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THE PROBLEMS OF A PUNCH IN THE LINEAR THEORY OF

VISCO-ELASTICITY

G. KAPANADZE AND L. GOGOLAURI

Abstract. The problem of pressure of a rigid punch upon a viscous half-plane is considered. As
is known, building and composition materials possess the property of visco-elasticity and its affect

is reflected in the Hook’s law. Unlike the elastic bond, the stresses for visco-elastic bodies are

proportional to deformations and to their time derivatives. Investigations of different possible forms
of visco-elastic correlations can be found in [1–5,8–10].

The goal of the present work is to extend the well-known Kolosov–Muskhelishvili’s method elabo-

rated for the problem of pressure of a rigid punch in the case of the classical theory of plane elasticity
to the theory of linear visco-elasticity based of the Kelvin–Vogt model [9].

1. Introduction

One of the models of the linear theory of visco-elasticity is the Kelvin–Vogt model which is charac-
terized by the fact that stresses in the Hook’s law are proportional both to deformations and to time
derivatives, where the former describes the Hook’s law and the latter the Newton law of viscosity.

Following the Kelvin–Vogt model [9], the Hook’s law for visco-elasic bodies has the form

Xx = λθ + 2µexx + λ∗θ̇ + 2µ∗ėxx,

Yy = λθ + 2µeyy + λ∗θ̇ + 2µ∗ėyy, (1)

Xy = µ

(
∂v

∂x
+
∂u

∂y

)
+ µ∗

(
∂v̇

∂x
+
∂u̇

∂y

)
,

where ϑ = exx + eyy = ∂u
∂x + ∂v

∂y , Xx, Yy, Xy, u, v, exx, eyy, exy are the functions of variables x, y, t.

Under t we mean the time parameter and the points in the expressions θ̇, . . . , u̇ denote derivatives in
time t; λ, µ and λ∗, µ∗ are, respectively, elastic and visco-elastic constants.

In what follows, the use will be made of the known Kolosov–Muskhelishvili’s formulas which may
be referred to any solid bodies. The above-mentioned formulas are of the form [6]

Xx + Yy = 4 Re[Φ(z, t)] = 4 Re[ϕ′(z, t)],

Yy −Xx + 2iXy = 2[zϕ′′(z, t) + ψ′(z, t)] = 2[zΦ′(z, t) + Ψ(z, t)],
(2)

where Φ(z, t) = ϕ′(z, t); Ψ(z, t) = ψ′(z, t). From (2) we have the formula

Yy − iXy = Φ(z, t) + Φ(z, t) + zΦ′(z, t) + Ψ(z, t), (3)

which will frequently be used in the sequel.
The principle vector (X,Y ) of external forces applied to the boundary is assumed to be finite and

the stresses and rotation vanish at infinity, hence for large |z|, we have

Φ(z, t) = −X + iY

2πz
+ o

(
1

z

)
; Ψ(z, t) =

X − iY
2πz

+ o

(
1

z

)
.

From relations (1), in view of (2), for the function ϑ(z, t) = exx + eyy we get the differential equation

ϑ̇(z, t) + kϑ(z, t) =
2

λ∗ + µ∗
Re[ϕ′(z, t)],

(
k =

λ+ µ

λ∗ + µ∗

)
,
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a solution of which under zero initial conditions (i.e., for ϑ(z; 0) = 0) has the form

ϑ(z, t) =
2

λ∗ + µ∗

t∫
0

Re[ϕ′(z, τ)]ek(τ−t)dτ. (4)

Analogously, from (1) and (2), for the function γ(z, t) = exx−eyy we obtain the differential equation

γ̇(z, t) +mγ(z, t) = − 1

µ∗
Re[zϕ′′(z, t) + ψ′(z, t)],

(
m =

µ

µ∗

)
,

a solution of which under zero initial conditions has the form

γ(z, t) = − 1

µ∗

t∫
0

Re[zϕ′′(z, τ) + ψ′(z, τ)]em(τ−t)dτ. (5)

Thus in view of (4) and (5), with respect to exx and eyy, we have a system which solution is
represented as follows:

exx =
1

2µ∗

t∫
0

Re

[
æ∗ϕ′(z, τ)ek(τ−t) − (zϕ′′(z, τ) + ψ′(z, τ)) em(τ−t)

]
dτ,

eyy =
1

2µ∗

t∫
0

Re
[
æ∗ϕ′(z, τ)ek(τ−t) + (zϕ′′(z, τ) + ψ′(z, τ)) em(τ−t)

]
dτ,

(6)

where

æ∗ =
2µ∗

λ∗ + µ∗
.

Taking into account equalities dx = dz, dx = dz, dy = −idz, dy = idz, and integrating (6), we
obtain the formula

2µ∗(u+ iv) =

t∫
0

[
æ∗ϕ(z, τ)ek(τ−t) +

(
ϕ(z, τ)− zϕ′(z, τ)− ψ(z, τ)

)
em(τ−t)

]
dτ + 2µ∗(u0 + iv0), (7)

where u0 = u(z, 0), v0 = v(z, 0).
Formula (7) is an analogue of Kolosov–Muskhelishvili’s formula for the second basic problem of the

plane theory of elasticity (see [6]) in the case of a visco-elastic isotropic body.
From formula (7), differentiating with respect to x, we get

2µ∗v′(x, y, t) = Im

[ t∫
0

æ∗ek(τ−t)Φ(z, τ)dτ

]

+ Im

[ t∫
0

em(τ−t)
(

Φ(z, τ)− Φ(z, τ)− zΦ′(z, τ)−Ψ(z, τ)
)
dτ

]
+ 2µ∗v′0(x, y, 0). (8)

Statement of the Problem. Let a visco-elastic body occupy the lower half-plane S−. By L
we denote the boundary of that domain (i.e., the Ox-axis) and assume that a segment L′ = [−1; 1]
enters in contact with a punch having a given base shape and the punch is pressed into the half-
plane with a given force directed vertically downward. Assume also that the punch displacement is
translational in a normal direction with respect to the boundary, in the absence of friction. Under the
given assumptions, tangential stress is zero and the boundary conditions have the form

X−y (x, 0, t) = 0, x ∈ L; Y −y (x, 0, t) = 0, x ∈ L′′ = L− L′;
v−(x, 0, t) = f(x, t), x ∈ L′,

(9)

where f(x, 0) = f(x) is the given function defining the shape of the punch base before it is pressed
into the half-plane.
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In the sequel, the expression v−(x, 0, t) will be written as v−(x, 0, t) = v−(x, t) and so we will do
for other similar expressions.

Assume that external forces acting on the punch have a resultant

X = 0, Y = −N0 = −
1∫
−1

N(x, t)dx,

where N(x, t) is a normal stress at the point x ∈ L′.
Our problem is to define elastic equilibrium of the domain S− and normal stress P (x, t) acting

under the punch.
Solution of the Problem. Passing in (8) to the limit as z → x ∈ L′ (z ∈ S−) and taking into

account (3) and (9), we have

Im

[
æ∗e−kt

t∫
0

Φ−(x, τ)ekτdτ + 2e−mt
t∫

0

Φ−(x, τ)emτdτ

]
= 2µ∗v′−(x, t)− 2µ∗v′−0 (x, 0). (10)

Following N. I. Muskhelishvili (see [6]), we extend the function Φ(z, t) to the upper half-plane (S+)
in such a way that its values continue analytically the values of Φ(z, t) in the lower half-plane through
the unloaded sections (i.e., on the section L′′).

In our case, proceeding from the boundary conditions and formula (3), we define Φ(z, t) in S+ as
follows:

Φ(z, t) = −Φ∗(z, t)− zΦ′∗(z, t)−Ψ∗(z, t), z ∈ S+, (11)

where Φ∗(z, t) = Φ(z, t); Ψ∗(z, t) = Ψ(z, t),. From (11), we have

Φ∗(z, t) = −Φ(z, t)− zΦ′(z, t)−Ψ(z, t).

The obtained in a such a way piecewise-holomorphic function we again denote by Φ(z, t). Then for
finding the function Ψ(z, t) by means of Φ(z, t), we obtain the following correlation

Ψ(z, t) = −Φ(z, t)− Φ∗(z, t)− zΦ′(z, t),
and thus the stress and displacement components are expressed by one piecewise-holomorphic function
Φ(z, t). Substituting the obtained value of Ψ(z, t) into (3), we find that

Yy − iXy = Φ(z, t)− Φ(z, t) + (z − z)Φ′(z, t).
On the basis of the above formula, we have

Y −y (x, t)− iX−y (x, t) = Φ−(x, t)− Φ+(x, t), x ∈ L′, (12)

or passing to the complex-conjugate value and taking into account the equalities Φ−(x, t) = Φ+
∗ (x, t);

Φ+(x, t) = Φ−∗ (x, t), we obtain

Y −y (x, t) + iX−y (x, t) = Φ+
∗ (x, t)− Φ−∗ (x, t). (13)

Subtracting (18) and (13), in view of the fact that X−y (x, t) = 0, x ∈ L, we obtain

Φ−(z, t) + Φ−∗ (z, t) = Φ+(z, t) + Φ+
∗ (z, t).

This implies that the function Φ(z, t) + Φ∗(z, t) is holomorphic on the whole plane, and since it
vanishes at infinity, we have the equality

Φ∗(z, t) = −Φ(z, t). (14)

We get back now to equality (10). On the basis of (14), formula (10) can be written in the form

e−kt
t∫

0

æ∗ekτΩ(x, τ)dτ + 2e−mt
t∫

0

emτΩ(x, τ)dτ = 4iµ∗f1(x, t), (15)

where

Ω(x, t) = Φ+(x, t) + Φ−; f1(x, t) = 4iµ∗[f ′(x, t)− f ′(x)]. (16)
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Differentiating (15) with respect to t, we obtain

−ke−kt
t∫

0

æ∗ekτΩ(x, τ)dτ − 2me−mt
t∫

0

emτΩ(x, τ)dτ + (æ∗ + 2)Ω(x, t) = ḟ1(x, t). (17)

Multiplying (15) by m and summing with (17), we get

æ∗(m− k)

t∫
0

ekτΩ(x, τ)dτ + (æ∗ + 2)ektΩ(x, t) = ḟ2(x, t),

where
f2(x, t) = ekt[f1(x, t) +mf1(x, t)] (18)

from which after differentiation with respect to t, we obtain the following equation:

Ω̇(x, t) + nΩ(x, t) = − ḟ2(x, t)

æ∗ + 2
e−kt, (19)

where

n =
mæ∗ + 2k

æ∗ + 2
.

Substituting t = 0 into (17), we have

Ω(x, 0) =
ḟ1(x, 0)

æ∗ + 2
. (20)

A solution of differential equation (19) under the initial condition (20) takes the form

Ω(x, t) = e−nt

Ω(x, 0) +

t∫
0

e(n−k)τ ḟ2(x, τ)

æ∗ + 2
dτ

 .
Thus, on the basis of (16), for the function Φ(z, t) we obtain the boundary value problem of linear

conjugation
Φ+(x, t) + Φ−(x, t) = F (x, t), (21)

where

F (x, t) = e−nt
[
Ω(0, ω) +

1

æ∗ + 2

t∫
0

e(n−k)τ ḟ2(x, τ)dτ

]
. (22)

The vanishing at infinity solution of problem (21) of the class h0 (i.e., unbounded at the ends of
the segment L′) has the form (see [7])

Φ(z, t) = − 1

2πχ0(z)

1∫
−1

χ+
0 (σ)F (σ, t)

σ − z
dσ +

C0

χ0(z)
,

where χ0(z) =
√

(1− z)(1 + z) = −i
√

(z − 1)(z + 1), χ+
0 (σ) is the positive value of the function χ0(z)

on the left-hand side (i.e., from S+) of the segment L′.
Taking into account behaviour of the function Φ(z, t)χ0(z) at infinity, for the constant C0 we obtain

the formula

C0 =
N0

2π
.

For the normal stress P (x, t) under the punch, on the basis of (18) and (14), we get

P (x, t) = 2 Re Φ+(x, t),

or taking into account that from (22) follows

Re Φ+(x, t) =
1

2πi

1

χ+
0 (x)

1∫
−1

χ+
0 (σ)F (σ, t)

σ − x
dσ +

N0

2πχ+
0 (x)

,
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we will have

P (x, t) = − 1

πiχ+
0 (x)

1∫
−1

χ+
0 (σ)F (σ, t)

σ − x
+

N0

πχ+
0 (x)

,

where F (σ, t) is defined by formula (22).
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