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BERIKASHVILI’S FUNCTOR D: GENERALIZATION AND APPLICATION

T. KADEISHVILI

Abstract. We present the notion of Berikashvili’s functor D, its generalization for the A(∞) case
and the corresponding algebraic model of a fibre bundle. It is a pleasure to dedicate this paper to

my teacher Nodar Berikashvili on his 90th anniversary.

1. Twisting Cochains for DG-algebras

1.1. Browns twisting cochains. Let (K, dK : K∗ → K∗−1,∇K : K → K ⊗K) be a DG-coalgebra
and (A, dA : A∗ → A∗−1, µA : A⊗ A → A) be a DG-algebra. Then the cochain complex C∗(K,A) =
Hom(K,A) with a differential δα = αdK + dAα and multiplication α ^ β = µA(α ⊗ β)∇K is a
DG-algebra.

A Brown’s twisting cochain [3] is a homomorphism φ : K∗ → A∗−1, i.e., deg φ = −1, satisfying
δφ = φ ^ φ.
Twisted tensor product. Let (P, dP , ν : A ⊗ P → P ) be a DG A-module. Then any twisting
cochain φ : K → A determines a homomorphism dφ : K ⊗ P → K ⊗ P by dφ(k ⊗ p) = dKk ⊗ p+ k ⊗
dPm + (k ⊗ p) ∩ φ where (k ⊗ p) ∩ φ = (idK ⊗ ν)(idK ⊗ φ ⊗ idP )(∇K ⊗ idP )(k ⊗ p). The Brown’s
condition dφ = φ ^ φ implies that dφdφ = 0. The obtained chain complex (K ⊗M, dφ) is called
twisted tensor product and is denoted as K ⊗φM .

Using these notions, Edgar Brown constructed an algebraic model of a fibre bundle (see below).
For a morphism of DG-algebras f : A→ A′, a morphism of modules g : P → P ′, g(a·p) = f(a)·g(p)

and a twisting cochain φ : K → A the map idK ⊗ g : K ⊗φ P → K ⊗fφ P ′ is a chain map.

1.2. Berikashvili’s equivalence of twisting cochains. Two twisting cochains φ, ψ : K → A are
equivalent (Berikashvili [2]) if there exists c : K → A, deg c = 0, such that ψ = φ+δc+ψ ^ c+c ^ φ,
notation φ ∼c ψ. This equivalence allows one to perturb twisting cochains.

Essential applications of Berikashvili’s equivalnce give the following.

Theorem 1. If φ ∼c ψ, then K⊗φ P
Fc−→ K⊗ψ P given by Fc(k⊗ p) = (k⊗ p)∩ c is an isomorphism

of DG-comodules.

Berikashvili’s functor D. Let Tw(K,A) = {φ : K → A, δφ = φ ◦ φ} be the set of all twisting

cochains. Berikasvili’s functor D(K,A) is defined as the factorset D(K,A) = Tw(K,A)
∼ .

The following property of D plays an essential role in some constructions.

Theorem 2 (Berikashvili [2]). Let (K, dK ,∇K) be a DG-colagebra with free Kis and (A, dA, µA) be a
connected DG-algebra. If f : A → A′ is a weak equivalence of connected DG-algebras (i.e., homology
isomorphism), then D(f) : D(K,A)→ D(K,A′) is a bijection.

1.3. Bar interpretation. The notions of twisting cochain and their equivalence have useful inter-
pretation in terms of Adams’s bar construction [1].
Twisting Cochains and the Bar Construction. Any twisting cochain φ : K → A induces a map
of DG-coalgebras fφ : K → B(A) given by fφ =

∑
i(φ⊗ · · · ⊗ φ)∇iK .

Bar interpretation of equivalence of twisting Cochains. In the category of DG-coalgebras there
is the following notion of homotopy: two DG-coalgebra maps f, g : (K, dK ,∇K)→ (K ′, dK′ ,∇K′) are
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homotopic, if there exists chain homotopy D : K → K ′, dK′D + Ddk = f − g, which, in addition, is
a f − g-coderivation, that is, ∇K′D = (f ⊗D +D ⊗ g)∇K .

If φ ∼c ψ, then fφ and fψ are homotopic by D(c) : K → BA given by D(c) =
∑
i,j(ψ ⊗ · · ·

(j − times) · · · ⊗ ψ ⊗ c⊗ φ⊗ · · · ⊗ φ)∇iK .
Bar interpretation of a functor D. Asigning to a twisting cohain φ : K → A the DG-coalgebra
map fφ : K → BA and having in mind that φ ∼c ψ implies fφ ∼D(c) fψ, we obtain a bijection
D(K,A) ↔ [K,BA] where [K,BA] denotes the set of chain homotopy classes in the category of
DG-coalgebras.

We remark here that the theorem 2 means that for a weak equivalence of DG-algebras A→ A′ the
induced map [K,BA]→ [K,BA′] is a bijection.

2. Twisting Cochains for A(∞)-algebras

Here we are going to step from the DG-algebra (A, d, µ) to an A(∞)-algebra (M, {mi}), this notion
was introduced by James Stasheff in [9].

2.1. Category of A(∞)-algebras.

Definition 1 (Stasheff [9]). An A(∞) algebra (A, {mi}) is a graded module A equipped with a sequence
of operations {mi : A⊗i → A, i = 1, 2, 3, 4, . . . } which satisfies the following conditions: deg mi = 2−i
and ∑

i+j=n+1

n−j∑
k=0

mn−j+1(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ ak+j+1 ⊗ · · · ⊗ an) = 0.

Stasheff’s defining condition for n = 1 gives m1m1 = 0, i.e., m1 is a differential, for n = 2, m1 is a
derivation with respect to the multiplication m2, and for n = 3, m2 is homotopy associative, and the
appropriate homotopy is m3. So, (A, {mi}) is a strong homotopy associative (sha) algebra.
Bar interpretation. The Stasheff’s condition guarantees that the coderivation dm : B(A) → B(A)
given by

dm(a1 ⊗ · · · ⊗ an)

=
∑n
k=0

∑n−k
j=1 a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ ak+j+1 ⊗ · · · ⊗ an

satisfies dmdm = 0: the Stasheff’s condition is the projection of this equality on the cogenerating mod-
ule A. So, the bar construction (B(A, {mi}), dm) with this perturbed differential is a DG-coalgebra.
Particular case. The notion of an A(∞) algebra generalizes the notion of DG-algebra: an A(∞)-
algebra of type (A, {m1,m2,m3 = 0,m4 = 0, . . . }) is a DG-algebra with the differential m1 and
associative multiplication m2.
Morphism of A∞-algebras. This notion was introduced in [5]. A morphism of A(∞)-algebras
(A, {mi}) → (A′, {m′i}) is defined as a sequence of homomorphisms {fi : A⊗i → A′, i = 1, 2, . . . },
which satisfy the following conditions: deg fi = 1− i and∑

i+j=n+1

∑n−j
k=0 fi(a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j)⊗ · · · ⊗ an)

=
∑n
t=1

∑
k1+···+kt=nm

′
t(fk1(a1 ⊗ · · · ⊗ ak1)⊗ fk2(ak1+1 ⊗ · · · ⊗ ak1+k2)⊗

· · · ⊗ fkt(ak1+···+kt−1+1 ⊗ · · · ⊗ an)).

Particulary, for n = 1, this gives f1m1 = m′1f1, that is, f1 : (A,m1) → (A′,m′1) is a chain map. We
call {fi} a weak equivalence if f1 induces isomorphism of homologies.
Bar interpretation. A morphism {fi} defines the DG-coalgebra map of the bar constructions
B({fi}) : B(A, {mi})→ B(A′, {m′i}), given by

B({fi})(a1 ⊗ · · · ⊗ an)
=

∑n
t=1

∑
k1+···+kt=n fk1(a1 ⊗ · · · ⊗ ak1)⊗ · · · ⊗ fkt(ak1+···+kt−1+1 ⊗ · · · ⊗ an).

Particularly, a morphism of A∞-algebras

{f1, f2 = 0, f3 = 0, . . . } :

(A, {m1,m2,m3 = 0,m4 = 0, . . . })→ (A′, {m′1,m′2,m′3 = 0,m′4 = 0, . . . })
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is an ordinary map of DG-algebras.

2.2. Category of A(∞)-modules. This definition from [5] generalizes the notion of a DG-module
over a DG-algebra. An A(∞)-module over an A(∞)-algebra (A, {mi}) is a graded module P equipped
with a sequence of “actions” {pi : P ⊗ A⊗i → A, i = 0, 1, 2, 3, . . . } satisfying the conditions:
deg pi = 1− i and, for ak ∈ A, x ∈ P ,∑n

i=0 pn−i(pi(x⊗ a1 ⊗ · · · ⊗ ai)⊗ ai+1 ⊗ · · · ⊗ an) +
∑n
k=0

∑n−k
i=1

pn−i+1(x⊗ a1 ⊗ · · · ⊗ ak ⊗mi(ak+1,⊗ · · · ⊗ ak+i)⊗ ak+i+1 ⊗ · · · ⊗ an) = 0.

Bar interpretation. This structure induces dp : P ⊗B(A)→ P ⊗B(A) by

dp(x⊗ a1 ⊗ · · · ⊗ an) =
∑n
i=0 pi(x⊗ a1 ⊗ · · · ⊗ ai)⊗ ai+1 ⊗ · · · ⊗ an

+
∑n
k=0

∑n−k
i=1 x⊗ a1 ⊗ · · · ⊗ ak ⊗mi(ak+1 ⊗ · · · ⊗ ak+i)⊗ ak+i+1 ⊗ · · · ⊗ an

which satisfies dpdp = 0, thus (P ⊗B(A), dp) is a DG-comodule over DG-coalgebra (B(A, {mi}), dm).
Particular cases. (1) An A(∞)-module (P, {p1, p2, 0, 0, . . . }) over an A(∞)-algebra (A, {m1,m2,
0, 0, . . . }) is a DG-module over DG-algebra (A,m1,m2) with a differential p0 : P → P and strictly
associative action p1 : P ⊗ A → A. (2) An A(∞)-algebra (A, {mi}) is an A(∞)-module over itself
with structure maps pn(x⊗ a1 ⊗ · · · ⊗ an) = mn+1(x⊗ a1 ⊗ · · · ⊗ an).
Morphism of A(∞)-modules. Let (P, {pi}) be an A(∞)-module over an A(∞)-algebra (A, {mi}),
and let (P ′, {p′i}) be an A(∞)-module over an A(∞)-algebra (A′, {m′i}). A morphism of the couples

({gi}, {fi}) : ((P, {pi}), (A, {mi}))→ ((P ′, {p′i}), (A′, {m′i}))
is defined in [5] as: a morphism of A(∞)-algebras {fi} : (A, {mi}) → (A′, {m′i}) and a sequence of
homomorphisms {gi : P ⊗A⊗i → P ′, i = 0, 1, 2, 3, . . . } such that deg gi = −i and∑n

k=0

∑n−k
j=1 gn−j+1(x⊗ a1 ⊗ · · · ⊗ ak ⊗mj(ak+1 ⊗ · · · ⊗ ak+j) · · · ⊗ an)

+
∑n
k=0 gn−k(pk(x⊗ a1 ⊗ · · · ⊗ ak)⊗ ak+1 ⊗ · · · ⊗ an)

=
∑n+1
t=1

∑
k1+···+kt=n+1 pt(gk1(x⊗ a1 ⊗ · · · ⊗ ak1)⊗ fk2(ak1+1 ⊗ · · · ⊗ ak1+k2)

⊗fk3(ak1+k2+1 ⊗ · · · ⊗ ak1+k2+k3)⊗ · · · ⊗ fkt(ak+k1+···+kt−1+1 ⊗ · · · ⊗ an)).

Bar interpretation. Such a morphism induces the chain map G : (P ⊗ BA, dp) → (P ′ ⊗ BA′, dp′)
by

G(x⊗ a1 ⊗ · · · ⊗ an) =
∑n+1
t=1

∑
k1+···+kt=n+1 gk1(x⊗ a1 ⊗ · · · ⊗ ak1)

⊗fk2(ak1+1 ⊗ · · · ⊗ ak1+k2)⊗ · · · ⊗ fkt(ak+k1+···+kt−1+1 ⊗ · · · ⊗ an).

2.3. A∞-twisting Cochains. Now we have to replace in the definition of a twisting cochain a DG-
algebra (A, dA, µ) by an A∞-algebra (A, {mi}), see [6], [7].

An A(∞)-twisting cochain we define as a homomorphism φ : K → A of degree −1 satisfying the
condition

∑∞
k=1mk(φ⊗ · · · ⊗ φ)∇kK = φdK .

The set of all A(∞)-twisting cochains Tw∞(K,A) is a bifunctor: for a morphism of DG-coalgebras
h : K ′ → K, the composition φ ◦ h belongs to Tw∞(K,A), similarly, for a morphism of A∞-algebras
f = {fi} : (A, {mi}) → (A′, {m′i}), the composition f(φ) =

∑
fi(φ ⊗ · · · ⊗ φ)∇i belongs to

Tw∞(K,A′).
Bar Interpretation. An A∞-twisting cochain φ : K → A induces the DG-coalgebra morphism
fφ : K → B(A) by fφ =

∑
i(φ ⊗ · · · ⊗ φ)∇iK . Conversely, any DG-coalgebra map f : K → B(A) is

fφ for the A(∞)-twisting cochain φ = p◦f : K → B(A)→ A. So, Mordgcoalg(K,B(A))↔ T∞(K,A).
Equivalence of A∞-twisting Cochains [6]. Two A∞-twisting cochains φ, ψ : K → A are equivalent
if there exists c : K → A, deg c = 0, such that

ψ − φ = cdK +
∑
k,j

mk(ψ ⊗ · · · (j) · · · ⊗ ψ ⊗ c⊗ φ⊗ · · · ⊗ φ)∇k,

notation φ ∼c ψ.
Bar interpretation. If φ ∼c ψ, then fφ and fψ are homotopic in the category of DG-coalgebras:
chain homotopy D∞(c) : K → B(A) is given by D∞(c) =

∑
i,j(ψ ⊗ · · · (j − times) · · · ⊗ ψ ⊗ c ⊗

φ⊗ · · · ⊗ φ)∇iK .
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FunctorD∞. By D∞(K,A) we denote the factorset D∞(K,A) = T∞(K,A)
∼ . Thus we have a bijection

[K,B(A)]↔ D∞(K,A).
Suppose f = {fi} : (A, {mi}) → (A′, {m′i}) is a morphism of A∞-algebras and φ : K → A is an

A∞-twisting cochain.
From the bar construction interpretation it follows that f(φ) : K → A′ given by f(φ) =

∑
i fi(φ⊗

· · · ⊗φ)∇iK is an A∞-twisting cochain, too. Moreover, if φ ∼c ψ, then f(φ) ∼c′ f(ψ) with c′ : K → A′

given by

c′ =
∑
i,j

fi(ψ ⊗ · · · (j − times) · · · ⊗ ψ ⊗ c⊗ φ ⊗ · · · ⊗ φ)∇iK ,

thus we have a map D∞(f) : D∞(K,A)→ D∞(K,A′).
The following theorem is an analogue of Berikashvilis’s theorem 2 for A∞-algebras proved in [6].

Theorem 3. Let (K, dK ,∇K) be a DG-colagebra and (A, {mi}) be a connected DG-algebra. If f =
{fi} : (A, {mi}) → (A′, {m′i}) is a weak equivalence of A∞-algebras, then D∞(f) : D∞(K,A) →
D∞(K,A′) is a bijection, consequently, [K,B(A)]↔ [K,B(A)′].

2.4. Twisted tensor product, the A∞-case. Let (K, dK ,∇K) be a DG-coalgebra, (A, {mi}) be
an A∞-algebra, (P, {pi}) be an A∞-module over an (A, {mi}), and φ : K → A be an A∞-twisting
cochain. It defines on the tensor product K ⊗ P a differential ∂φ : K ⊗ P → K ⊗ P given by

∂φ = d⊗ idP +

∞∑
i=1

(îd⊗ pi)(idK ⊗ φ⊗ ...⊗ φ⊗ idP )(∆i ⊗ idP )

which turns K ⊗φ P = (K ⊗ P, ∂φ) into a differential comodule over (K, d).
Particular case. If A is an A∞-algebra of the form (A, {m1,m2, 0, 0, ...}), and P is an A∞-module
of the form (P, {p1, p2, 0, 0, ...}), then φ is the usual twisting cochain, and K ⊗φ P coincides with the
usual twisted tensor product.

As in the DG-algebra case, equivalent A∞-twisting cochais φ ∼c ψ produce isomorphic twisted
tensor products.

Theorem 4. If φ ∼c ψ, then K⊗φ P
Fc−→ K⊗ψ P given by Fc(k⊗ p) = (k⊗ p)∩ c is an isomorphism

of DG-comodules.

Functoriality. For a morphism of couples

{gi}, {fi} : ((P, {pi}), (A, {mi}))→ ((P ′, {p′i}), (A′, {m′i}))
and an A∞-twisting cochain φ : K → A there exists the chain map K ⊗φ P → K ⊗f(φ) P ′.

3. Minimality Theorems

Minimal A∞-algebras. An A∞-algebra (M, {mi}) we call minimal if m1 = 0, in this case (M,m2)
is strictly associative graded algebra. Suppose f : (M, {mi}) → (M ′, {m′i}) is a weak equivalence of
minimal A∞-algebras, then f1 : (M,m1 = 0) → (M ′,m′1 = 0), which by definition should induce
isomorphism of homology, is automatically an isomorphism. It is not hard to check that in this case
{fi} is an isomorphism of A∞-algebras, thus each weak equivalence of minimal A∞-algebras is an
isomorphism. This fact motivates the word minimal in this notion: the Sullivan’s minimal model has
similar property - a weak equivalence of minimal DG algebras is an isomorphism.

Let us present here the minimality theorem from [5].

Theorem 5. For a DG algebra (A, d, µ) its homology H(A) (all Hi(X)-s are assumed to be free) can
be equipped with a sequence of multi-operations

mi : H(A)⊗i → H(A), i = 1, 2, 3, . . . ; m1 = 0, m2 = µ∗

turning (H(A), {mi}) into a minimal A∞-algebra for which m2 = µ∗ and there exists a weak equiva-
lence of A∞-algebras

f = {fi} : (H(A), {mi})→ (A, {m1 = d,m2 = µ,m3 = 0,m4 = 0, . . . }).
This structure is unique up to an isomorphism in the category of A∞-algebras.
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Analogous results hold for the modules: if (P, dP , νP : A ⊗ P → P ) is a DG-module over A, then
there exist on H(P, dP ) a structure of A∞-module (H(P ), {pi}) over (H(A), {mi}) and a morhism of
couples

({gi}, {fi}) : ((H(P ), {pi}), (H(A), {mi}))→ (P,A)

such that p1 = 0, p2 = ν∗ and g∗1 = idH(P ) : H(P )→ H(P ).
Furthermore, by (3), there is a bijection D∞(f) : D∞(K,A)→ D∞(K,A′), this implies the follow-

ing

Theorem 6. For a twisting cochain φ : K → A, there exists an A∞-cochain ψ : K → (H(A), {mi})
such that φ ∼ f(ψ), consequently, there exists a chain map inducing an isomorphism in the homologies

K ⊗ψ H(P )→ K ⊗f(ψ) P
≈→ K ⊗φ P.

4. Application: A∞-model of a Fibre Bundle

The minimality theorem (5) and the theorem (6) about the lifting of twisting cochains allow one to
construct an effective model of a fibre bundle. Actually, this model and higher operations {mi} and
{pi} were constructed in [4]. Later, we have recognized that they form Stasheff’s A∞ structures, and
the model in these terms was presented in [5]. Similar model was also presented in [8]. Topological

level. Let ξ = (X, p,B,G) be a principal G-fibration. If F is a G-space, then the action G× F → F
determines the associated fibre bundle ξ(F ) = (E, p,B, F,G) with fiber F . Thus, ξ and the action
G× F → F on the topological level determine E.

Chain level. LetK = C∗(B), A = C∗(G), P = C∗(F ). The classical result of E. Brown [3] states that
the principal fibration ξ determines a twisting cochain φ : K = C∗(B) → A = C∗(G) and the action
on chain level C∗(G)⊗C∗(F )→ C∗(F ) defines the twisted tensor product K⊗φ P = C∗(B)⊗φC∗(F )
which gives homology modules of the total space H∗(E). Thus, ξ and the action on the chain level
C∗(G)⊗ C∗(F )→ C∗(F ) determine H∗(E).

The twisting cochain ψ is not uniquely determined and it can be perturbed by the above equivalence
relations for computational reasons.

Homology level. Nodar Berikashvili stated the problem to lift the previous “chain level” model of
associated fibration to “homology level”, i.e., to construct “twisted differential” on C∗(B) ⊗H∗(F ).
Investigation has shown that the principal fibration ξ and the action of Pontriagin’s ring H∗(G) on
H∗(F ), that is, the pairing H∗(G)⊗H∗(F )→ H∗(F ) do not determine H∗(E). But by the minimality
theorem it appeared that H∗(G) carries not only Pontriagin’s product H∗(G) ⊗ H∗(G) → H∗(G),
but also a richer algebraic structure, namely, the structure of minimal A∞-algebra (H∗(G), {mi}),
furthermore, the action G× F → F induces not only the pairing H∗(G)⊗H∗(F )→ H∗(F ), but also
the structure of a minimal A∞-module (H∗(F ), {pi}), and all these operations allow one to define
correct differential on C∗(B) ⊗H∗(F ): according to the theorem (6), there is a weak equivalence, a
homology isomorphism

C∗(B)⊗ψ H∗(F ) = K ⊗ψ H(P )→ K ⊗φ P = C∗(B)⊗φ C∗(F ) ∼ C∗(E).

References

1. J. Adams, On the non-existence of elements of Hopf invariant one. Ann. of Math. (2) 72 (1960), 20–104.

2. N. Berikashvili, On the differentials of spectral sequence. Trudy Tbiliss. Mat. Inst. Razmadze 51 (1976), 1–105.
3. E. Brown, Twisted tensor products. I. Ann. of Math. (2) 69 (1959), 223–246.

4. T. Kadeishvili, On the homology theory of fibrations. Bull. Georg. Acad. Sci. 77 (1975), no. 2, 309–312.
5. T. Kadeishvili, On the homology theory of fibre spaces. Russian Math. Surveys 35 (1980), no. 3, 231–238.
6. T. Kadeishvili, Predifferential of a Fiber Bundle. Russian Math. Surveys 41 (1986), 135–147.

7. T. Kadeishvili, Measuring the noncommutativity of DG-algebras. Topology and noncommutative geometry. J. Math.
Sci. (N.Y.) 119 (2004), no. 4, 494–512.

8. V. Smirnov, Homology of fiber spaces. Russian Math. Surveys 35 (1980), no. 3, 294–298.



110 T. KADEISHVILI

9. J. D. Stasheff, Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275–312.

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str.,

Tbilisi 0177, Georgia
E-mail address: tornike.kadeishvili@gmail.com


