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PROJECTIVITY AND UNIFICATION IN LOCALLY FINITE VARIETIES OF

MONADIC MV -ALGEBRAS

A. DI NOLA1, R. GRIGOLIA2, AND G. LENZI1

Abstract. A duality between the category of finite monadic MV -algebras and a category of labelled
finite Boolean spaces is given. A characterization of projectivity in some locally finite varieties of

monadic MV -algebras is provided. Finally, we show that the unification type of these varieties is

unitary.

1. Introduction

The finitely-valued propositional calculi, which have been described by Lukasiewicz and Tarski
in [15], are extended to the corresponding predicate calculi. The predicate  Lukasiewicz (infinitely-
valued) logic QL is defined in the following standard way. The existential (universal) quantifier is
interpreted as a supremum (infimum) in a complete MV -algebra. Then the valid formulas of predicate
calculus are defined as all formulas having value 1 for any assignment. The functional description of
the predicate calculus is given by Rutledge in [16]. Scarpellini in [17] has proved that the set of valid
formulas is not recursively enumerable. We also refer the reader to papers [10, 18, 19] concerning the
 Lukasiewicz predicate calculus.

Monadic MV -algebras were introduced and studied by Rutledge in [16] as an algebraic model for
the predicate calculus QL of  Lukasiewicz infinite-valued logic, in which there occurs only a single
individual variable. Rutledge followed P.R. Halmos’ study of monadic Boolean algebras. In view of
the incompleteness of the predicate calculus, the result of Rutledge in [16], showing the completeness
of the monadic predicate calculus, has been of great interest.

Let L denote a first-order language based on ·,+,→,¬ (intended as propositional connectives) and
let Lm denote a propositional language based on the propositional connectives ·, +, →, ¬, ∃ (where
∃ denotes a unary propositional connective). Let Form(L) and Form(Lm) be the set of all formulas
of L and Lm, respectively. We fix a variable x in L, associate with each propositional letter p in Lm a
unique monadic predicate p∗(x) in L and define by induction a translation Ψ : Form(Lm)→ Form(L)
by putting:

• Ψ(p) = p∗(x) if p is a propositional variable;
• Ψ(¬α) = ¬Ψ(α);
• Ψ(α ◦ β) = Ψ(α) ◦Ψ(β), where ◦ = ·,+,→;
• Ψ(∃α) = ∃xΨ(α).

Through this translation Ψ, we can identify the formulas of Lm with monadic formulas of L con-
taining the variable x. Moreover, it is routine to check that Ψ(MLPC) ⊆ QL, where MLPC is the
monadic Lukasiewicz propositional calculus [8].

For a detailed consideration of  Lukasiewicz predicate calculus we refer to [1, 2, 14,15].

2. Preliminaries on Monadic MV -algebras

The characterization of monadic MV -algebras as pairs of MV -algebras, where one of them is a
special kind of subalgebra (m is a relatively complete subalgebra), is given in [3,8]. The MV -algebras
were introduced by Chang in [4] as an algebraic model for infinitely-valued  Lukasiewicz logic.
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An MV -algebra is an algebra (A,⊕,�,∗ , 0, 1), where (A,⊕, 0) is an abelian monoid, and the follow-
ing identities hold for all x, y ∈ A : x⊕1 = 1, x∗∗ = x, 0∗ = 1, x⊕x∗ = 1, (x∗⊕y)∗⊕y = (y∗⊕x)∗⊕x,
x� y = (x∗ ⊕ y∗)∗.

Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff x∗ ⊕ y = 1.

(A,≤, 0, 1) is a bounded distributive lattice. Moreover, in any MV -algebra, the property

x� y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ yholds.

The unit interval of real numbers [0, 1] endowed with the operations x⊕ y = min(1, x+ y), x� y =
max(0, x + y − 1), x∗ = 1 − x, becomes an MV -algebra. It is well known that the MV -algebra
S = ([0, 1],⊕,�,∗ , 0, 1) generates the variety MV of all MV -algebras, i. e., V(S) = MV.

Let Q denote a set of rational numbers; then [0, 1] ∩Q is an MV -subalgebra of [0, 1].
Moreover, for (0 6=)n ∈ ω, we denote by Sn the subalgebra of [0, 1] whose domain is

An =

{
0,

1

n
, . . . ,

n− 1

n
, 1

}
.

For any positive integer n, an algebra (A,⊕,�,∗ ,∃, 0, 1) is said to be a monadic MV -algebra
(MMV -algebra, for short) if (A,⊕,�,∗ , 0, 1) is an MV -algebra and, in addition, ∃ is a unary function
and the following identities hold:

E1: x ≤ ∃x,
E2: ∃(x ∨ y) = ∃x ∨ ∃y,
E3: ∃(∃x)∗ = (∃x)∗,
E4: ∃(∃x⊕ ∃y) = ∃x⊕ ∃y,
E5: ∃(x� x) = ∃x� ∃x,
E6: ∃(x⊕ x) = ∃x⊕ ∃x hold.

Sometimes we shall denote a monadic MV -algebra (A,⊕,�,∗ ,∃, 0, 1) by (A,∃), for brevity. We
can define a unary operation ∀x = (∃x∗)∗, corresponding to the universal quantifier.

Let A1 and A2 be any MMV -algebras. A mapping h : A1 → A2 is an MMV -homomorphism if h
is an MV -homomorphism, and for every x ∈ A1, h(∃x) = ∃h(x). Denote by MMV the variety and
the category of MMV -algebras and MMV -homomorphisms.

From the variety of monadic MV -algebras MMV we select the subvariety Kn for 0 6= n ∈ ω, which
is defined by the following equation [8]:

(Kn) xn = xn+1,

that is, Kn = MMV + (Kn). The main object of our interest are the varieties Kn, which are locally
finite, see [8].

A subalgebra A0 of an MV -algebra A is said to be relatively complete, if for every a ∈ A the set
{b ∈ A0 : a ≤ b} has a least element.

A subalgebra A0 of an MV -algebra A is said to be m-relatively complete [8], if A0 is relatively
complete and two additional conditions

(#): (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a� a⇒ v ≥ a&v � v ≤ x),
(##): (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊕ a⇒ v ≥ a&v ⊕ v ≤ x) hold.

By [8], there exists a one-to-one correspondence between

(1) the monadic MV -algebras (A,∃);
(2) the pairs (A,A0), where A0 is an m-relatively complete subalgebra of A.

In fact, A0 and ∃ can be uniquely recovered from each other in the following way: A0 is the range
of ∃, and ∃a = inf{b ∈ A0 : a ≤ b}.
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3. Monadic Operators on Finite MV -algebras

In this section, we recall the characterization of all monadic operators over an arbitrary finite MV -
algebra given in [3]. In other words, given any finite MV -algebra, we characterize the set of monadic
operators which make it an MMV -algebra.

Suppose that A is a finite MV -algebra. Then A ∼= Sn1
× Sn2

× · · · × Snk , where the ni ≥ 1. Let
Π = {K1,K2, . . . ,Km} be a partition of {1, 2, . . . , k}. We shall say that Π is homogeneous if i, j ∈ Kl

implies Sni = Snj . Given such a Π, each Ki has associated a unique Snj , which we shall denote by
Ai. We clearly have

A ∼= AK1
1 × · · · ×AKmm . (1)

Since each Ki is finite, there is a monadic operator ∃i defined on AKii such that (AKii ,∃i) is an

MMV -algebra with ∃i(AKii ) = Ai. Setting ∃ = ∃1 × · · · × ∃m and acting pointwise, we obtain a
monadic operator ∃ on A, that is, (A,∃) is an MMV -algebra.

If a Ki ∈ Π has at least two members, then the determined monadic operator will not be trivial,
that is, it will not be the identity operator. From this we can see that a given homogeneous partition
may give up to 2m − 1 non-trivial MMV -algebras.

If we say that n1 = n2 = · · · = nk = n, so A = Skn, then every partition of {1, 2, . . . , k} will be
homogeneous. The question arises as to whether or not every monadic operator on A ∼= Sn1

× Sn2
×

· · · × Snk is obtained from some homogeneous partition of {1, 2, . . . , k}.
Let (A,∃) be a finite MMV -algebra. Then by [16], (A,∃) is a subdirect of the product of MMV -

algebras (Ai,∃i), where ∃iAi is totally ordered. Moreover, by [8], each (Ai,∃i) is a direct power of
∃iAi, that is, (∃iAi)Ki for some finite set Ki.

From this we obtain that (A,∃) is a subdirect product ofMMV -algebras, (A,∃) ↪→
m∏
i=1

((∃iAi)Ki ,∃i)

for some integer m.

4. Labelled Boolean Spaces

A Boolean space (or Stone space) is a compact, zero-dimensional and Hausdorff topological space.
Boolean spaces form a category whose objects are the Boolean spaces and morphisms are the contin-
uous maps. When a Boolean space is finite, then the topology of the Boolean space is discrete. It is
well known that there exists a categorical duality between the category of Boolean algebras Bool and
the category of Boolean spaces BS. Then the category of finite Boolean algebras Boolfin is dually
equivalent to the category of finite Boolean spaces BSfin.

The functors establishing the duality between Boolfin and BSfin are as follows. The functor
E : Boolfin → BSfin sends every finite Boolean algebra B to the set of all ultrafilters of B. The
functor B : BSfin → Boolfin sends every object T ∈ BSfin to the powerset of T .

We now define another category, the category of labelled Boolean spaces BSLfin. Let X ∈ BSfin
and λ : X → ω. The the set Xλ = {(x, λ(x)) : x ∈ X} is said to be a labelled Boolean space. The
map f : Xλ → Yλ′ is said to be a λ-map if for every x, we have f((x, λ(x))) = (f(x), λ′(f(x))), where

λ′(f(x)) divides λ(x). Denote this category by BSLfin.
Let A be any finite MV -algebra. Then A contains a greatest Boolean subalgebra B(A) ⊆ A. The

set of ultrafilters of B(A) and the set of MV -ultrafilters of A have the same cardinality. In fact, if
F ⊆ A is an MV -ultrafilter of A, then F ∩ B(A) is an ultrafilter of B(A). Conversely, if F ⊆ B(A)
is an ultrafilter of B(A), then the MV -filter [F )A generated by F in the MV -algebra A is an MV -
ultrafilter of A. So, we have one-to-one correspondence between the set of ultrafilters of B(A) and the
set of MV -ultrafilters of A. So, we can identify the corresponding elements of the set of ultrafilters of
B(A) and the set of MV -ultrafilters of A. We observe that two different finite MV -algebras A1 and
A2 may have isomorphic Boolean subalgebras B(A1) and B(A2). For example, B(S2

1) ∼= B(S1 × S2)
and, so, E(B(A1)) ∼= E(B(A2)).

Let A be a finite MV -algebra. Label the elements of E(B(A)) as follows: λ(F ) = k if A/[F )A ∼= Sk.
Then let

Eλ(B(A)) = {(F, λ(F )) : F ∈ E(B(A))}
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be the resulting labelled Boolean space. We observe that if A1 � A2, then Eλ(B(A1)) � Eλ(B(A2)).
From this observation we can define the functor EL from the set MVfin of finite MV -algebras to the

labelled Boolean spaces BSLfin in the following way:

EL(A) = {(F, λ(F )) : λ(F ) = k ∈ ω, F ∈ E(B(A)), A/[F )A ∼= Sk}.

Now let Xλ be a labelled Boolean space. We define the functor L from BSLfin to MVfin as follows:

L(Xλ) =
∏
x∈X

Sλ(x).

It is easy to verify that L(EL(A)) ∼= A and EL(L(Xλ)) ∼= Xλ. So, we arrive to

Theorem 1. The category of finite MV -algebras MVfin is dually equivalent to the category of labelled

Boolean spaces BSLfin.

Any subalgebra of a finite Boolean algebra is relatively complete. If a Boolean algebra B1 embeds
into a Boolean algebra B2, then to this embedding we can associate a surjective map f : E(B2) →
E(B1). The surjective map defines a corresponding partition E(= Kerf). Conversely, any partition
E on the Boolean space defines a corresponding subalgebra. Namely, if X is a Boolean space, then
the Boolean algebra of all subsets of the set X is the Boolean algebra corresponding to the Boolean
space X. Then the set of all E-saturated subsets1 forms a Boolean subalgebra of the given Boolean
algebra.

We are interested in m-relatively complete subalgebras of a finite MV -algebra A. Note that not
every subalgebra of a finite MV -algebra A is m-relatively complete.

A partition E of a labelled Boolean space is said to be correct, if for any set U ∈ E and any two
elements x, y ∈ U we have λ(x) = λ(y). Note that every correct partition is a homogeneous partition
in the sense defined above. So, we have

Theorem 2. Let A be a finite MV -algebra and Xλ be the labelled Boolean space corresponding to
it. Then every correct partition of Xλ defines a subalgebra of A which is m-relatively complete, or
equivalently, a monadic operator on A.

Proof. Any correct partition of Xλ defines a decomposition A = AK1
1 × · · · ×AKmm , where A1, . . . , Am

are finite MV -chains. From this decomposition, a monadic operator on A can be obtained as that
described after equation (1). �

Now we define a category BSLMfin of monadic labelled Boolean spaces, the objects of which are the
pairs (Xλ, E), where Xλ is a labelled Boolean space and E is an equivalence relation which is a correct
partition of Xλ.

Let (A,∃) be a finite monadic MV -algebra. Then Xλ = EL(A) is a labelled Boolean space. On Xλ

there is a homogeneous (correct) partition E corresponding to the monadic operator ∃ (see [3]).
Conversely, suppose we have a labelled Boolean space Xλ and a homogeneous (correct) partition

E. Let E(x) = {y ∈ X : there is U ∈ E such that x ∈ U ∧ y ∈ U}.
Then this partition E defines a monadic operator ∃ on A = L(Xλ).
Now define a morphism f : (Xλ, E) → (Xλ′ , E′) (similarly to the monadic Boolean algebras) to

be a λ-map f : Xλ → Xλ′ which satisfies the following condition: f(E(x)) = E′(f(x)), being the
condition of strong isotonicity. So, we arrived at

Theorem 3. The category of monadic labelled Boolean spaces BSLMfin with strongly isotone λ-maps
is dually equivalent to the category of finite monadic MV -algebras.

Remark 4. Let us note that a duality between the category of multisets and the category of finite
MV -algebras is established in [5]. The duality established in this section is a particular case of the
one given in [5], but represented in another way. We also mention the related paper [7] (especially,
Theorem 1.5).

1A subset of X is E-saturated if it coincides with the union of E-equivalence classes.
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5. Projective Monadic MV -algebras

Now we come back to the subvariety Kn (MMV + (Kn)) for 1 ≤ n ∈ ω.
There is a unique monadic operator ∃ on Skn , which corresponds to an m-relatively complete totally

ordered MV -subalgebra, converting the algebra Skn into a simple monadic MV -algebra [8]. This
subalgebra coincides with the greatest diagonal subalgebra, i.e., d(Skn) = {(x, . . . , x) ∈ Skn : x ∈ Sn}.
Denote this monadic MV -algebra by (Skn,∃d). In this case, the “diagonal” monadic operator ∃d is
defined as follows:

∃d(x1, . . . , xk) = (xj , . . . , xj),

where xj = max(x1, . . . , xk). The operator ∀d is defined dually:

∀d(x1, . . . , xk) = (xi, . . . , xi),

where xi = min(x1, . . . , xk).
Notice that Kn is generated by (Skp ,∃d), p = 1, . . . , n and k ∈ ω. Moreover, Kn is locally finite

and there exists a maximal k ∈ ω depending on p and m such that (Skp ,∃d) is m-generated. There

exists also a maximal positive number r(k, p,m) depending on k p and m such that (Skp ,∃d)r(k,p,m) is
m-generated.

We emphasize that for everym there is a finite number of simplem-generated monadicMV -algebras
from Kn.

Observe that, since the variety Kn is locally finite, the free object in m generators, denoted by
FKn(m), is finite, and the labelled Boolean space Xλ(m) of FKn(m) is a finite cardinal sum of one-
element labelled points. So, FKn(m) is a finite product of simple monadic MV -algebras, where one
of the factors coincides with (S1

1 ,∃d). Therefore we can represent FKn(m) as (S1
1 ,∃d) ×

∏
i∈I Ai for

some finite set I, where Ai is a simple m-generated monadic MV -algebra from Kn.
Recall now that a projective object of a variety is an object which is a retract of a free object. We

will give a characterisation of projective finitely generated MMV -algebras and give two proofs of the
assertion - algebraic and in dual category.

Theorem 5. An m-generated MMV -algebra A from Kn is projective, iff A is isomorphic to (S1
1 ,∃d)×

A′ for some finite MMV -algebra A′.

Proof. Firstly, we give an algebraic proof. Let A have the form A′ × (S1
1 ,∃d). Since the m-generated

free MMV -algebra in Kn is a finite product of subdirectly irreducible simple MMV -algebras, we
find that any homomorphism of FKn(m) is a projection on the factors. Let us suppose that A (in its
representation as product) has k factors. Let us permute the factors of FKn(m) in such a way that
the first k factors are isomorphic to the first k factors of A. So, A is a homomorphic image of FKn(m),
which is an isomorphic copy of A. Let this homomorphism be a projection π : FKn(m) → A. So,
π(x1, . . . , xk, . . . , xq) = (x1, . . . , xk) and let us suppose that x1 ∈ S1

1 .
Let π be the projection whose image gives the rest part of the product (S1

1 ,∃d) ×
∏
i∈I Ai. Then

(S1
1 ,∃d) is a subalgebra of every non-trivial MMV -algebra. So, π(FKn) contains a subalgebra which

is isomorphic to (S1
1 ,∃d). In other words, we have an embedding ε : A → FKn(m) such that

ε(x1, . . . , xk) = (x1, . . . , xk, x1, . . . , x1). Therefore A is a subalgebra of FKn(m) such that πε = IdA.
It means that A is a retract of FKn(m).

Conversely, if A does not have the form A′ × (S1
1 ,∃d), then A cannot be embedded into FKn(m).

From here we conclude the proof of the theorem.
Now we give another proof of this theorem using duality. Let Xλ be the labelled Boolean space

of the MMV -algebra A and Yλ′ the labelled Boolean space of FKn(m). We have to show that Xλ is
a retract of Yλ′ . Since A has the form (S1

1 ,∃d) × A′, we find that Xλ has the form of cardinal sum

(x, 1) t
∐k−1
j=1 (x, ij), i. e., Xλ contains the labelled point (x, 1). Since A is a homomorphic image of

FKn , we find that there exists an injective λ-map f : Xλ → Yλ′ . Notice that for every (Si,∃) there
exists an embedding of (S1

1 ,∃d) into (Si,∃). In the dual picture we have a λ-map from Uλ into Vλ′ ,
where Uλ = EL((Si,∃)) and Vλ′ = EL((S1

1 ,∃d)), since λ(x) divides λ′(y).
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Now we construct a λ-map h : Yλ′ → Xλ in the following way: let hf((x, i)) = (x, i) and for every
(y, j) ∈ Yλ′ − f(Xλ) h((y, j)) = (x, 1) ∈ Xλ. It is clear that hf = IdXλ . Therefore, Xλ is a retract of
Yλ′ . It means that A is a retract of FKn(m).

Conversely, if A does not have the form A′ × (S1
1 ,∃d), then Xλ does not contain a point with label

1, i. e., a point (x, 1). But Yλ′ contains points of such kind. In this case, there is no any λ-map from
Yλ′ to Xλ sending this point, because this point must be sent to the point labelled by 1. So, Xλ will
not be a retract of Yλ′ . �

Corollary 6. Any subalgebra of the m-generated free algebra FKn(m) is projective.

Proof. The proof immediately follows from the fact that any subalgebra of the free m-generated
algebra FKn(m) contains as a factor the algebra which is isomorphic to (S1

1 ,∃d). �

Consider the variety of MV -algebras Vn, which is generated by {S1, . . . , Sn}. Let us observe that

A =

n∏
p=1

(S1
p ,∃)r(1,p,m)

is an algebra with a trivial monadic operator ∃ (i. e. ∃x = x) which is isomorphic as an MV -algebra
to the m-generated free MV -algebra FVn(m), by Lemma 2.2 in [6], and Theorem 1 in [9]. Hence we
write A = (FVn(m),∃).

Since
∏n
p=1(S1

p ,∃)r(1,p) contains as a factor an algebra isomorphic to (S1
1 ,∃d), by Theorem 5 it

holds.

Theorem 7. The MMV -algebra A = (FVn(m),∃) is projective.

6. Unification Problem

Let E be an equational theory. The E-unification problem is formulated as follows: given two
terms s, t, to find a unifier for them, that is, a uniform replacement of the variables occurring in s
and t by other terms that makes s and t equal modulo E. For detailed information on unification
problems we refer to [11,12].

Let us be more precise. Let Φ be a set of functional symbols and let V be a set of variables. Let
TV (Φ) be the term algebra built from Φ and V , and TV (Φm) be the term algebra of m-variable terms.
Let E be a set of equations p(x) = q(x), where p(x), q(x) ∈ TV (Φm).

Let V be the variety of algebras over Φ, axiomatized by the equations in E.
A unification problem modulo E is a finite set of pairs

E = {(sj , tj) : sj , tj ∈ TV (Φm), j ∈ J}

for some finite set J . A solution to (or unifier for) E is a substitution σ (i.e., an endomorphism of the
term algebra TV (Φm)) such that the equality σ(sj) = σ(tj) holds in every algebra of the variety V.
The problem E is solvable (or unifiable) if it admits at least one unifier.

Let (X,�) be a quasi-ordered set (i. e., a reflexive and transitive relation). A µ-set for (X,�)
(see [12]) is a subset M ⊆ X such that: (1) every x ∈ X is less than, or equal to some m ∈M ; (2) all
elements of M are mutually �-incomparable.

There might be no µ-set for (X,�) (in this case we say that (X,�) has type 0), or there might
be many of them, due to the lack of antisymmetry. However, all µ-sets for (X,�), if any, must have
the same cardinality. We say that (X,�) has type 1, ω,∞, iff it has a µ-set of cardinality 1, of finite
(greater than 1) cardinality or of infinite cardinality, respectively.

Substitutions are compared by instantiation in the following way: we say that σ : TV (Φm) →
TV (Φm) is more general, than τ : TV (Φm) → TV (Φm) (written as τ � σ), iff there is a substitution
η : TV (Φm) → TV (Φm) such that for all x ∈ Vm, we have E ` η(σ(x)) = τ(x). The relation � is a
quasi-order.

Let UE(E) be the set of unifiers for the unification problem E ; then (UE(E),�) is a quasi-ordered
set.

We say that an equational theory E has:
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1. Unification type 1, iff for every solvable unification problem E , UE(E) has type 1;
2. Unification type ω, iff for every solvable unification problem E , UE(E) has type ω;
3. Unification type∞, iff for every solvable unification problem E , UE(E) has type 1, or ω, or∞,

and there is a solvable unification problem E such that UE(E) has type ∞;
4. Unification type nullary, if none of the preceding cases applies.

An algebra A is called finitely presented if A is finitely generated, with the generators a1, . . . , am ∈
A, and there exist a finite number of equations P1(x1, . . . , xm) = Q1(x1, . . . , xm), . . . , Pn(x1, . . . , xm) =
Qn(x1, . . . , xm) holding in A on the generators a1, . . . , am ∈ A such that if there exists an m-generated
algebra B, with generators b1, . . . , bm ∈ B, such that the equations P1(x1, . . . , xm) = Q1(x1, . . . , xm),
. . . , Pn(x1, . . . , xm) = Qn(x1, . . . , xm) hold in B on the generators b1, . . . , bm ∈ B, then there exists a
homomorphism h : A→ B sending ai to bi.

If V is a variety of algebras and Ω is a finite set of m-ary V-equations, then we denote by FV(m,Ω)
the object, free over V with respect to the conditions Ω on the generators (see [13]). If Ω = ∅, then
FV(m,Ω) = FV(m). FV(m,Ω) is a finitely presented algebra.

Now we will give a characterization of finitely presented MMV -algebras.
A filter F of an algebra (A,∃) ∈MMV is called a monadic filter (which is dual to an ideal, see [16])

if for every a ∈ A we have a ∈ F ⇒ ∀a ∈ F .
For any set X ⊆ A, let [X) denote the monadic filter generated by X. It is easy to check that

[X) = {a ∈ A : a ≥ ∀x1 � . . .� ∀xn : x1, . . . , xn ∈ X}.

Theorem 8. Let p be an m-ary term. Then there is a principal monadic filter F such that
FMMV(m, p = 1) ∼= FMMV(m)/F .

Proof. Let
F = {x : x ∈ FMMV(m) and x ≥ ∀pn(g1, . . . , gm) for some n ∈ ω},

where g1, . . . , gm are free generators of FMMV(m). Then g1/F, . . . , gm/F are generators of
FMMV(m)/F .

Let A be an MMV -algebra generated by {a1, . . . , am} such that p(a1, . . . , am) = 1, and let f :
FMMV(m) → A be a homomorphism such that f(gi) = ai, i = 1, . . . ,m. Then ∀pn(g1, . . . , gm) ∈
f−1(1) for every n ∈ ω and therefore F ⊆ f−1(1). By the homomorphism theorem, there is a
homomorphism f ′ : FMMV(m)/F → A such πF f

′ = f . It should be clear that f ′ is the needed
homomorphism extending the map gi/F 7→ ai. �

From this theorem it follows that if an algebra A is finitely presented, then there exists a principal
monadic filter F of the free algebra FMMV(m) such that A ∼= FMMV(m)/F .

Theorem 9. Let u ∈ FMMV(m) such that ∀un 6= 0 for any n ∈ ω. Then F = {x : x ≥ ∀un, n ∈ ω}
is a proper principal monadic filter in FMMV(m) such that FMMV(m)/F ∼= FMMV(m, p = 1) for
some m-ary term p.

Proof. Let F be a monadic filter satisfying the condition of the theorem. Then u = p(g1, . . . , gm)
for some term p, where g1, . . . , gm are free generators of FMMV(m). We find that FMMV(m)/F is
generated by g1/F, . . . , gm/F , and that p(g1/F, . . . , gm/F ) = p(g1, . . . , gm)/F = 1F (m)/F . The rest
can be verified as in the proof of Theorem 8. �

Combining the two theorems, we arrive at

Theorem 10. An m-generated MMV -algebra A is finitely presented, iff there exists a principal
monadic filter F of FMMV(m) such that FMMV(m)/F ∼= A.

Now we follow Ghilardi [11], who has introduced the relevant definitions for E-unification from
an algebraic point of view. Let E be an equational theory. By an algebraic unification problem we
mean a finitely presented algebra A of the variety associated to E. A solution for it (also called a
unifier for A) is a pair given by a projective algebra P and a homomorphism u : A → P . The set
of unifiers for A is denoted by UE(A). A is said to be unifiable or solvable, iff UE(A) is not empty.
Given another algebraic unifier w : A → Q, we say that u is more general, than w, written w � u, if
there is a homomorphism g : P → Q such that w = gu.
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The set of all algebraic unifiers UE(A) of a finitely presented algebra A forms a quasi-ordered set
with the quasi-ordering �.

The algebraic unification type of an algebraically unifiable finitely presented algebra A in the
variety V is now defined exactly as in the symbolic case, using the quasi-ordering set (UE(A),�).

Theorem 11. The unification type of the equational class Kn is 1, i. e., unitary.

Proof. The proof immediately follows from Theorem 5. Indeed, any finitely presented MMV -algebra
in the variety Kn is finite. The finitely presented projective algebras are those of the kind (S1

1 ,∃d)×A′
(Theorem 5). Let the MMV -algebra A be unifiable. It means that there is a homomorphism from A
into a projective algebra, say B× (S1

1 ,∃d), hence also a homomorphism h : A→ (S1
1 ,∃d). Then A is a

retract of A×(S1
1 ,∃d) which is projective. Indeed, we can take the homomorphism ε = (IdA, h) : A→

(A × (S1
1 ,∃d)) (i. e., ε(a) = (a, h(a))) and the projection π : A × (S1

1 ,∃d) → A so that hε = IdA (i.
e., identity homomorphisms are most general unifications). It is obvious that any projective algebra
is unifiable. Thereby we have shown that an MMV -algebra A is unifiable, iff it is projective. �
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