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ON NEW VERSIONS OF THE LINDEBERG–FELLER’S LIMIT THEOREM

SH. FORMANOV AND A. SIROJITDINOV

Abstract. It is well known that the classical Lindeberg condition is sufficient for the validity of the

central limit theorem. It will be also a necessary if the summands satisfy the condition of infinite
smallness (Feller’s theorem). The limit theorems for the distributions of sums of independent random

variables which do not use the condition of infinite smallness were called non-classical.

The exact bounds for the Lindeberg, Rotar characteristics using the difference of distribution of
sum of independent random variables and a standard normal distribution are established. These

results improve Feller’s theorem.

Introduction

Let Xn1, Xn2, . . . , Xnn, n = 1, 2, . . . be an array of independent random variables (r.v.’s).
Assume that

EXnj = 0, EX2
nj = σ2

nj , j = 1, 2, . . . ,

Sn = Xn1 + · · ·+Xnn,

n∑
j=1

σ2
nj = 1.

Set

Fn(x) = P (Sn < x) , Φ(x) =
1√
2π

x∫
−∞

e−u
2/2du,

∆n = sup
x
|Fn(x)− Φ(x)| .

It is well-known that the following condition (Feller’s characteristic)

max
1≤j≤n

σnj → 0, n→∞ (F)

is called uniform of infinite smallness condition of a sequence of independent r.v.’s. {Xnj , j ≥ 1}. We
say that this sequence satisfies Lindeberg condition if for any ε > 0

Ln(ε) =

n∑
j=1

E(X2
njI(|Xnj | > ε))→ 0, n→∞. (L)

Here, I(A) denotes an indicator of the event A.
It is well-known that under the condition L,

∆n → 0, n→∞,

which means a central limit theorem (CLT). The Lindeberg–Feller’s theorem improves the above
theorem and can be represented in the form of the following implication:

(F )&(CLT )⇔ (L),

i.e., under the condition (F), Lindeberg’s condition is necessary one for CLT.
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1. Estimation of Numerical Characteristics Used in CLT

Following V. M. Zolotarev [8, ch. 5, §5.2], we call the limit theorems non-classical in which the
condition (F ) is not used. The first non-classical variants of CLT were proved by Zolotarev in 1967
and Rotar in 1975 [6].

In [3], [5], the following estimates of Ln(ε) (ε > 0) were obtained.

Theorem A. There exists an absolute constant C > 0 such that for any ε > 0,(
1− e−ε

2/4
) n∑
j=1

E(X2
njI(|Xnj | > ε)) ≤ C

(
∆n +

n∑
j=1

σ4
nj

)
. (1)

Note. It is obvious that under the condition (F ) and
n∑
j=1

σ2
nj = 1,

n∑
j=1

σ4
nj ≤ max

j
σ2
nj → 0, n→∞.

Thus (1) implies that if the sequence of independent r.v.’s {Xnj , j ≥ 1} satisfies CLT (i.e. ∆n → 0,
n→∞), then the Lindeberg condition

n∑
j=1

E(X2
njI(|Xnj | > ε))→ 0

holds for any ε > 0 by n→∞.

Set

Fnj(x) = P (Xnj < x),

Φnj(x) is a distribution function of normal r.v. with parameters (0, σ2
nj) (j = 1, 2, . . . ) and for any

ε > 0,

Rn(ε) =

∞∑
j=1

∫
|x|>ε

|x||Fnj(x)− Φnj(x)|dx.

Theorem B (V. I. Rotar [6]). The condition

Rn(ε)→ 0, n→∞, (2)

for any ε > 0 is sufficient and necessary for CLT.

The above Theorem B is a nonclassical version of CLT and it generalizes Lindeberg–Feller’s theorem.
Indeed, in Theorem B we do not use the condition (F). The proof of the necessity of condition (2)
is based on the following statement (note that a proof of the necessity of condition (2) given in [6] is
rather complicated and it uses the properties of probabilistic metrics).

The following theorem holds.

Theorem 1. For some C = C(ε), the following estimation

Rn(ε) ≤ C
(
Ln(ε) +

n∑
j=1

σ2s
nj

)
(3)

for any ε > 0 and s ≥ 2, is true.

Proof. In [3], the inequality

Rn(ε) ≤
n∑
j=1

∫
|x|>ε

x2dFnj(x) +

n∑
j=1

∫
|x|>ε

x2dΦnj(x) = Ln(ε) + Φn(ε) (4)
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is proved. Further, it is not hard to prove that

Φn(ε) =

n∑
j=1

∫
|x|>ε/σnj

σ2
njx

2dΦ(x) ≤ ε2
n∑
j=1

∫
|x|>ε/σnj

(
σ2
njx

2

ε2

)s
dΦ(x)

≤ ε−2(s−1)
( n∑
j=1

σ2s
nj

) ∫
|x|>ε/ max

1≤j≤n
σnj

x2sdΦ(x).

Hence, for any s ≥ 2,

Φn(ε) ≤ C(ε)

( n∑
j=1

σ2s
nj

)
. (5)

Now, the fairness of estimation (3) and Theorem 1 follows from relations (4) and (5).
It can easily be checked that the above-proven Theorem 1 has the following corollaries.
1) We say that Rotar’s condition holds if

Rn(ε)→ 0, ∀ε > 0, n→∞. (R)

It is easy to prove that the following estimation (6)

max
1≤j≤n

σ2
nj ≤ ε2 + max

1≤j≤n

∫
|x|>ε

x2dFnj (x) ≤ ε2 +

n∑
j=1

∫
|x|>ε

x2dFnj (x) = ε2 + Ln (ε) (6)

is true. Directly from the estimation (3), for s = 2, we have

Rn(ε) ≤ C(ε)
(
Ln(ε) + max

1≤j≤n
σ2
nj

)
. (7)

Thus from relations (6) and (7) it follows that if Ln(ε)→ 0, ∀ε > 0, n→∞, then Rn(ε)→ 0, ∀ε > 0,
n→∞. Therefore the implication (L)⇒ (R) is true. In turn, from the last it follows that Theorem
1 generalizes classic version of the Lindeberg-Feller limit theorem.

2) Since the integration domain in the expression Φn(ε) contains in the domain

{
x :

(
max

1≤j≤n
σnj

)2
x2

ε2

> 1

}
, inequality (5) can be written as

Φn(ε) ≤ C(ε)

(
max
1≤j≤n

σnj

)2s

.

Hence, estimation (3) can be rewritten as

Rn(ε) ≤ C(ε)

[
Ln(ε) +

(
max
1≤j≤n

σnj

)2s]
, s ≥ 2.

3) In view of Theorem A, estimation (3) can be rewritten as

Rn(ε) ≤ C(ε)

(
∆n +

n∑
j=1

σ4
nj

)
.

Thus the following implication

(F )&(CLT )⇒ (R)

holds. From the above corollaries 1)–3) we have that the characteristic Rn(ε) is thinner then the
Lindeberg characteristic. For example, in the case of the equality of distributions Fnj ≡ Φnj , j =
1, 2, . . . , n, it is obvious that the value Rn(ε) vanishes trivially, but at the same time, Ln(ε) > 0,
∀ε > 0. It should be noted that if the condition F holds, then these conditions are equivalent, i.e.,

(F )&(R)⇔ (L).

The last limit relation is proved in the book of A. N. Shiryaev [7]. �
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2. Ibragimov-Osipov-Essen Characteristic and Some Relations of Equivalence

We put

Mn(α) =

n∑
j=1

∫
|x|≤1

|x|2+α dFnj(x) +

n∑
j=1

∫
|x|>1

x2dFnj(x) = mn(α) + Ln, α > 0.

This numerical characteristic is the first encountered in [1] and [2] for α = 1. The appearance of
this characteristic is due to the impossibility of estimating the remainder term in the CLT by the
single Lindeberg characteristic Ln(·) (see [1]). In [2], it is shown that the value Mn(1) can be used
in estimating the rate of convergence in CLT. It should be noted that there are the cases where
mn(1) = o (Ln(·)) or Ln(·) = o (mn(1)) as n→∞. Therefore in the expression Mn(·) it is impossible
to confine ourselves to one of the two terms.

We present some asymptotic properties of Mn(α), as n→∞.

Lemma 1. If for some α = α0 > 0,

mn(α0) =

n∑
j=1

∫
|x|≤1

|x|2+α0 dFnj(x)→ 0, n→∞,

then mn(α)→ 0, n→∞ for any α > 0.

Proof. Let α < α0. Then for any 0 < ε ≤ 1,

mn(α) =

n∑
j=1

∫
|x|≤ε

|x|2+α dFnj(x) +

n∑
j=1

∫
ε<|x|≤1

|x|2+α dFnj(x)

≤ εα +

n∑
j=1

∫
ε<|x|≤1

|x|2+α0 |x|α−α0 dFnj(x)

≤ εα +

( n∑
j=1

∫
|x|≤1

|x|2+α0 dFnj(x)

)
· ε−(α0−α) = εα +

mn(α0)

εα0−α
.

Hence for any 0 < ε ≤ 1,
lim
n→∞

sup mn(α) ≤ εα, α < α0.

Since 0 < ε ≤ 1 is arbitrary, from the last relation we get the proof of the relation

{mn(α0)→ 0} ⇒ {mn(α)→ 0, α < α0} .
Now let α0 < α. Then swapping α and α0 in the previous reasoning, we obtain the proof of the

following relation:

{mn, α0 → 0} ⇒ {mn(α)→ 0, α > α0 } . �

Lemma 2. If for some α = α0, the relation Mn(α0)→ 0, n→∞ is true, then the Feller conditions
(F ) hold.

Proof. Indeed, for 0 < ε ≤ 1, we have

max
1≤j≤n

σ2
nj ≤ ε2 + max

1≤j≤n

[ ∫
ε<|x|≤1

x2dFnj(x) +

∫
|x|>1

x2dFnj(x)

]

≤ ε2 +

n∑
j=1

∫
ε<|x|≤1

x2dFnj(x) +

n∑
j=1

∫
|x|>1

x2dFnj(x)

≤ ε2 + ε−α ·
n∑
j=1

∫
|x|≤1

|x|2+α dFnj(x) + Ln ≤ ε2 + ε−αmn(α) + o(1), n→∞.
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Now, by applying Lemma 1, we obtain

lim
n→∞

sup max
1≤j≤n

σ2
nj ≤ ε2, 0 < ε ≤ 1. �

Further, we say that the condition (Mα) holds, if for some α > 0 the value Mn(α) → 0, n → ∞.
Then assertion of Lemma 2 can be written as the implication (Mα)⇒ (F ).

Theorem 2. Let for some α = α0 > 0,

Mn(α0) = mn(α0) + Ln → 0, n→∞. (M)

Then for any α, the following implication

{Mn(α0)→ 0, n→∞} ⇔ {Ln(ε)→ 0, ∀ε > 0, n→∞}

is true.

Remark. In view of Lemma 1, Theorem 2 can be written as an implication of the equivalence

(M)⇔ (L) (8)

Proof of Theorem 2. For simplicity, in the condition M we put α = 1, i.e.,

Mn = Mn(1) = mn(1) + Ln =

n∑
j=1

∫
|x|≤1

|x|3 dFnj(x) +

n∑
j=1

∫
|x|>1

x2dFnj(x)→ 0, n→∞.

Note that by Lemma 1 this does not limit the generality in the following reasoning.
Let the condition M holds, i.e., for n → ∞, Mn → 0. Then the following relations are clear: for

0 < ε ≤ 1,

Ln(ε) =

n∑
j=1

∫
ε<|x|≤1

x2dFnj(x) + Ln(1) ≤ 1

ε

n∑
j=1

∫
ε<|x|≤1

|x|3 dFnj(x) + Ln

≤ mn(1)

ε
+ o(1)→ 0, n→∞. (9)

For ε ≥ 1, by monotonicity of Ln(ε), we obtain

Ln(ε) ≤ Ln(1) = Ln → 0, n→∞. (10)

Relations (9) and (10) prove the justice of the implication (M)⇒ (L).
Now, let the Lindeberg condition L hold. Then for 0 < ε ≤ 1,

Ln = Ln(1) ≤ Ln(ε)→ 0, n→∞. (11)

In addition, for any 0 < ε ≤ 1,

mn(1) =

n∑
j=1

∫
|x|≤1

|x|3 dFnj(x) ≤ ε
n∑
j=1

∫
|x|≤ε

x2dFnj(x) +

n∑
j=1

∫
ε<|x|≤1

x2dFnj(x) ≤ ε+ Ln(ε).

Thus, from the last estimation it follows that

lim
n→∞

supmn(1) ≤ ε, mn(1)→ 0, n→∞. (12)

From relations (11), (12), we conclude that the implication (L)⇒ (M) holds. Hence, the equivalence
relation (8) is proved, and thus we obtain the proof of Theorem 2. �
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3. The Classical Version of Analogue of the Lindeberg-Feller Theorem

The classical version of the Lindeberg-Feller limit theorem can be represented as equivalence of the
implications

(F )&(CLT )⇔ (L).

We give a theorem in which conditions M are used instead of L.

Theorem 3. In order for the sequence of series of independent random variables {Xnj , 1 ≤ j ≤ n}
to satisfy the Feller condition F and obey (CLT ), it is necessary and sufficient that condition M be
fulfilled.

Below, we give the proof of Theorem 3 with the direct use of the condition M.

Proof of Theorem 3. We introduce the notions

fnj(t) =

∞∫
−∞

eitxdFnj(x), gnj(t) =

∞∫
−∞

eitxdΦnj(x) = e−σ
2
njt

2/2,

fn (t) =

n∏
j=1

fnj (t) ,

n∏
j=1

gnj(t) = gn(t) = e−t
2/2.

To prove the validity of the CLT, it suffices to make sure that for any T > 0,

sup
|t|≤T

∣∣∣fn(t)− e−t
2/2
∣∣∣→ 0, n→∞. (13)

Note first that for all complex numbers satisfying the inequalities |ak| ≤ 1, |bk| ≤ 1, k = 1, 2, . . . , the
inequality ∣∣∣∣ n∏

k=1

ak −
n∏
k=1

bk

∣∣∣∣ ≤ n∑
k=1

|ak − bk| (14)

holds. By the last inequality (14), we obtain∣∣∣∣ n∏
j=1

fnj(t)−
n∏
k=1

gnj(t)

∣∣∣∣ ≤ n∑
j=1

|fnj(t)− gnj(t)| . (15)

Therefore, by (15), we can conclude that relation (13) will be proved if it states that

dn(t) =

n∑
j=1

|fnj(t)− gnj(t)| → 0, n→∞, (16)

for any t ∈ R.
Further, we use the following equalities:

∞∫
−∞

xdFnj(x) =

∞∫
−∞

xdΦnj(x) = 0,

∞∫
−∞

x2dFnj(x) =

∞∫
−∞

x2dΦnj(x) = σ2
nj , j = 1, 2, . . . .

By these equalities, for j = 1, 2, . . . , we can write

fnj(t)− gnj(t) =

∞∫
−∞

[
eitx − 1− itx− (itx)

2

2

]
d (Fnj(x)− Φnj(x)) . (17)

After integrating by parts in the last integral and by virtue of

x2 [1− Fnj(x) + Fnj(−x)]→ 0, x2 [1− Φnj(x) + Φnj(−x)]→ 0,
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for x→∞, we obtain

∞∫
−∞

[
eitx − 1− itx− (itx)

2

2

]
d (Fnj(x)− Φnj(x))

= −it
∞∫
−∞

(
eitx − 1− itx

)
(Fnj(x)− Φnj(x)) dx. (18)

Now, by (15), (17) and (18), for any ε > 0, we have

dn(t) ≤
n∑
j=1

∣∣∣∣t
∞∫
−∞

(
eitx − 1− itx

)
(Fnj(x)− Φnj(x)) dx

∣∣∣∣
≤ |t|

3

2
ε

n∑
j=1

∫
|x|≤ε

|x| |Fnj(x)− Φnj(x)| dx+ 2t2
n∑
j=1

∫
|x|>ε

|x| |Fnj(x)− Φnj(x)| . (19)

By direct integration by parts, it is easy to verify that for any random variable X with the distribution
function F (x), the following equality

E |X|n =

∞∫
−∞

|x|n dF (x) = n

∞∫
0

xn−1 (1− F (x) + F (−x)) dx. (20)

holds. Based on formula (20) with n = 2, we can verify the following estimate:

n∑
j=1

∫
|x|≤ε

|x| |Fnj(x)− Φnj(x)| dx ≤ 2

n∑
j=1

σ2
nj = 2.

Hence, inequality (19) can be written as

dn(t) ≤ |t|3 · ε+ 2t2 ·Rn(ε).

Now, by Theorem 2, it follows that

Rn(ε) = O

(
Ln(ε) +

n∑
j=1

σ2s
nj

)
, s ≥ 2.

By the last expression, we obtain

lim
n→∞

sup
|t|≤T

dn(t) ≤ T 3 · ε.

Therefore, finally, we have the relation

lim
n→∞

sup
|t|≤T

∣∣∣fn(t)− e−t
2/2
∣∣∣ ≤ T 3 · ε. (21)

Since ε > 0 is arbitrary, by relation (21) we obtain that for any T > 0, relation (13) holds, which
proves the sufficiency of the condition M for fulfilling CLT. �

Necessity. By Theorem 2, conditions M and L are equivalent (i.e., (M) ⇔ (L)). Therefore, the
necessity of condition M for the validity of CLT follows from Theorem A above.

In conclusion, the authors express their gratitude to reviewer for remarks which improved article
explanation.
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