the values of A. Since Ay, By, Ay, B, are periodic, the range 0 < A < 1 defines these functions
for all values of A. The limiting values for A — 0 and A — 1 of (23), (24), (25), (26) under the
described conditions exist and are equal to zero. Since w},u,,u., u; are equal to zero on the rays
for 0 < A <1 and conformal mapping by power function of the functions created by w}, u,, u;, uy
for 0 < XA < 1, have zero values on the rays for all values of A, the integrals, corresponding to
ul, uy, ul, uy , converge for all values of A at the points of the rays. Therefore they converge at other
points of the domain at r < oo, A > 0 and at r # 0, A < 0 for all values of A\. The right— and left-hand
sides of expressions (23), (24), (25), (26) are harmonic functions of the forms (1), (2). Consequently,
the result of conformal mapping by a power function of the both parts of equalities (23), (24), (25),
(26) are harmonic functions of the forms (1), (2), despite the factors f,,(A), f,(A) are not known for
all values of A.

Any harmonic function has maximal and minimal values in the boundary of the domain where the
function is defined. The potentials are equal to zero in the rays and expressions (19), (20), (21), (22)

s

12 Expression (21) with the value of the angle o = m is equal to constant C';. Conformal mapping from
constant function by power function of the domain —7+a <6 <7 —a to a domain with different value of « is
the same constant function. Consequently, in all expressions (21), equal to the constant, this constant has the same
magnitude; the value of C; does not depend on A and «. Below, in the footnote 18it is shown that this is possible if

C1 =0only. As C1 =2C, C =0in (18), C2 =0 in (22).
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have infinite values in the infinite boundary r = oo, consequently, the potentials have finite values
at the points of the domain where r < co. If we consider expressions (19), (20), (21), (22) having
zero values at the points of the rays for A < 0 as a result of conformal mapping by a power function
with center in the common vertex of the rays from the same expressions for 0 < A < 1 we find that
the integrals of the potentials converge at all points of the domain with the exception of the point of
singularity: r = 0. 13

3. THE POTENTIALS V 5(r"), Wg(r*) ON THE SECTOR S.

A solution of three-dimensional Laplace equation in spherical coordinate system:

10 50U 1 0 . ou 1 0%
Au= r2 or <T (97") + 72 sin(2) 9Q (SIH(Q)ﬁQ) + r2sin(Q)2 982 0 27)
can be considered in the form
u = r*U(Q) cos(kf), (28)
where k is integer, kK > 0 [26, p. 319]. Equation (27) has singular points for r =0, Q =0, Q = 7.
Let us suppose that expression (28), 0 < A < 1, is an axi-symmetric solution of equation (27),
which is equal outside of a cone to the potential V' located on the cone surface. Because of the axial
symmetry, solution (28) has to have the expression (k = 0)

W= UL Q) = / Vol dB, (20)
0

where the angle 8 is measured in the plane, perpendicular to the axis of the cone; the angle  is
measured from axis of the cone, 2 is equal to a half of aperture angle at the points of cone surface;
Vg(gov) is the potential V located on the sector S of the cone with an infinitely small angle df8 which
corresponds to the sector with an infinitely small angle dn in the local coordinate system (Figure 2).
In the limiting case, when the cone surface transforms by the B;-mapping in a plane, perpendicular
to the axis of the cone, the angle 7 coincides with 5. 4

When we consider an integral of some function A(p, ¢) over a square of sector S in the local system
of coordinates (Figure 2):

/ A(p,q)dS, = / A(p, q)rdrdn,
3 v

we mean: a sector is located on the plane Oxjx3, the angle 7 is measured from Oz, the bisector of
the sector dn is located iin the Ox-axis. Element of the surface integral over the square of the sector:
dS, = rdrdn, where ¢ is the point on the bisector in the Oz -axis, r is the distance from the vertex

(Figure 2). Consequently, at the point p of the bisector integral Vg(cpv), py € Cy (§), is the integral
with a weak singularity.

The first and second derivatives of (29) in direction of perpendicular to a plane, having axis of the
cone, are equal to zero in the plane because of axial symmetry of the problem. Therefore r*U, ()
is a two-dimensional harmonic function in any plane having the axis of the cone, it has the axis
of symmetry in the axis of the cone. Consequently, the Si-mapping of the cone transforms two-
dimensional harmonic function r*U, () into another two-dimensional harmonic function with same
the form of expression (2), but different value of A in the expression.

Because the conformal mapping by a power function with center at the point r = 0 can be done
for any expression (2) and can transform the expression in other expression with the same form, but
different value of X, there are special case of the S;-mapping which transforms the cone surface into a

13The right-hand sides of expressions (19), (20), (21), (22) for zero values on the rays include the solution of the
Dirichlet or Neumann problem for a wedge under zero boundary conditions [26, pp. 305-310].

14The solution of the Dirichlet problem with singularity of derivative 7*~1,0 < X < 1, outside of the cone in
the vicinity of its vertex: r = 0, has to be under the zero boundary conditions. This result is related to the term
“Noetherian” [7] and can be illustrated by the conformal mapping as is shown in the text below. Here we do not use
this restriction, therefore (29) may be not equal to zero on the cone surface.
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FIGURE 2. Sector S with infinitely small angle dn.

ray and the corresponding expression (29). In this case, the Newtonian potential Vg(cpv) on each of
the sectors (Figure 2) after transformation will correspond to the ray, and the right-hand side of (29)
after the mapping will correspond to 27 such rays. > Consequently, the potential of one ray Vg(cpv)
has axial symmetry and expression (28) for £ = 0 in which the two-dimensional harmonic function
r2U,(2) is a sum of symmetric functions having expression (2) and a constant.

Let us consider the function

Pglps) = —W5(pw), (30)
where Wz is the potential W on the sector (2). The function (30) has to be a harmonic function
having expression (28) for k = 1, because of one plane of symmetry Oxjxzy. Therefore the potential
W 5(y) has the expression B

fpr§((pv) = T)\UUJ(Q) COS(ﬂ), (31)
where the angle 3 is measured in plane Ozax3 from the Oxa-axis (2). The function r*U,, () in the
plane Oxyx5 is two-dimensional harmonic function because it is the derivative of two-dimensional
harmonic function in this plane (30).

Expression (31) has anti-symmetry by the plane Oxzyz3 and symmetry by the plane Oxjx5. There-
fore the two-dimensional harmonic function U, (2) has the expression (1)

5400r U, (Q) = 1 sin(A(Q — 7)), (32)
where the constant ¢, is unknown, ¢, # 0.
Consequently,
OW (¢, U (D
857;;0) 5o = H‘% o = Aewr? cos(A(Q — 7)) o = Acwr. (33)
Let us suppose ¢, = r*, 0 < A < 1 and consider under this guess the following derivative: 7
oW 5(r) 1T e 1 r
S
= db=—=-X1+X . 34
oN g=0 2 ) (r+10b)3 4 (1+ )Sin()\ﬂ') (34)
Q=m 0
14+ A

If we compare (34) with (33), we find that our guess is true: ¢, = . Finally, we get

~ 4sin(\r)
A sin(A(Q —))

Wa(r) = —-(A+1)r Jsin()

cos(B), 0<A<1l, 0<Q<2m - gﬂgg. (35)

m
2

For 0 < A < 1, after the mapping the value of A in new expression (29) will be in the same range of values.

16The angle dn is infinitesimal, the Newtonian potential on the sector (Figure 2) behaves as an (integral) sum of
Newtonian sources located on the ray of its bisector. Therefore the potential field is axisymmetric, rotation of the sector
around its bisector does not change the field. We can consider one sector as we consider two sectors below (41) with
the same result: k = 0.

T The following integral can be calculated analogously (16), footnote 10.
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The two-dimensional harmonic functions U, (€2), r*U,,(Q) of sector’s S (2) have relation between
each other in the plane Oz ;x5 (30) which is the same relation of the functions V,(r*), Wz (r*) of the
ray L (17 Expressions of the functions r*U,,(Q) (32) and W () (15) are identical to the difference
only in coefficient value. Consequently, the functions U, (), V7 (r}) are identical with difference
only in a value of this coefficient. Thus we get
A+

V50 = Tt

cos(A+1)(Q—m), 0<A<1, 0<Q<2m, —-<B< (36)

™
D) .

B

FIGURE 3. Two sectors (see 2) are in the plane Oxqxs.

Let us consider two sectors (3) which are the pair of sectors (2). Let us show that the potentials
V, W, having values of density function in the plane Oz, 2 and the direction of normal vectors, same
as the density function and the direction of normal vectors on the pair of rays of the expressions (19),
(20), (21), (22), define the three-dimensional harmonic functions

sin(—Aa)

ah(r,0,8) = —(\ + 1)mr cos(\8), (37)
Ty (r,0,8) = —(A + 1)(:20:1(11(;\\37’)‘ sin(A0) cos(3), (38)
a, (r,0,8) = WMH cos (0(A + 1)), (39)
a, (r,0,8) = WMH sin ((\ + 1)) cos(B), (40)

where 0 < A<1,0=Q—7, —71+a<l0<rm—a, —7/2< < 7/2.

Because of the above-described relations of the two-dimensional harmonic functions of the sector S
and the ray L in the plane Ox125 (3), expressions (37), (38), (39), (40) are identical to (19), (20), (21),
(22) in this plane with difference only in coefficient value. As each of the functions (37), (38), (39), (40)
is a three-dimensional harmonic function having the plane of symmetry Ox;xo that has expression

18The potential Vg(rA) can be calulated explicitly in the continuation of the sector’s bisector 2 = 7 (Figure 2)

[ee]

1 / b>\+1 ,r,)\+1

Valr)) = — =
s 2w ) r+b 2 sin(Ar)

, where —2 <A< —1.

Additive constant is equal to zero in this expression therefore additive constant is equal to zero in the source expression
(18): C =0,C1 =0,C2 = 0. See footnotes (12) and the end of Section 2.

The additional conclusion of this result is justification of the supposition at the end of Section 2: the multiplier
function in different ranges of A has different forms as the coefficient of r* in the range —2 < A < —1 is doubled in
comparison with the same coefficient in the range 0 < A < 1 (36). (Since the cited computer program shows the wrong
ranges of A, the author used [12, p. 360] for integration.)
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(28) in which the two-dimensional harmonic function r*U(f2) is already known, we have to find the
coefficient x only. '° The B;-mapping of expression (28) transforms the two-dimensional harmonic
function r*U(f2) into another two-dimensional harmonic function with same form and different value
of A, the function cos(k3) not changes. Consequently, we can transform a pair of the sectors by the
B1-mapping into one sector in the plane Oxjx3 (3). After this mapping we have one sector with a
double density function for the potential W when values of the density function are anti-symmetrical,
consequently, the function cos(k8) in (38) is equal to cos(3) as it is in the expression for one sector
(35). By the analogy, the function cos(kf) is equal to 1 in (39) when values of the density function
are symmetrical due to (36).
Let us rewrite the functions in the form

:B) = ¥1(r,0) cos(k18)
w (1,0, B) = a(r, 0) cos(k2),

s B) = tb3(r,0) cos(ksp),
r,0,8) = 4(r,0) cos(ksf),

where 0 < A< 1, —m+a<0<7m—a, —7/2 < < 7/2, the functions 1; are known, ko =1, k3 =0,
the coefficients k1, k4 are unknown. Let us find them.
& If the function ¢ is created by the integral (5o is measured as f3)

cos(k1f

3

COs

/2 /2

£(r,6,3) / Th(r,0, 8 + Bo)dBy = / r (r, 0) cos(x (8 + fo))dfo
—7/2 —7/2
/2

Ui 0) - sinlis (54 )| (41)

—7/2

it has to have the axial symmetry by Oz;. This symmetry exists if k1 =0, or k1 = 2n,n € N. For
a > m/2, the function %/, in the ranges of the angles does not change its sign. This is possible for
k1 = 0 only. The S - mapping does not change the value of k1. Hence k; = 0. Analogously, we can
find: k3 = 0. The functions u,,, @, have one plane of symmetry, therefore: ko =1, kg = 1. $

Finally, we get (37), (38), (39), (40).

In expression (28) for x = 0 (37), (39) v = 0, for k = 1 (38), (40) U(Q)‘ = 0,

o |,
consequently, the Laplace equation (27) with a solution in the form (28) does not degenergteo in the
axis # =0, Q=m. 20

The expressions (37), (38), (39), (40) represent the three-dimensional harmonic function for A\ #
n,n € N. When A = n, n € N, the denominator of the expressions converts to zero, consequently,
in this case the expressions exist if they are equal to zero only. We have proved the existence of
three-dimensional harmonic functions (3), (4) for A #n, n € N. !

¢ The expression of the three-dimensional harmonic function (28) having only one plane of sym-
metry is equal in the plane to the two-dimensional harmonic function ¥ U(Q) of the form (1), (2):
k =1; 8 =0 in the plane of symmetry. The derivative of expression (28) by r, having values of the
derivative of (1), (2) by = in the plane of symmetry, does not change it’s form when the value of A
changes, therefore the first summand in (27) does not change it’s form, the second summand does not
change its form because the derivative of the expression (28) by 2, having values of derivative of (1),

19The first and second derivatives of (28) in the direction of the normal vector of the plane Oz1x2 are equal to
zero because this plane is the plane of symmetry in the considered problems, therefore the function r)‘U(Q) is two-
dimensional harmonic function in expressions (28) of three-dimensional harmonic functions of the solutions of these
problems.

20The points on the axis § = 7 are not in the domain with the range of the angle §: — 71 +a <6 <7 —a.

21The conformal mapping by a power function of two-dimensional harmonic functions involved in (37), (38), (39),
(40) is carried out similarly to the two-dimensional case. See the end of Section 2.
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(2) by Q in the plane of symmetry, does not change its form. The third summand in (27) is equal to

2

R = e (P U(@)

r2sin(Q)? 952 r2sin(2)?
and does not change its form, as well. The conformal mapping by a power function with center at the
point 7 = 0 maps one two-dimensional harmonic function (1), (2) into another with the same form
and different value of X\. Consequently, from the existence of expression (3) for A # n, n € N, follows
the existence of the three-dimensional harmonic function (3) for all values of A, because (3) has one
plane of symmetry with the relation of two-dimensional harmonic functions of the form r*U(Q2) in
(28) by the conformal mapping in the plane of symmetry.

We can repeat the logic for the expression of three-dimensional harmonic function (28) having axial

symmetry and find an analogous result: the existence of three-dimensional harmonic function (4) for
all values of A follows from the existence of expression (4) for A # n, n € N. 22

4. SOLUTIONS OF BOUNDARY VALUE PROBLEMS IN THE VICINITY OF ANGULAR OR CONICAL
POINT AS MAPPING OF SOLUTIONS FOR DOMAIN WITH A SMOOTH BOUNDARY

4.1. Two-dimensional problems. We compare below the integrals of (5) and the integrals of normal
derivative of (5) with the same integrals on the boundary of a half plane. At the end of the subsection,
these comparisons are used to determin the existence conditions of solutions.

Dirichlet problem
Let us consider the limiting expression (5) in a two-dimensional case. This was proved in Section 1
for S € C1, u € C2(©) N C1(O) under the condition of radiation. Consequently, this is still true for a
regular function u. 23 A regular two-dimensional harmonic function u in the vicinity of p € S in the
polar system of coordinates with center in p has to have expression by a sum of functions (1), (2),
A=mn,n € N, and a constant. If we consider the integrals (19), (20), (21), (22) in (5) in the vicinity
of p € S, we find that (5) may present regular u in p when the function w is the sum of functions (1),

(2) and a constant. The corresponding integrals (19), (20), (21), (22) on the half plane’s boundary

converge for \=n,n € N, a = g, 10| = g for zero boundary values at the points of the boundary of

the half-plane. 2 If we perform conformal mapping by a power function with center in p, the part Sg
of the S inside the circle with small radius and center in p transforms in a part of the infinite wedge’s
boundary, the integrals (19), (20), (21), (22) transform in the expressions for A # n, n € N, for the
infinite wedge.

Because the conformal mapping is not conformal at one point p [9], we have to consider this
point separately. The functions (1), (2) have zero values in p which not change after the mapping.
Therefore we have to consider the constant function only. At the point p, the mapping of the constant
can be calculated by an extended determination of Gauss’s theorem and is determined by the value
of aperture angle of the wedge. 2° At all other points, the mapping of constant is itself the constant.
Consequently, after the mapping we will have expression (5) in which 0 # 1 at the point p € S.

Neumann problem
The existence of limiting values of the normal derivative of u (5) in S € Cy, u € Co(0) N C1(O) under
the condition of radiation has been proved in Section 1. This is still true for a regular function u. If we
consider (5) for p € ©\S and limiting expression of normal derivative of u at approach the point p to
the point of the normal vector in S, we find that the corresponding integrals of the normal derivative
of (19), (20), (21), (22) exist (integrals converge) in the boundary of the half-plane for A =n, n € N,

221n this case the third summand in 27 is equal to zero.

231n the paper the term “regular function” is equivalent of “infinitely differentiable function”.

24The corresponding integrals (19), (20), (21), (22) are equal to zero at a = g, 0] = g despite the denominator
sin(Ar) = 0.

251f p € S is angular or conical point in (8) the coefficient —1 will be replaced by —x, x # 1, 0 < x < 2. In
two-dimensional case x is equal to the aperture angle of the wedge divided by =, in three-dimensional case x is equal
to a solid angle in the vertex of cone divided by 2.
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o= E, 0] = T for zero boundary values at the points of the boundary of the half-plane. It becomes

obvious if we recall the relations of the derivatives

9 _1o 9 _ 12
on 0=m/2 e 0:77/2’ on 0=—m/2 r0f 0:771'/2’
Jsin(f) dcos(0) .
T = OS(G), T = — SIH(G), (42)

owing to which in the expressions of normal derivatives of (19), (19), (20), (21), (22), (a = 7/2). 26
We can obtain conformal mapping by a power function with center at p of the limiting expression of
the normal derivative of (5) for A # n, n € N, when Sg transforms in a part of the infinite wedge’s
boundary 27 and the expressions (19), (20), (21), (22) correspond to the integrals on infinite boundary
of the infinite wedge. *®

Dirichlet-Neumann mixed problem
Let the boundary S consist of two parts S = S, U S;, we have the Dirichlet boundary conditions on
S, and Neumann boundary conditions on S;. Let the point p, p € S, be a common point of S, and
Sy; Sg is part of S inside of the circle of small radius with center at p which we replace by a segment
of straight line, since S € Cy. If we suppose that the integrals (19), (20), (21), (22) correspond to
the integrals of (5) on Sk we find that the solution of the mixed problem exists when the function

URS Lgl)(G)) consists of the functions (1), (2) and has the expression

u(r, 0) = Ar* sin(\0) — Ar™ cos(A\G), (43)
T ™ 4n +1
27972, A 5 0,1,2,3,dots,

where A is a constant; the part Sg, of Sk belongs to S, (f = %), the part Sg: of Sk belongs to Sy
T
(0= —5); Sgr = Sgru U Sgy-

If we consider the integrals of (5) for (43), for points of Sg; and values of the normal derivative of
the integrals of (5) for the points of Sk, with by using (42), we will find that values of the corresponding
integrals of (19), (20), (21), (22) on the both parts of the boundary of the half-plane: on the part
with the Dirichlet boundary conditions and on the part with Neumann boundary conditions, have to
be equal to zero at the points of the boundary, only under these conditions there is a finite limiting
value of normal derivative of u (5) at a point belonging to Sg, for 0 < A < 1. 2

Indeed, let the boundary of a half-plane consist of two rays with one vertex at the point p: the ray

S, for 6 = g corresponds to the Dirichlet boundary conditions, the ray S, for § = fg corresponds

to the Neumann boundary conditions. Let us consider the integrals in the right-hand side of (5) on

0
the infinite boundary of the half-plane W (u),V ( ag) (43), at a point of observation belonging to the

26The corresponding integrals of norm,(21), (22) the cos() “swap” sin() and the sin(f) “swap” cos(6) in comparison
with the initial expressions all derivative of (19), (20), (21), (22) are equal to zero for a = g, 0] = g despite the

denominator sin(Aw) = 0.

27The integrals (21), (22) of the constant density function create the functions of the form: cr, on the straight line
S ,Sr € §, where c is the constant. These functions are equal to zero at p, r = 0, therefore this point has not to be
considered separately under the conformal mapping.

28 At the points of the wedge’s boundary in two dimensions and at the points of wedge’s boundary or cone’s boundary
in three dimensions there are expressions similar to (42) for 0] # I Consequently, we do not need to consider the
expressions of limiting values of the normal derivative at these points, since the boundary values of the derivative are

determined by 2
00

29The solution for the value 0 < A < 1 is most important in applications because it has singularity of the derivative
r*~1 and belongs to LS)(@) (see footnote 8, [26, pp. 305,309]).
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boundary of the half-plane:

(=W, (—24r sin(m/2)) + Vg, (0) = Wg (0) + Vs, (24 "Asin(Om/2) )| =0, (44)
a% (= Ws, (—24r sin(h/2)) + Vg, (0) = Wg (0) + Vi, (24r* "Asin(Om/2) )| =0, (45)

Equality (44) was obtained by (43) taking into account (42) and expressions (18) and (15); in
expression (15), the sign corresponds to the approach to the boundary in direction of the normal
vector (upper sign in (12), Q = 27 in (15)). Equality (45) can be obtained by (44) taking into account
(42).

From (45) follows the existence of limiting values of the normal derivative of (5) at the points of
Spry for 0 < A < 1. Let us show that conditions (43) are exclusive ones for this existence and also
existence of solution of the mixed problem. We can rewrite expression of (5) and expression of normal
derivative of (5) in the form

0 0
wk W ()~ Ve (52 ) = -Wa.t) + Ve (5 ). pesi (46)

s 2 - (0 (5) -0 S (%)) s e

We can obtain (47) as a limiting expression of the derivative in direction of normal vector n,:
of expression (5) at the point p € ©\S (§ = 2) as p — p1, p1 € S(C1), taking into account (9),

(10). In the mixed problem, we know u on S, and a—z on Sy, thus (46), (47) is a system of resolving

equations of the Dirichlet-Neumann mixed problem. In the resolving equation (47), at the points of
Sku, 0 < A <1, the divergent integral of u on Sg; has to be “compensated” by the divergent integral

u
of I on Sgy, for the existence of the equation, we can use only “half” of Sy for the integral with
Np

unknown density u, because another “half” is “migrated” in the right-hand side of equation (47).

0
The integral of the second “half” of S with density a—u has to “compensate” the integral of the first
n

“half” with density u, thus the sum of the integrals may be finite in the resolving equation (47), this is
possible for (45) only. Consequently, conditions (43) are exclusive for the existence of a solution of the
mixed problem having singularity of derivative 7*~!, 0 < A < 1. (The transition from the integrals
on two rays (44), (45) to the integrals on Sk will be discussed below at the end of the subsection.)
Any harmonic function (1), (2) A # n, n € N, has relation with a regular one through the conformal
mapping by a power function, if we mean the harmonic function u has this relation as well we get
(43).

Let us denote the boundary line of the half-plane as S;, and mean Sg as a part of the boundary of
the half-plane inside of the circle of small radius with center in p, p € Sy, coinciding with the part of .S
in (5) inside of the circle of small radius, with center at p, p € S. As all three problems: the Dirichlet
problem, the Neumann problem and the Dirichlet-Neumann mixed problem have the corresponding
integrals (19), (20), (21), (22), having zero values at the points of the half- plane’s boundary S, the
conformal mapping of (5) by a power function with center in p, p € S, corresponds to infinite wedge,
having zero values at the points of its boundary.

Integrals (19), (20), (21), (22) on Sy, under zero boundary conditions in all three problems have
finite values at a point of the half=plane, where r < co. The parts of integrals (19), (20), (21), (22)
on Sg have finite values at all points of the half-plane. 3° Consequently, the parts of the integrals
(19), (20), (21), (22) on Sr\Sgr have finite values in the vicinity of p, these parts of the integrals
are harmonic functions which are infinitely differentiable at a point p1, p1 ¢ SL\Sg. Consequently,
the parts of integrals (19), (20), (21), (22) on Sg in the vicinity of p correspond to a solution of one
of three problems for the half-plane under zero boundary conditions with addition of an infinitely
differentiable function, after the mapping in the vicinity of p it corresponds to the solution for an

30We mean direct calculation of Vsg (), Wspy (™).
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infinite wedge under zero boundary conditions and addition of an infinitely differentiable function.
The parts of integrals (5) on S\Sgr before and after the mapping create in the vicinity of p an
infinitely differentiable function, therefore the integrals of (5) after the mapping in the vicinity of
p correspond to the solution for an infinite wedge for zero boundary conditions and addition of an
infinitely differentiable function.

As a consequence, the described conditions are necessary for representation (5), S € Ci, of a
regular harmonic function near the considered point in the Dirichlet and Neumann problems. Since
(5) is the representation of any harmonic function, satisfying the radiation condition, the described
conditions are necessary for the existence of solutions of these two boundary problems. 3! In the
Dirichlet-Neumann mixed problem the described conditions are necessary for the existence of the
representation of limiting values on a part of the boundary, adjacent to a point of change of type of
the boundary conditions for u € Lél)((%).

Since a domain with an angular point is connected by a conformal mapping by a power function with
a domain with a smooth boundary, the existence conditions for the solutions of boundary problems
for domain with an angular point are obtained through this mapping.

If the functions of solutions (5) of the Dirichlet and Neumann problems for the boundary S, S € C1,

are regular or belong to Cy(0)N C1(0), the results of the mapping belong to Lél)(@). The initial
function of solution (5) of the Dirichlet-Neumann mixed problem for S, S € C1, and the result of the

mapping together belong to Lél)(@).

4.2. Three-Dimensional Problems. Since two-dimensional harmonic functions are special case of
three-dimensional harmonic functions, all functions (1), (2), (3), (4) for A =n, n € N, and a constant
are the forms of any regular three-dimensional harmonic function which has expression (5). 3% Because
of relations (37), (38), (39), (40) with (19), (20), (21), (22), through the forms of two-dimensional
harmonic function (1), (2), we can consider three-dimensional boundary value problems with using
(5) and S-mappings as generalization of two-dimensional problems.

Let Sk be a part of S, S € (4, inside of the sphere of small radius and center at p, p € S. As
S € (4, we can replace Si by the circle with center at p. If we repeat the reasoning of the previous
Ju
ony
correspond to solutions for the half-space under zero boundary conditions and an infinite differentiable
function. The Sp-mapping of (5) for solutions of the Dirichlet and Neumann problems in the vicinity
of p corresponds to solutions for an infinite wedge under zero boundary conditions and an infinitely
differentiable function. The S;-mapping of (5) for solutions of the Dirichlet and Neumann problems
in the vicinity of p corresponds to solutions for an infinite cone under zero boundary conditions and

subsection, we get: the potentials W s, (u), V sy, ( > of (5) in the Dirichlet and Neumann problems

311ntegrals (19), (20), (21), (22) of the solutions for a half-plane have density functions corresponding to the density
functions of integrals (5) in p, p € S(C1): in the Dirichlet and Neumann problems, the density functions correspond to

the terms of Taylor’s decomposition in p of regular u and regular
Tp

321f the density function in three dimensions ¢ has constant values in the direction of Ox3-axis, there is the relation
between potentials W and W at the point p located at the origin of the local system of coordinates p(0, 0, 0):

W(g) N1gT1q + N2gT2q (n1gx1q + N2 ﬂﬂz )3 o
M- [ [ 2ot i L[ oot i,
4 x1q+x2q+x )2 :clq—i-xzq-l—xdq) (x1q+:c2q) T3q=—00

T34=00

—oo L

— [Pt pgyar, — ()
™ ! xlq + a:zq

where L is a two-dimensional closed line in the plane Ox1x2, n is the normal vector of L. There is the same relation

V(g oV (¢
between M and M

np onp _
The integral of the potential V' of an infinite straight line does not converges, therefore the potential V' is defined
V(@ IV (¢
through the relation of # and 3 () ,1=1,2,[28, pp. 351-353]. Because these derivatives are equal, the potentials
i i

of infinite straight line may have difference in a constant only despite the integral V cannot perform the expression of
the potential of the line since it is not converges.
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an infinitely differentiable function. For the Sp-mapping, the initial regular harmonic function has to
be of the form (1), (2), for f1-mapping it has to be of the form (3), (4).

The conditions of the existence of a solution of the three-dimensional Dirichlet-Neumann mixed
problem for the wedge coincide with those of the two-dimensional problem, and the Sy-mapping maps
a wedge into the other one with a different aperture angle.

A solution of the three-dimensional mixed Dirichlet-Neumann problem for a cone does not exist,
since the sum of nonzero functions (3), (4) having zero values of derivative by # of the sum in a part
of the cone’s boundary with nonzero square does not exist.

Indeed, if we consider the equation analogous to the two-dimensional one (47) in three-dimensional
case for 0 < A < 1, we find that the integrals analogous to (47) in the left-hand side must “compensate”
each other on Sg, since the integrals diverge separately. Consequently, in the right-hand side the
integrals must have zero densities on Sg, in other case, the “compensation” for two three-dimensional
sectors (35), (36) at the boundary of a half-space in the left-hand side does not occur analogously
to (44), (45) for two rays (15 (18). The sum of nonzero functions (3), (4), equal to zero on Sg,,
having zero values of the normal derivative on Sg,, does not exist (42), Sg = Sg, U Sg,, hence there
is no resolving equation in the three-dimensional case for a cone for 0 < A < 1 analogous to (47).
Since (3), (4) for 0 < A < 1 have relation through the 8;-mapping with (3), (4) for A # n, n € N,
the resolving equation for a cone does not exist for these values of \. The values A = n, n € N,
correspond to solutions of the Dirichlet or Neumann problem in the boundary of the half-space, the
“compensation” of sectors in the Dirichlet-Neumann mixed problem is impossible. Finally, we get:
the resolving equation in the three-dimensional case for a cone, analogous to (47), does not exist.

The rest reasoning of representation of solutions of the Dirichlet, Neumann problems and the
Dirichlet-Neumann mixed problem by (5) in three dimensions is analogous to the reasoning for two
dimensions.

If three-dimensional functions of solutions (5) of the Dirichlet and Neumann problems for the

boundary S, S € (4, are regular or belong to Cy(©) N C1(O), the results of the mapping belong to
Lél)((%). The initial function of solution (5) of the Dirichlet-Neumann mixed problem for S, S € C,
and the result of the Sy-mapping together belong to Lg”(@).

5. SOME EFFECTS OF THE MODEL OF AN IDEAL INCOMPRESSIBLE FLUID

Expression (5) is true for any regular three-dimensional harmonic function under the condition of
radiation. As is stated above, a regular three-dimensional harmonic function is a sum of functions
(1), (2), (3), (4) and a constant, all these forms of three-dimensional harmonic functions include the
two-dimensional harmonic functions (1), (2) as multiplier. The two-dimensional harmonic functions
(1), (2) for A = n, n € N, have relations with the functions of the same forms for A # n, n € N,
through the conformal mapping, consequently, three-dimensional functions (1), (2), (3), (4) for A = n,
n € N, have relations with the functions of the same forms for A\ # n, n € N, through the Sy-mapping
or B1-mapping. Therefore expression (5) of a regular three-dimensional harmonic function has to have
relation with nonregular three-dimensional harmonic function through the Sy-mapping or 5;-mapping.
33 If the local geometry of S in (5) in the vicinity of p € S is not a wedge or a cone, expression (5)
cannot be the expression of nonregular in p three-dimensional harmonic function, thus the geometry
of the S admits a regular at p solution of a boundary value problem only. 3%

Let us consider the surface (4). Since the local geometry of the surface (4) at a point belonging to
|DE] is not a wedge or a cone, a solution of the boundary value problem in the vicinity of the point
is a regular function when the surface (Figure 4) is part of S in (5). The situation is the same in the
vicinity of P when surface (5) is a part of S in (5). Consequently, in the framework of the model of
an ideal incompressible fluid the sharp edges of surfaces (4), (5) are the alternative of rounded edges.
Moreover, if the regular three-dimensional harmolic function u is the function of velocity in some
direction which is a derivative in this direction of another regular harmonic function of the potential

33The conformal mapping by a power function at the point » = 0, is not conformal. See footnote (25).
34Despite the fact that the solution of the Dirichlet-Neumann mixed problem (5), S € C1, is a nonregular function,
the Bp-mapping can transform it into a regular function which has no physical sense.
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of the potential field, the function w in the vicinity of the points of | DE[ (4) and in the vicinity of the
0
point P (5) satisfies the conditions: u = 0, au_ 0. Indeed, a regular three-dimensional harmonic
n
function u is a sum of functions (1), (2), (3), (4) for A = n, n € N, and constant, equal to zero, 3° has

— ou\ —
expression (5) in which the potentials Vg, | — |, W, (u) may create a regular harmonic function at

on
these points, if only Si € C1, where Sg is a part of S inside of the sphere with of small radius, with
center in the considered point. Because at any of the considered points Sg ¢ C; (Figure 4),(Figure

— o .
5) and the potentials V g\ g, (8u>7 W s\ sy (u) of (5) create a regular harmonic function at the point,
n
. . s - 3“(?) _ 36
the regularity of u (5) at the point can exist if u(p) =0 , =0 only.
on
PESR PESR

=

FIGURE 4. Surface with a sharp edge |DE].

E

FIGURE 5. Three viewings of surface (a, b, ¢) with a sharp edge at the point P.

In the ideal fluid model, velocity of the potential flow is a gradient of harmonic function [13].
Despite the fact that this model is the simplest one, it has applications in numerical calculations of

35The constant is equal to zero because the function u is a derivative of another regular harmonic function of potential
of the potential field which has the same form. The constant differentiation disappears.

30we provide regularity of u at the considered point only. The function u, u # 0, cannot be regular at all poins of
O U S (5), because in this case the logic can be repeated for all next derivatives of potential of the potential field, since
the expression (5) exists for each of them. This is possible if the potential of the potential field is a constant in the local
domain of the ©® near the sharp edge, consequently in this case the potential of the potential field is the constant in the
whole domain ©. The boundary conditions for the existence of solutions of the boundary value problems in Lgl)((%)

are discussed in the next section.
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the airplane wing [1]. The expressions of harmonic functions by potentials of simple and double layers
are used there [28, pp. 146,175]. The problem of impermeability of the wing by the potential flow is
the external Neumann problem.

FIGURE 6. Example of a surface, in the vicinity of which the initially appearing
vortex in a potential flow is delayed or prevented in the framework of an ideal fluid
model.

Let us consider the surface (Figure 6). If it is a part of the boundary of a body in a gas flow or
liquid, the surface is in some sense better, than a smooth surface. The velocity in the vicinity of
sharp edges is a regular function in the framework of the model, the potentials of expression (5) of
the velocity have a zero density function there. Therefore this surface behaves as a body with voids,
as a lattice, the breaks of which are on the sharp edges, because in sense of the model the potentials
with a zero density function are equivalent to the “absence of boundary” there.

FIGURE 7. Schema of vortex emerging. 1 - zone of backward flow, 2 = vortex, U -
velocity, S is a point of vortex formation.

These voids act against the powers, which are created by the initial vortex (Figure 7) [11]. The
point S of maximum of the harmonic function of potential of the potential field, in which velocity U,
changes the sign (Figure 7), may be in the boundary of the domain only because of the “principle of
maximum”, but it cannot be near the voids (Figures 6,8). 37 38

Evidently, because of the regularity of solutions in the vicinity of the sharp edges of this type
(Figures 4,5), they can be the alternative for rounded edges. It should be pointed out that the region

37The flow ceases to be a potential one from the moment when the point S “moves away” from the boundary (Figure
7). In theory, a surface with spaced arrays of sharp edges of this type serves in a potential flow for delaying or preventing
the formation of initial vortex.

38Likely, special applications described in the patents: US5540406, US20090304511, US8256846, US5171623,
US2261558, US5378524, US5289997, US8141936, US4776535 are based on this effect.
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'
'
'
[

FIGURE 8. Schema of supposed distribution of velocity U, in a cross-section of a part
of the surface (Figure 6) 1 - zone of the zero velocities.

of resistance is smaller, than that of a rounded edge, therefore theoretically the resistance of flow can
be decreased in the framework of the model. Let us consider few examples.

b)
FIGURE 9. Prototype an airplane wing (a, b).

The prototype of an airplane wing with sharp edges of type (Figure 4) is shown in (Figure 9). 3°
As it has been shown above, in the vicinity of sharp edges of this wing the formation of initial vortex
in potential flow is impossible in the framework of the ideal fluid model. Theoretically, the resistance
of the flow can be decreased in comparison with rounded edges.

F1GURE 10. Prototype of bulbous bow for a bulk carrier.

391n trailing edge of the wing of this form, the Chaplygin-Zhukovskii hypothesis (Kutta condition) is true because
of the described effect.
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Possible application of the surface (Figure 5) at point A for a leading sharp edge of bulbous bow
for a bulk carrier is shown in (Figure 10). Theoretically, the resistance of flow can be decreased in
comparison with a rounded edge without appearance of vortexes. In the region marked by letter C,
where formation of initial vortex is possible because of the pressure drop, the surface (Figure 6) can
be used to prevent or delay the occurrence of this vortex.

6. BOUNDARY CONDITIONS ON PIECEWISE SMOOTH BOUNDARY FOR SOLUTIONS OF BOUNDARY
1
VALUE PROBLEMS IN Lé )

Let S be a closed piecewise smooth boundary of a simply-connected domain O in the form of a
union of surfaces S;, ¢ = 1,...,N, S; € C;. It follows from the above discussion that the form of
harmonic function Lél) (é) for a solution of the Dirichlet and Neumann problems in polar coordinates
in a two-dimensional case and in spherical coordinates in a three-dimensional case at any point of
the piecewise smooth boundary S is determined by representations (1), (2) and (3), (4), respectively,
and the existence of conformal mapping by a power function or S-mapping to regular function for
which representation (5) exists. For the mixed problem, the form of this function is determined by
the existence of the mapping to the solution function of the problem with a smooth boundary at the
considered point and the corresponding representation (5).

In the two-dimensional case boundary values of the solution in the vicinity of any point of S has
to be the values of the sum of the functions (1), (2), A > 0, and a constant. These functions (1),
(2) are the solution of the boundary value problem for an infinite wedge with aperture angle 7 under
zero boundary conditions, where the angle 7 is the internal angle under which the tangent lines to S
intersect at the considered point of 5. On a smooth part of the S 7 = . (See 4.1.)

In the three-dimensional case, boundary values of the solution in the vicinity of any point of S has
to be the values of representation by one of the four following variants.

1) The sum of functions of the form (1), (2), A > 0, and a constant if a part of the surface S
inside of the sphere of small radius and center at the considered point tends to the wedge surface
whose wedge includes the considered point when the radius tends to zero. The functions (1), (2) are
the solution of the boundary-value problem for an infinite wedge for zero boundary conditions. (This
corresponds to the two-dimensional case.)

2) The sum of functions of the form (3), (4), A > 0, and a constant if a part of the surface S
inside of the sphere of small radius and with center at the considered point tends to the surface of the
cone whose vertex is at the considered point; any cone generatrix is tangent to S at the considered

point. The functions (3), (4) correspond to the solution for infinite cone at zero boundary conditions.
(See 4.2.)

3) The sum of the functions (1), (2), (3), (4), A > 0, and a constant if the considered point is
located on the smooth part of S. The functions (1), (2) correspond to the solution for infinite wedge
with aperture angle 7 at zero boundary conditions. The functions (3), (4) correspond to the solution
for an infinite cone with aperture angle 7w at zero boundary conditions.

4) A constant if the conditions of each of the variants 1-3 are not fulfilled at the considered point
of S. % (Examples of the points of variant 4) are the points of the line DE (4) and the point P (5).
Another example is the point of vertex of a pyramid.) *!

401f the boundary S includes the points of variant 4), footnote 36 has to be taken into account. When the solution
function is infinitely differentiable at all points of ©U S, each of its derivatives is a harmonic function having expression
(5). Consequently, all derivatives of the solution in direction of the normal vector to S in vicinity of a point of the
variant 4) are equal to zero, all tangents to S derivatives are equal to zero there, as well. Therefore the solution function
is a constant in the vicinity of the considered point, because the first term of an infinite Taylor’s decomposition of the
function is not equal to zero only. Thus this solution function is a constant in the whole o.

411y all four variants the factor § in expression (5) is equal to the value of the solid angle at the considered point of
S divided by 2.
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For convergence of results of the algorithm of Boundary element method, when the total number of
the boundary elements increases at the decreasing of characteristic size of elements, it suffices to make
approximation of functions (1), (2), (3), (4), 0 < A < 2, and a constant at all points of S. Functions
(1), (2), (3), (4) for 0 < A < 1 may have singularity of derivative only, if this feature is approximated,
the numerical results are refined, when the characteristic size of the elements decreases.

Statements of this section can be repeated if domain Oisa complement of some simply connected
domain with respect to the plane in a two-dimensional case or to the space in a three-dimensional
case and the radiation condition is satisfied.

7. CONCLUSION

We have obtained expressions (3), (4) of harmonic functions in the three-dimensional case. These
representations of harmonic functions in three dimensions could be used as an alternative to the well-
known Legendre functions and can be applied to various fields of mathematics and technology with
the benefit of a more simple form.

The expressions of the summands with possibly infinite derivative in the solutions of the Dirichlet,
Neumann and Dirichlet-Neumann mixed problems in LS) in the vicinity of sharp edges of piecewise
smooth boundary by potentials of simple or double layer are proposed. These allow us to exclude
the key shortcomings of traditional formulation of the Method of potential (traditional form of the
Boundary element method). These expressions will allow us to formulate the method for piecewise
smooth boundary and mixed boundary conditions. It opens up opportunities for simulation applica-
tions of the Laplace equation and can be generalized to solve other equations, solutions of which have
representation in the form of a combination of harmonic functions, for example, for the equations of
the theory of elasticity.

The suggested technique will bring about simplicity of numerical algorithms and proximity to the
analytical methods which would increase the calculation accuracy. This factor presents a definite
benefit over other methods and makes it highly competitive.

The found parallel between solutions for smooth and piecewise smooth boundaries in the vicinity
of angular or conical points eliminates the key shortcomings of traditional BEM. This relationship is
maintained through the conformal mapping in the two-dimensional case or S-mapping in the three-
dimension case. The Taylor series of presentations of density functions of potentials in the expression
of solution of the Dirichlet or Neumann problem by a sum of potentials of simple and double layers
on a smooth boundary are transformed after the mapping into the series of density functions, the
potentials of which present the series of Kondrat’ev solutions of these problems in the vicinity of
angular or conical point.

Some types of sharp edges allow only regular solutions, and the suggested technique shows a
possible alternative to rounding. This alternative may be used to improve the efficiency of technical
embodiment in many areas.
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