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LOCAL VARIATION FORMULAS OF SOLUTIONS FOR THE NONLINEAR

CONTROLLED DIFFERENTIAL EQUATION WITH THE DISCONTINUOUS

INITIAL CONDITION AND WITH DELAY IN THE PHASE COORDINATES

AND CONTROLS

M. IORDANISHVILI

Abstract. In the present work, local variation formulas of solutions are given, in which the effects

of the discontinuous initial condition and perturbations of delays containing in the phase coordinates
and controls are revealed.

1. Introduction

As is known, the real processes contain information about their behavior in the past and are
described by the delay differential equation [3], [6], [4]. Linear representation of the main part of the
increment of a solution with respect to perturbations of the initial data of a differential equation is
called the variation formula of a solution (variation formula). In this paper, the essential novelty is
that here the local variation formula is given when there occur simultaneously perturbations of the
initial moment and delays both in the phase coordinates and in controls.

The term “variation formula of solution” has been introduced by R. V. Gamkrelidze and proved
in [2] for the ordinary differential equation. The effects of perturbation of the initial moment and
the discontinuous initial condition in the variation formulas were for the first time revealed by T. A.
Tadumadze in [8] for the delay differential equation.

The variation formula plays a basic role in proving the necessary conditions of optimality [2], [5],
[9] and in the sensitivity analysis of mathematical models [6] . Moreover, the variation formula allows
one to construct an approximate solution of the perturbed equation.

In the present work, for the controlled delay differential equation

ẋ(t) = f(t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θk))

with the discontinuous initial condition the variation formulas are given. The discontinuity of the
initial condition means that the values of the initial function and the trajectory, in general, do not
coincide at the initial moment.

The variation formulas for various classes of controlled delay differential equations without pertur-
bations of delay occurring in controls are derived in [1], [7], [11], [10], [12].

2. Formulation of the Main Results

Let I = [a, b] be a finite interval and 0 < hi1 < hi2, i = 1, s; let 0 < qi1 < qi2, i = 1, k be the
given numbers; suppose that O ⊂ Rn and U0 ⊂ Rr are open sets. Let the n-dimensional function
f(t, x, x1, . . . , xs, u, u1, . . . , uk), (t, x, x1, . . . , xs, u, u1, . . . , uk) ∈ I ×O1+s ×U1+k

0 satisfy the following
conditions:

a) for almost all fixed t ∈ I, the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) is continuously differen-

tiable with respect to (x, x1, . . . , xs, u, u1, . . . , uk) ∈ O1+s × U1+k
0 ;

b) for each fixed (x, x1, . . . , xs, u, u1, . . . , uk) ∈ O1+s × U1+k
0 , the functions

f(t, x, x1, . . . , xs, u, u1, . . . , us), fx(t, ·), fxi(t, ·), i = 1, s
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and

fu(t, ·), fui(t, ·), i = 1, k

are measurable on I;
c) for any compacts K ⊂ O and U ⊂ U0, there exists a function mK,U (t) ∈ L1(I, [0,∞)) such that

for any (x, x1, . . . , xs, u, u1, . . . , uk) ∈ K1+s × U1+k and for almost all t ∈ I, we have

|f(t, x, x1, . . . , xs, u, u1, . . . , uk)|+ |fx(t, ·)|+
s∑
i=1

|fxi(t, ·)|

+|fu(t, ·)|+
k∑
i=1

|fui
(t, ·)| ≤ mK,U (t).

Let Φ and Ω be sets of continuously differentiable functions ϕ : I1 = [τ, b]→ O and u : [θ, b]→ U0,
respectively, where τ = a−max{h12, . . . , hs2} and θ = a−max{q12, . . . , qk2}.

To each element

µ = (t0, τ1, . . . , τs, θ1, . . . , θk, x0, ϕ, u) ∈ Λ = [a, b)× [h11, h12]× · · · × [hs1, hs2]

×[q11, q12]× · · · × [qk1, qk2]×O × Φ× Ω

we assign the controlled delay differential equation

ẋ(t) = f(t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1), . . . , u(t− θk)) (1)

with the discontinuous initial condition

x(t) = ϕ(t), t ∈ [τ, t0), x(t0) = x0. (2)

Condition (2) is called discontinuous because, in general, x(t0) 6= ϕ(t0).

Definition 1. Let µ = (t0, τ1, . . . , τs, θ1, . . . , θk, x0, ϕ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ, t1],
t1 ∈ (t0, b] is called a solution of equation (1) with the initial condition (2) or a solution corresponding
to the element µ and defined on the interval [τ, t1] if it satisfies condition (2) and is absolutely
continuous on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let µ0 = (t00, τ10, . . . , τs0, θ10, . . . , θk0, x00, ϕ0, u0) ∈ Λ be a fixed element and let x0(t) be a solution
corresponding to the element µ0 and defined on the interval [τ, t10], where

t00, t10 ∈ (a, b), t00 < t10; τi0 ∈ (hi1, hi2), i = 1, s; θi0 ∈ (qi1, qi2), i = 1, k.

Thus, x0(t) is the solution of the equation

ẋ(t) = f(t, x(t), x(t− τ10), . . . , x(t− τs0), u0(t), u0(t− θ10), . . . , u0(t− θk0)), t ∈ [t00, t10]

with the initial condition

x(t) = ϕ0(t), t ∈ [τ, t00), x(t00) = x00.

Let us introduce the set of variations:

V =
{
δµ = (δt0, δτ1, . . . , δτs, δθ1, . . . , δθk, δx0, δϕ, δu) : δt0 ∈ (a, b)− t00,

δτi ∈ (hi1, hi2)− τi0, i = 1, s; δθi ∈ (qi1, qi2)− θi0, i = 1, k;

δx0 ∈ O − x00, |δτi| ≤ α, i = 1, s; |δθi| ≤ α, i = 1, k, |δx0| ≤ α,

δϕ =

m∑
i=1

λiδϕi, δu =

m∑
i=1

λiδui, δϕi ∈ Φ− ϕ0, δui ∈ Ω− u0, |λi| ≤ α, i = 1,m
}
,

where (a, b)− t00 := {δt0 = t0 − t00 : t0 ∈ (a, b)} and α > 0 is a fixed number.
There exist the numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × V , we have

µ0 + εδµ ∈ Λ, and a solution x(t;µ0 + εδµ) defined on the interval [τ, t10 + δ1] ⊂ I1 corresponds to it
(see [9, Theorem 1.4, p. 17]).

We note that x(t;µ0 + εδµ) is the solution of the perturbed equation

ẋ(t) = f(t, x(t), x(t− τ10 − εδτ1), . . . , x(t− τs0 − εδτs), u0(t) + εδu(t), u0(t− θ10 − εδθ1)
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+εδu(t− θ10 − εδθ1), . . . , u0(t− θk0 − εδθk) + εδu(t− θk0 − εδθk))

with the perturbed initial condition

x(t) = ϕ0(t) + εδϕ(t), t ∈ [τ, t00 + εδt0), x(t00 + εδt0) = x00 + εδx0.

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t) on the interval
[τ, t10 + δ1] ⊂ I1. Therefore, in the sequel, the solution x0(t) is assumed to be defined on the interval
[τ, t10 + δ1].

For arbitrary (t, ε, δµ) ∈ [τ, t10 + δ1] × (0, ε1) × V we define the increment of the solution x0(t) =
x(t;µ0) :

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t).

Theorem 1. Let the following conditions hold:
1) τs0 > · · · > τ10 and t00 + τs0 < t10;

2) the function f(w, u, u1, . . . , uk), where w = (t, x, x1, . . . , xs), is bounded on I ×O1+s × U1+k
0 ;

3) there exists the finite limit

lim
w→w0

f0(w) = f−0 , w ∈ (a, t00]×O1+s,

where f0(w) = f(w, u0(t), u0(t− θ10), . . . , u0(t− θk0)), w0 = (t00, x00, ϕ0(t00− τ10), . . . , ϕ0(t00− τs0));
4) there exist the finite limits

lim
(w1i,w2i)→(w0

1i,w
0
2i)

[f0(w1i)− f0(w2i)] = fi, i = 1, s,

where w1i, w2i ∈ (a, b)×O1+s, i = 1, s,

w0
1i =

(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), . . . , x0(t00 + τi0 − τi−10),

x00, x0(t00 + τi0 − τi+10), . . . , x0(t00 + τi0 − τs0)
)
,

w0
2i =

(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), . . . , x0(t00 + τi0 − τi−10),

ϕ0(t00), x0(t00 + τi0 − τi+10), . . . , x0(t00 + τi0 − τs0)
)

;

Then there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10 − δ2 > t00 + τs0 such that for
arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V −,
where V − = {δµ ∈ V : δt0 ≤ 0}, we have

∆x(t; εδµ) = εδx−(t; δµ) + o(t; εδµ), (3)

where δx−(t; δµ) has the form

δx−(t; δµ) = −Y (t00; t)f−0 δt0 + β(t; δµ), (4)

β(t; δµ) = Y (t00; t)δx0 −
[ s∑
i=1

Y (t00 + τi0; t)fi

]
δt0 −

s∑
i=1

[
Y (t00 + τi0; t)fi

+

t∫
t00

Y (ξ; t)f0xi [ξ]
(
χi(ξ)ϕ̇0(ξ − τi0) + (1− χi(ξ))ẋ0(ξ − τi0)

)
dξ
]
δτi

+

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)f0xi
[ξ]δϕ(ξ)dξ −

k∑
i=1

[ t∫
t00

Y (ξ; t)f0ui
[ξ]u̇0(ξ − θi0)dξ

]
δθi

+

t∫
t00

Y (ξ; t)
[
f0u[ξ]δu(ξ) +

k∑
i=1

f0ui
[ξ]δu(ξ − θi0)

]
dξ, (5)
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where χi(ξ) is the characteristic function of the interval [t00, t00 + τi0]; furthermore, Y (s; t) is the
n× n-matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)f0x[ξ]−
s∑
i=1

Y (ξ + τi0; t)f0xi [ξ + τi0], ξ ∈ [t00, t]

and the condition

Y (ξ; t) =

{
H, for ξ = t,

Θ, for ξ > t.
(6)

Here, f0x[t] = f0x(t, x0(t), x0(t − τ10), . . . , x0(t − τs0)), H is the identity matrix and Θ is the zero
matrix;

lim
ε→0

o(t; εδµ)

ε
= 0 uniformly for (t, δµ) ∈ [t10 − δ2, t10 + δ2]× V −.

Some comments. Theorem 1 corresponds to the case where variation at the point t00 is performed
on the left. The function δx(t; δµ) is called the first variation of the solution x0(t), t ∈ [t10−δ2, t10+δ2]
and expression (4) is called the local variation formula.

The expression

−
[
Y (t00; t)f−0 +

s∑
i=1

Y (t00 + τi0; t)fi

]
δt0

in formula (4) is the effect of the discontinuous initial condition (2) and perturbation of the initial
moment t00.

The addend

−
s∑
i=1

[
Y (t00 + τi0; t)fi +

t∫
t00

Y (ξ; t)f0xi
[ξ][χi(ξ)ϕ̇0(ξ − τi0) + (1− χi(ξ))ẋ0(ξ − τi0)dξ

]
δτi

in formula (4) is the effect of perturbations of the delays τi0, i = 1, s.
The expression

−
k∑
i=1

[ t∫
t00

Y (ξ; t)f0ui
[ξ]u̇0(ξ − θi0)dξ

]
δθi

in formula (4) is the effect of perturbations of delays θi0, i = 1, k.
The expression

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)f0xi [ξ]δϕ(ξ)dξ

in formula (4) is the effect of perturbation of the initial function ϕ0.
The expression

t∫
t00

Y (ξ; t)
[
f0u[ξ]δu(ξ) +

k∑
i=1

f0ui [ξ]δu(ξ − θi0)
]
dξ

in formula (4) is the effect of perturbation of the control function u0.
It is clear that if ϕ0(t00) = x00, then fi = 0, i = 1, s.
It is easy to see that (see (4),(5))

δx−(t; δµ) = δx
(0)
− (t; δµ)−

s∑
i=1

δx(i)(t; δµ), t ∈ [t10 − δ2, t10 + δ2],

where

δx
(0)
− (t; δµ) = Y (t00; t)

[
δx0 − f−0 δt0

]
+

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)f0xi
[ξ]δϕ(ξ)dξ
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+

t∫
t00

Y (ξ; t)
{
−

s∑
i=1

[
f0xi

[ξ]
(
χi(ξ)ϕ̇0(ξ − τi0) + (1− χi(ξ))ẋ0(ξ − τi0)

)]
δτi

−
k∑
i=1

f0ui [ξ]u̇0(ξ − θi0)δθi + f0u[ξ]δu(ξ) +

k∑
i=1

f0ui [ξ]δu(ξ − θi0)
}
dξ

and

δx(i)(t; δµ) = −Y (t00 + τi0; t)fi

(
δt0 + δτi

)
, i = 1, s.

On the basis of the Cauchy formula (see [9, Lemma 2.3, p. 31], the function

δx0(t) =

δϕ(t), t ∈ [τ, t00),

δx
(0)
− (t; δµ), t ∈ [t00, t10]

is the solution of the equation in “variations”

δ̇x(t) = f0x[t]δx(t) +

s∑
i=1

f0xi
[t]δx(t− τi0)−

s∑
i=1

[
f0xi

[t]
(
χi(t)ϕ̇0(t− τi0)

+(1− χi(t))ẋ0(t− τ0i)
)]
δτi −

k∑
i=1

f0ui
[t]u̇0(t− θi0)δθi + f0u[t]δu(t) +

k∑
i=1

f0ui
[s]δu(t− θi0)

with the discontinuous initial condition

δx(t) = δϕ(t), t ∈ [τ, t00), δx(t00) = δx0 − f−0 δt0
and the function

δxi(t) =

{
0, t ∈ [τ, t00 + τi0),

δx(i)(t; δµ), t ∈ [t00 + τi0, t10]

is the solution of the equation in “variations”

δ̇x(t) = f0x[t]δx(t) +

s∑
i=1

f0xi
[t]δx(t− τi0)

with the discontinuous initial condition

δx(t) = 0, t ∈ [τ, t00 + τi0), δx(t00 + τi0) = −fi
(
δt0 + δτi

)
.

The variation formula allows us to obtain an approximate solution of the perturbed equation in
the analytical form. In fact, for a small ε > 0, from

x(t;µ0 + εδµ)− x0(t) = ∆x(t; εδµ) = εδx−(t; δµ) + o(t; εδµ)

(see (3)), it follows that

x(t;µ0 + εδµ) ≈ x0(t) + εδx−(t; δµ).

Theorem 2. Let conditions 1), 2) and 4) of Theorem 1 hold. Moreover, there exists the finite limit

lim
w→w0

f0(w) = f+0 , w ∈ [t00, b)×O1+s. (7)

Then there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10 − δ2 > t00 + τs0 such that for
arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V +,

where V + = {δµ ∈ V : δt0 ≥ 0}, we have

∆x(t; εδµ) = εδx+(t; δµ) + o(t; εδµ),

where δx+(t; δµ) has the form

δx+(t; δµ) = −Y (t00; t)f+0 δt0 + β(t; δµ).
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Theorem 2 corresponds to the case, where variation at the point t00 is performed on the right.
Theorems 1 and 2 are proved by the scheme given in [10].

Theorem 3. Let conditions 1)–4) and condition (7) hold. Moreover,

f−0 = f+0 := f0.

Then there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10 − δ2 > t00 + τs0 such that for
arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V,
we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ),

where δx(t; δµ) has the form

δx(t; δµ) = −Y (t00; t)f0δt0 + β(t; δµ).

Theorem 3 corresponds to the case, where variation at the point t00 is carried out from double
sided and is a corollary to Theorems 1 and 2.

It is clear that if the function f(t, x, x1, . . . , xs, u, u1, . . . , uk) is continuous then

f0 = f(t00, x00, ϕ0(t00 − τ10), . . . , ϕ0(t00 − τs0), u0(t00), u0(t00 − θ10), . . . , u0(t00 − θk0)).

Theorem 4. Let

f(t, x, x1, . . . , xs, u, u1, . . . , uk) = A(t)x+

s∑
i=1

Bi(t)xi + C(t)u+

k∑
i=1

Di(t)ui,

where A(t), Bi(t), i = 1, s, C(t) and Di(t), i = 1, k are continuous matrix functions. Then there exist
the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10 − δ2 > t00 + τs0 such that for arbitrary

(t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V,

we have

δx(t; δµ) = Y (t00; t)
[
δx0 −

(
A(t00)x00 +

s∑
i=1

Bi(t00)ϕ0(t00 − τi0) + C(t00)u0(t00)

+

k∑
i=1

Di(t00)u0(t00 − θi0)
)
δt0

]
−

s∑
i=1

Y (t00 + τi0; t)Bi(t00 + τi0)
(
x00 − ϕ0(t00)

)
δt0

−
s∑
i=1

[
Y (t00 + τi0; t)Bi(t00 + τi0)

(
x00 − ϕ0(t00)

)
+

t∫
t00

Y (ξ; t)Bi(ξ)
(
χi(ξ)ϕ̇0(ξ − τi0)

+(1− χi(ξ))ẋ0(ξ − τi0)
)
dξ
]
δτi +

s∑
i=1

t00∫
t00−τi0

Y (ξ + τi0; t)Bi(ξ + τi0)δϕ(ξ)dξ

−
k∑
i=1

[ t∫
t00

Y (ξ; t)D(ξ)u̇0(ξ − θ0)dξ
]
δθi +

t∫
t00

Y (ξ; t)
[
C(ξ)δu(ξ)

+

k∑
i=1

Di(ξ)δu(ξ − θi0)
]
dξ.

Here, Y (ξ; t) is the n× n-matrix function satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)A(ξ)−
s∑
i=1

Y (ξ + τi0; t)Bi(ξ + τi0), ξ ∈ [t00, t]

and condition (6).
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Theorem 4 is a simple corollary to Theorem 3.
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