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ADD-IN FOR SOLVERS OF UNCONSTRAINED MINIMIZATION TO

ELIMINATE LOWER BOUNDS OF VARIABLES BY TRANSFORMATION

K. GELASHVILI

Abstract. The paper considers the issue of implementation of a software add-in, which transforms
minimization problems with constraints only on lower bounds of variables to unconstrained ones.

The add-in eliminates lower bounds of variables through their transformation, without creation of

new auxiliary variables. The add-in can be included in any algorithm of unconstrained minimization,
which has certain design. At the same time, any number of suitable transformations of variables can

be included into the add-in.

The add-in is implemented in C++ and consists of three components: small collection of trans-
formations of variables; small collection of minimization test-problems with constraints only on lower

bounds of variables; stopping conditions of minimization algorithms and program-driver.
In the numerical experiments, mainly CG-DESCENT-C-6.8 and l-bfgs were used. Results show

that empowering unconstrained minimization algorithms by such add-in is a promising direction,

especially, for symmetric matrix games.
Materials of experiments are uploaded at GitHub: https://github.com/kobage.

1. Introduction

Let us consider the minimization problem with constraints only on lower bounds of the variables:

min
x∈Rn

f (x) subject to xi ≥ li, i ∈ I, (1)

where f : Rn → R is a smooth function, I is a subset of 1, 2, . . . , n. ∀i ∈ I, li ∈ R is a lower bound of
xi variable.

Problems of practical interest are often modelled in the form (1) (see [3]). Symmetric matrix games
belong to this set of problems. Usually, such kind of constraints arise when variables represent certain
physical quantities.

Problem (1) contains the constraints only on lower bounds of variables and represents particular
case of bound constrained or box-constrained optimization problems. Because of the relevance of
box-constrained optimization, investigation of their numerical algorithms also is a relevant issue.

From the point of view of citation, L-BFGS-B (see. [10]), based on the gradient projection method,
is the most remarkable approach. On the other hand, this method is neither unique, nor the fastest
(see [6]), and there are another alternatives. In the presented paper, one of the oldest approaches
is promoted. This approach is the most natural from the point of view of mathematics and imple-
ments transformations of variables: problem (1) will be transformed into an unconstrained one by
transforming the variables. After this, any unconstrained minimization algorithm can be used.

The idea of application of unconstrained minimization algorithms in constrained optimization via
transformation of variables was proposed in 1966 by M.J. Box (see [1]). After that, we can mention
several papers that attracted attention, certain kind of constraints are named after M.J. Box, but
in practical usage this approach did not become competitive. Among the possible reasons we can
emphasize the following:

• In [1], there is no emphasis on a particular type of restrictions, therefore it is difficult to
systematize the approach and create a software application based on it;
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• [1] emphasizes the possibilities of linearization of problems or maximum simplification, often
by transforming to problems of linear programming. The process is accompanied by significant
number of auxiliary variables.

Our approach is effective because we are trying to research an issue that is in a certain sense the
inverse: elimination of bounds in problems of linear programming (in the form of symmetric matrix
games) by transforming variables without creation of auxiliary variables, and transfer to unconstrained
minimization problem at the expense of a simple kind of non-linearity.

From the theoretical point of view, transforming variables means the transformation of the problem
itself and not the elaboration of a new method of solving. We are trying to implement practically
the same idea in the form of the software add-in that can transform problems of the form (1) into
unconstrained problems. As a result, after transformation it appears possible to apply powerful un-
constrained minimization solvers. Though, to reach the compatibility of the add-in with an algorithm,
the latter should satisfy some design requirements. In the call of the algorithm, the following param-
eters should be passed: the stopping condition and names of one or more implementations (value,
gradient, both) of the objective function. Parameters might have the form of a function or a function
object. The existence of other parameters causes no difficulties. The algorithms implemented by us
get a line search algorithm as one more parameter. Obviously, after transformation and solving of the
problem, it is necessary to return to the original variables.

Issues related to the representation of the unconstrained minimization problem in the form, com-
patible to algorithm, are considered in Section 2.

The structure of the add-in and some related issues are considered in Section 3. Add-in, created in
C++, consists of three components: transformations of variables which are formed as objects of the
certain class and are piled in container; several test-problems with constraints only on lower bounds of
variables, which are also formed as certain objects and gathered in a corresponding container; stopping
conditions of minimization algorithms and program-driver.

The program-driver is responsible for choosing of the test-problem and transformation (of variables)
in the interactive mode, for calling the unconstrained minimization algorithm and evaluation of the
run-time, returning to the original variables and printing the results.

The add-in contains transformations of variables of the following four types: quadratic, quartic,
exponential and sinusoidal. The quadratic transformation, for example, means that problem (1) is
transformed to the unconstrained one via the transformation

xi = li + t2i , ∀i ∈ I.

Adding other transformations to the add-in is a simple job.
The test-problems collection consists of 10 problems. Eight of them are taken from CUTest (see

[11]). Two tests correspond to symmetric matrix games; in both cases a game is represented in the
form of the minimization problem constrained only with lower bounds of the variables. In one case
cubic function (with respect to original variables) is used and the other case- quadratic function.

To benchmark the add-in, two efficient algorithms of unconstrained optimization, l-bfgs (see [9])
and CG-DESCENT (see [7]), are used. CG-DESCENT-C-6.8 is taken from [8] and configured for
Visual Studio (see [12]). l-bfgs is implemented by us and its design meets fully the requirements that
arise when integrating the add-in into an unconstrained minimization algorithm. This implementation
is relatively simple. The only modern technic is the line search procedure borrowed from [8]. But
its design is object-oriented and partly generic. As a result, implementation is effective both for
unconstrained minimization problems and for problems of the form (1).

The results of numerical experiments are considered in Section 4. MINOS with AMPL (see [13])
interface was used to debug the add-in and test-problems taken from CUTest. GUROBI (see [14])
with C++ interface was used to debug tests related to symmetric matrix games and to evaluate
performance of the add-in. Results of experiments show that the use of unconstrained optimization
algorithms for symmetric matrix games, even without pretreatment (taking into account specificity
of the problem), gives impressive results. Add-in, integrated into l-bfgs, for problems constructed by
randomly chosen numbers from [-1, 1] interval in most cases runs as fast as GUROBI. In some cases,
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when numbers are uniformly distributed, the results are even better. Using of CG-DESCENT-C-6.8
gives similar results.

The last Section 5 evaluates results, makes conclusions and considers the possible directions of
future research.

Results of experiments based on codes uploaded at https://github.com/kobage are highlighting two
main issues. Using unconstrained minimization algorithms via add-ins for problems, constrained only
with lower bounds of variables, presented here, or similar add-ins are promising directions for future
research. In the case of improvement and development of the presented here or similar add-ins, the
future progress in the sphere of unconstrained minimization will have a direct impact on the progress
in the area of symmetric matrix games and linear programming.

2. Some Aspects of Coding of Unconstrained Minimization Problems

Let us consider the problem of minimization of a smooth functional

min f(x) x ∈ Rn,

with some numerical algorithm, which uses the first order derivatives. Consequently, the data needed
to algorithm should be produced in the form of several functions or function objects.

For calling l-bfgs, two functions are needed. One of them takes the following parameters: the
dimension of the problem and two vectors (for variable x and its gradient) by reference. It returns
the value of the function at x and writes components of the gradient in the vector-parameter. This
function is heavily used by l-bfgs and, therefore, it is highly recommended that its implementation
takes into account each aspect related to performance speed (for example: reduce to minimum the
number of calls of standard functions for simple actions, like the exponentiation, etc.). The second
function is for one-time use. It sets initial values of the variable. Adequately, it receives the variable
and the dimension as parameters.

To get faster code, the algorithm should distinguish the following cases: only the gradient is used;
only the value is used; both are used. Consequently, it is necessary to use two more multiple-use
functions. One of them will return only the function’s value but will not touch the gradient. The
other will not return anything, but calculates and stores the gradient. CG-DESCENT algorithm acts
in this way.

In our implementations, the special structure is made for test problems. The structure of objects is
storing certain information about the objective function: name, dimension, and names of the above-
mentioned two functions (calculating gradient and value and initialising variables). The data of test
problems are stored in containers of the corresponding type.

The container of test functions of unconstrained minimization is not a part of the add-in. Neither
codes of objective functions of the test problems. They are intended to test unconstrained minimization
algorithms and are enclosed to both directories (with prefix LB denoting the lower bound) uploaded
at GitHub. Unconstrained minimization algorithms implemented by us have some characteristics in
common. They have similar design (to respond to certain requirements) and have the same collections
of test-problems. These 44 tests are chosen from the 145, which were used in [7]. But they were used
with higher dimensions. The-above mentioned GitHub web-page contains some material, uploaded
earlier. The Test-problems collection is among them. The recently uploaded collection of test-problems
is essentially refreshed. Implementations of many functions are improved, noticed drawbacks are
corrected.

It is worth to note that the performance of the CG-DESCENT-C-6.8 became more efficient on the
improved test-problems, than performance of the l-bfgs. This is related to the fact that l-bfgs needs
less iterations, than CG-DESCENT. Because of the same reason, l-bfgs is more effective on symmetric
matrix games, where calculations of values and gradients are time-consuming.

3. The Structure of the add-in and Issue of its Integration into Unconstrained
Optimization Algorithms

The minimization problem with the constraints only on lower bounds of variables contains more
data, than unconstrained one, so it has different representation.
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After transformations of variables, it is necessary to collect data of the transformed problem. The
main challenge lies in efficient implementation of derivatives of the composite function. After solving
the transformed problem, it is necessary to return to the original variables.

In mathematics, transformation of variables is a natural and simple task. In order for its equivalent
in software also to be natural and simple, it is necessary to elaborate some implementation related
separate details:

• for the given test-problem, replacing one transformation of variables with another should be
simply feasible;

• adding new transformation of variables into the add-in should be simply feasible;
• adding new test-problems into the add-in should be simply feasible; the structure of test-

problems should not be complicated;
• test-problems with different content have different stopping conditions. Therefore, minimiza-

tion algorithms should allow changing of stopping conditions and accept them as parameters.

The Add-in is implemented in C++ and consists of three components: transformations of variables,
which are presented as objects of certain class and are gathered in a container; several minimization
test-problems with constraints only on lower bounds of variables, also presented as certain objects
and gathered in the corresponding container; stopping conditions of algorithms and program-driver.
The program-driver provides choosing of a test-problem and a transformation in the interactive mode,
calling unconstrained minimization algorithm, evaluation of the performance time, returning to the
original variables and printing the results.

The add-in contains transformations of four types: quadratic: xi = li + t2i , ∀i ∈ I; quartic:
xi = li + t4i , ∀i ∈ I; exponential: xi = li + eti , ∀i ∈ I; sinusoidal: xi = li + 1 + sin(ti), ∀i ∈ I. The
exponential transformation is not completely correct, because xi never becomes equal to li.

Sinusoidal transformation is correct for test-problems, corresponding to symmetric matrix games,
because variables represents probabilities in this case. Besides these four types, it is very simple to add
another transformations into the add-in. It should be noted that we are using uniform transformations,
the same for each coordinate. Quadratic and sinusoidal transformations, which are the most efficient
in numerical experiments, are not invertible. Theoretically, this fact may lead to the emergence of
false critical points (at which derivative of the composite function is equal to zero). Practically, this
fact causes no problems - because of rounding errors, the possibility of coinciding of a double precision
real number and zero is extremely small. The software equivalent of the transformation of variables
is an aggregation of three functions: a transformation, its inverse (or its branch) and its derivative

double quadraticSubstitution(double v){

return v*v;

}

double quadraticSubstitutionPrime(double v){

return 2 * v;

}

double inverseQuadraticSubstitution(double v){

return sqrt(v);

}

In order to store the transformation, we make such a structure that its objects represent software
equivalent of transformations:

struct lb_substiturtion

{

double(*substitution) (double);

double(*inverseSubstitution)(double);

double(*substitutionPrime)(double);

string substitutionName;

void show(void)

{

std::cout << "Substitution: " << substitutionName << std::endl;



ADD-IN FOR SOLVERS OF UNCONSTRAINED MINIMIZATION TO ELIMINATE LOWER BOUNDS 43

}

};

In the following vector

vector < lb substiturtion > lb substiturtionsVector;

transformations are added in the standard way. After variables transformation, the objective function
becomes a composite function. In C++, implementation of the objective function (or function object)
should have access to the transformation. Let us consider one possible approach, simple and yet
flexible.

When working with a collection of test-problems, the same objective function may appear both in
unconstrained and in constrained problems. In this case, it is convenient to obtain the representation
of the constrained problem based on the unconstrained one. Let us consider the functional “hatflda”:

hatflda (x) = (x1 − 1)
2

+
4∑

i=2

(
xi−1 −

√
xi

)2
. All four variables are constrained with lower bounds:

lBounds[i] = 0.0000001. We store the representation of this function with the prototype

double hatflda

(

double *x,

double *g,

const int k

);

Its implementation is trivial, and we omit it. This representation is suited for the unconstrained
minimization. But on its base we construct a composite function which is connected to the transfor-
mation via the function pointers:

double hatfldaComposite

(

double *x,

double *g,

const int k

)

{

for (int i = 0; i < k; i++)

y[i] = lBounds[i] + substitutionName(x[i]);

double fx = hatflda(y, g, n);

for (int i = 1; i < k; i++)

g[i] *= substitutionPrimeName(x[i]);

return fx;

}

Here, substitutionName(x[i]) is a pointer to the transformation, and substitutionPrimeName(x[i])
is a pointer to its derivative. Of course, these addresses should be initialized before minimization
algorithm will be run. For quadratic transformation, for example, this can be done with following
assignments:

substitutionName = quadraticSubstitution; substitutionPrimeName = quadraticSubstitutionPrime;

The other possibilities also existed. For example, to attach test-problem, corresponding to symmetric
matrix games, to CG-DESCENT-C-6.8, we used less elegant approach.

The representation of minimization problem (1) needs some additional code in the function, ini-
tializing the starting iterate. This portion of the code makes lower bounds and indices of variables
with constraints. One more one-time function provides returning to the original variables.

The described add-in was initially debugged with the Modified Heavy Ball algorithm (see [5]) due
to the following simple factor: the code of this algorithm consists of 20 lines which makes experiments
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using it extremely simple. At the same time, it is fast enough. In the debugging and development
process, we settled on the design of the algorithms l-bfgs LB and MHB LB (see materials uploaded
to GitHub). The add-in is fully adapted to these two algorithms. For CG-DESCENT-C-6.8, only the
part, corresponding to symmetric matrix games, is adapted. At first, this emphasizes the importance
of symmetric games for us. Secondly, we tried to interfere with the code of CG-DESCENT-C-6.8 as
little as possible.

Integration of the add-in into the algorithm requires weak support from the algorithm which is
expressed in the possibility of variation of the stopping condition. In the ideal case, a stopping
condition should be one of the parameters of the algorithm. The above-mentioned is arranged in
algorithms l-bfgs LB and MHB LB. This possibility is not defined explicitly in CG-DESCENT-C-6.8,
but its structure allows users to consider implicitly the stopping condition as a parameter, using
function pointers.

4. Numerical Experiments

In the numerical experiments, two groups of test-problems are used. One group consists of 8 test-
problems taken from CUTest. It mainly is used to debug the add-in. MINOS with AMPL interface was
used to debug the add-in, to check correctness of results and to evaluate performance characteristics
of the add-in on these test-problems. Three different transformations are applicable to each test-
problem (to some problems, sinusoidal transformation is applicable as well). Therefore, the number
of test-problems is, really, greater. The add-in works reliably. Few exceptions take place in the case
of exponential transformation which could be expected.

GUROBI with C++ interface was used to debug the add-in on symmetric matrix games and
evaluate performance.

Results of experiments show that application of unconstrained optimization algorithms through
the add-in for the problems, constrained only with lower bounds of variables, is fully competitive.
In particular, this concerns the theme of matrix games. Formally, only two such test-problems are
used. But each of them can be considered with 4 transformations of variables. Moreover, 3 different
scenarios can be used to generate random data:

std::uniform_real_distribution<double>

std::normal_distribution<double>

std::cauchy_distribution<double>

and during generating the objects of distributions, we are able to vary ranges of random numbers.
For example, std::cauchy distribution < double > urdi(−1, 1);

All this allows us to get a fairly complete picture of the perspective of the usage of unconstrained
minimization algorithms to solve symmetric matrix games.

Results of experiments show that using integrated into l-bfgs add-in with quadratic and sinusoidal
transformations in most cases solves symmetric matrix games, constructed with random numbers from
[-1,1], as fast as GUROBI solves problems of linear programming correspondig to the same matrix
games. In some cases, when numbers are uniformly distributed, the results are even better. Using
of CG-DESCENT-C-6.8 gives similar results. The advantage of GUROBI appears and increases with
increasing range of random numbers.

The main goal of this paper is to present the results of developing the add-in and evaluating its
performance. Symmetric matrix games represent one tool in this process. The results of numerical
experiments demonstrate that matrix games and, more generally, linear programming should be among
the key topics of our future research. Because of this, let us shortly consider the point of representation
of symmetric matrix games as problems of unconstrained minimization.

Consider a symmetric matrix game, i.e., a game with an n× n skew matrix A = (ai j):

ai j = −aj i, ∀i, j ∈ {1, 2, . . . , n} .



ADD-IN FOR SOLVERS OF UNCONSTRAINED MINIMIZATION TO ELIMINATE LOWER BOUNDS 45

The price of such a game is equal to zero (see [2]), hence solving the game is equivalent to solving the
following system of inequalities in Rn:

A1x ≤ 0, . . . , Anx ≤ 0,

x1 + · · ·+ xn = 1,

x1 ≥ 0, . . . , xn ≥ 0,

(2)

where the i-th row is denoted by Ai and x = (x1, . . . , xn)
T

is the unknown vector. This problem

always has a not necessarily unique solution. If x̃ = (x̃1, . . . , x̃n)
T

is the solution of (2), then for some
indices, say i, Aix̃ = 0 is fulfilled.

The main problem in numerical solution of symmetric game lies in the third row of (2). To avoid
combinatorial approach, the transformation of variables can be used. From the above-mentioned four
transformations, the quadratic and sinusoidal transformations are equally effective. For simplicity, let
us consider the quadratic transformation

xi = t2i , i ∈ {1, . . . , n} .
Now, (2) is equivalent to each of the following two unconstrained minimization problems:

n∑
i=1

(Ait ◦ t < 0)?0 : (Ait ◦ t)3 +

∣∣∣∣( n∑
i=1

t2i − 1

)3∣∣∣∣→ min, (3)

which represents test-problem -9 of the add-in,

n∑
i=1

(Ait ◦ t < 0)?0 : (Ait ◦ t)2 +

( n∑
i=1

t2i − 1

)2

→ min, (4)

which represents test-problem-10. In (3) and (4), for arbitrarily taken t = (t1, . . . , tn)
T

and s =

(s1, . . . , sn)
T

vectors “◦” operator denotes their Hadamard product s ◦ t ≡ (s1t1, . . . , sntn)
T

, whilst
operator “?” has the following format:

(condition) ? (result 1) : (result 2) (5)

if the condition is true, then (5) equals (result 1), or (result 2) if the condition is false.
For m × n real matrix A = (ai j), when m 6= n, the expression Ax ◦ x uniquely means the same

as A(x ◦ x), because vectors Ax and x have different dimensions and thus their Hadamard product
is not defined. Consequently, we are using the denotation Ax ◦ x and consider that priority of the
Hadamard product is higher, than priority of matrix-vector product.

Let us note that (3) and (4) do not represent penalty functions. Because of variables’ trans-
formation, these functions are not convex. Nevertheless, they are smooth enough for minimization
algorithms to work efficiently (via LB-add-in). Note also that in case of high dimensions, (3) and (4)
are equally effective.

5. Conclusions

The structure of the LB-add-in is simple and flexible. It is easily joinable to unconstrained min-
imization algorithms; it does not matter if an algorithm has special design or it is unaware of the
add-in (as in the case of CG-DESCENT-C-6.8). The add-in itself (excluding transformations and
collection of test-problems) is fairly compact and in case of necessity, its implementation in other high
level programming languages or developing its parallel versions is a very realistic challenge.

The add-ins presented here are aimed at problems, constrained only with lower bounds of variables.
But it can be extended to box-constrained problems, as well. Suitable transformations are described
in [1] and technical aspects are developed in the presented paper. Much harder part consists of
benchmarking the add-in, which transforms box-constrained problems into unconstrained ones. In
order to carry out a complete study, vast infrastructure (algorithms, benchmarking environment,
test-problems collection) is needed (see [6]).

Intensive experiments were carried out on symmetric matrix games using the add-in. Interest in
matrix games is reinforced by the fact that the canonical form of linear programming is easily reducible
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to symmetric matrix games. Based on the experiments, we can conclude that if we further develop the
approach presented here, the future progress in the sphere of unconstrained minimization will have a
direct influence on the progress in the area of symmetric matrix games and linear programming.

Experiments have also showed some weaknesses in the usage of unconstrained minimization algo-
rithms to symmetric matrix games in case of absence of specific-based improvements. It is possible
to use various heuristics as well as other themes that are obligatory in design of high-quality solvers.
There is a wide choice of solvers in linear programming and among them GUROBI is one of the best.
If we make comparisons using some open-source solver, the relative results of the add-in would be
(see [4]) much better.
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