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ON MEIR–KEELER CONTRACTION IN BRANCIARI b-METRIC SPACES

Z. MITROVIĆ1 AND S. RADENOVIĆ2

Abstract. In this paper we consider Meir–Keeler type results in the context of Branciari b-metric

spaces. Our results generalize, improve and complement several ones in the existing literature.

1. Introduction and Preliminaries

In the paper [14] the authors introduced the concept of bv(s)-metric space as follows.

Definition 1.1 ([14]). Let X be a set, let d be a function from X×X into [0,∞) and let v ∈ N. Then
(X, d) is said to be a bv(s)-metric space if for all x, y ∈ X and for all distinct points u1, u2, . . . , uv ∈ X,
each of them different from x and y the following hold:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(Bv3(s)) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)].

Note that:

• b1(1)-metric space is usual metric space,
• b1(s)-metric space is b-metric space with coefficient s of Czerwik [3, 4],
• b2(1)-metric space is rectangular metric space or Branciari metric space [2],
• b2(s)-metric space is rectangular b-metric space with coefficient s of George et al [8] or Bran-

ciari b-metric space [9],
• bv(1)-metric space is v-generalized metric space of Branciari [2],
• Let (X, dK) be a N -polygonal K-metric space over an ordered Banach space (V, || · ||,K)

(see [7]) such that K is a closed normal cone with normal constant λ and the function D :
X ×X → [0,∞) defined by D(x, y) = ||dK(x, y)||. Then (X,D) is bN (λ)-metric space.

Definition 1.2 ([14]). Let (X, d) be a bv(s)-metric space, {xn} be a sequence in X and x ∈ X. Then
(a) The sequence {xn} is said to be convergent in (X, d) and converges to x, if for every ε > 0 there

exists n0 ∈ N such that d(xn, x) < ε for all n > n0 and this fact is represented by lim
n→∞

xn = x or
xn → x as n→∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε > 0 there exists n0 ∈ N
such that d(xn, xn+p) < ε for all n > n0, p > 0.

(c) (X, d) is said to be a complete bv(s)-metric space if every Cauchy sequence in X converges to
some x ∈ X.

Definition 1.3 ([11]). Let (X, d) be a metric space. A mapping T : X → X is called Meir–Keeler
contraction if for every ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ ⇒ d(Tx, Ty) < ε for all x, y ∈ X.
Definition 1.4 ([16]). A mapping T : X → X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1,

where α : X ×X → [0,∞) is a given function. A function α is transitive if, given x, y, z ∈ X,

α(x, y) ≥ 1, α(y, z) ≥ 1⇒ α(x, z) ≥ 1.
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Lemma 1.1 ([1]). Let T : X → X be an α-admissible mapping and let {xn} be a Picard sequence
of T based on a point x0 ∈ X. If x0 satisfies α(x0, Tx0) ≥ 1, then α(xn, xn+1) ≥ 1 for all n ∈ N.
Additionally, if α is transitive, then α(xn, xm) ≥ 1 for all n,m ∈ N such that n < m.

One generalization on Meir–Keeler mappings was given by Gülyaz et al in the paper [9].

Definition 1.5 ([9]). Let (X, d) be a Branciari b-metric space with a constant s ≥ 1. Let T : X → X
be an α-admissible mapping. If for every ε > 0 there exists δ > 0 such that

ε ≤M(x, y) < ε+ δ implies α(x, y)d(Tx, Ty) <
ε

s
, (1)

where
M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)}

for all x, y ∈ X, then T is called generalized α-Meir–Keeler contraction.

Definition 1.6 ([9]). A Branciari b-metric space (X, d) is called α-regular if for any sequence {xn}
such that lim d(xn, x) = 0 and satisfying α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all
n ∈ N.

We note that Gülyaz et al in the paper [9] define Brancari b-metric spaces, but this class of space
has already been defined by George et al in the paper [8] and others called them rectangular b-metric
spaces. Also in the paper [9] Gülyaz et al prove Lemma 2. 5 (see [9, p. 5449]).

Lemma 1.2 (Lemma 2. 5. in [9]). Let (X, d) be a Branciari b-metric space with a constant s ≥ 1.
Let {xn} be a sequence in X satisfying

1. xm 6= xn for all m 6= n,m, n ∈ N,
2. d(xn, xn+1) ≤ 1

sd(xn−1, xn), for all n ∈ N,
3. limn→∞ d(xn, xn+2) = 0. Then {xn} is a Cauchy sequence in (X, d).

Unfortunately, the Lemma 1.2 is not correct, as shown in the following example.

Example 1.1. Put X = R, d(x, y) = |x − y|, x, y ∈ X and xn = 1 + 1
2 + · · · + 1

n . Then (X, d) is
Branciari b-metric space with coefficient s = 1 and sequence {xn} fulfills the conditions of Lemma 1.2
but not the Cauchy sequence.

Of course, then main result in the [9] is not correct, because its proof is needed by Lemma 2. 5.
Here we prove the new version of Lemma 2. 5. in [9], also we show that continuity of function T is
not necessary. Also, note that condition (1) follows the following condition

α(x, y)d(Tx, Ty) ≤ λM(x, y),

for all x, y ∈ X, where λ ∈ (0, 1
s ). In addition, the authors in [9] use that is the next result.

Proposition 1.1 (Proposition 1.6. in [9]). Let {xn} be a Cauchy sequence in a Branciari metric
space (X, d) such that lim d(xn, x) = 0, where x ∈ X. Then lim d(xn, y) = d(x, y), for all y ∈ X. In
particular, the sequence {xn} does not converge to y if y 6= x.

For proof of the main result in [9] (Theorem 2.6) authors used that the Proposition 1.1 is valid if
replace Branciari metric space by a Branciari b-metric space.

Unfortunately, Proposition 1.1 is not true in Branciari b-metric space (see Example 1.7. in [8]).

2. Main Results

Lemma 2.1. Let (X, d) be a complete b2(s)-metric space and let {xn} be a sequence in X such that
xn (n ≥ 0) are all different. Suppose that exists λ ∈ [0, 1√

s
) such that

(1) d(xn, xn+1) ≤ λd(xn−1, xn),
(2) d(xn, xn+2) ≤ λd(xn−1, xn+1),

for all n ≥ 1. Then {xn} is a convergent sequence in (X, d). Additionally, if d is continuous, then for
x∗ for which x∗ = limxn the next estimate holds

d(xn, x
∗) ≤ 2sλn

1− sλ2
d(x0, x1) + 3λn[d(x0, x1) + d(x0, x2)]. (2)
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Proof. First, we note that from conditions 1 and 2 we follow

d(xn, xn+1) ≤ λnd(x0, x1), (3)

and

d(xn, xn+2) ≤ λnd(x0, x2), (4)

for all n ≥ 1.
Let n,m ∈ N and m > n.

1. Case: m− n = 2k for any k ∈ N.
From condition (B23(s)) we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xm)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)]

...

+ sk−2[d(xn+2k−6, xn+2k−5) + d(xn+2k−5, xn+2k−4)]

+ sk−1[d(xn+2k−4, xn+2k−3) + d(xn+2k−3, xn+2k−2)]

+ sk−1d(xn+2k−2, xn+2k)

From conditions (3) and (4) we obtain

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

+ s2λn+2(1 + λ)d(x0, x1)

+ s3λn+4(1 + λ)d(x0, x1)

...

+ skλn+2k−2(1 + λ)d(x0, x1)

+ skλn+2k−2d(x0, x2).

So,

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)[1 + sλ2 + · · ·+ (sλ2)k−1]

+ (sλ2)k−1λnd(x0, x2).

How is it 0 ≤ sλ2 < 1, we obtain

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2
+ λnd(x0, x2). (5)

Now from (5), we conclude that {xn} is Cauchy.
2. Case: m − n = 2k + 1 for any k ∈ N. Similar to the previous case from condition B23(s) we

have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xm)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

+ s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)]

...

+ sk−2[d(xn+2k−6, xn+2k−5) + d(xn+2k−5, xn+2k−4)]

+ sk−1[d(xn+2k−4, xn+2k−3) + d(xn+2k−3, xn+2k−2)]

+ sk[d(xn+2k−2, xn+2k−1) + d(xn+2k−1, xn+2k)

+ d(xn+2k, xn+2k+1)],
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and from here again using the inequalities (3) and (4) we get

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

+ s2λn+2(1 + λ)d(x0, x1)

+ s3λn+4(1 + λ)d(x0, x1)

...

+ skλn+2k−2(1 + λ)d(x0, x1)

+ skλn+2k−2(1 + λ+ λ2)d(x0, x1).

So we have

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2

+ sλn(sλ2)k−1(1 + λ+ λ2)d(x0, x1)

d(xn, xm) ≤ sλn(1 + λ)d(x0, x1)

1− sλ2
+ λn(1 + λ+ λ2)d(x0, x1). (6)

So, {xn} is Cauchy. The estimate (2) follows from (5) and (6) when we let us m run infinitely. �

Lemma 2.2. Let T : X → X be an α-admissible mapping and let {xn} be a Picard sequence of T
based on a point x0 ∈ X. If α is transitive, x0 satisfies α(x0, Tx0) ≥ 1 and

α(x, y)d(Tx, Ty) ≤ λd(x, y), (7)

for all x, y ∈ X, where λ ∈ (0, 1), then it is

d(xm+k, xn+k) ≤ λkd(xm, xn),

for all m,n, k ∈ N, n < m.

Proof. Using Lemma 1.1 we get

α(xm, xn) ≥ 1 for all n < m.

From condition (7) follows

d(xm+k, xn+k) ≤ λ

α(xm+k−1, xn+k−1)
d(xm+k−1, xn+k−1)

≤ λd(xm+k−1, xn+k−1)

...

≤ λkd(xm, xn). �

Lemma 2.3. Let (X, d) be a bv(s)-metric space, T : X → X be a mapping and let {xn} be a sequence
in X such that x0 ∈ X and xn+1 = Txn. If there exists λ ∈ [0, 1) and such that

d(xn, xn+1) ≤ λd(xn−1, xn) for all n ≥ 1, (8)

then T has a fixed point or xn 6= xm for all n 6= m.

Proof. If xn = xn+1 then xn is fixed point of T and proof is hold. So, suppose that xn 6= xn+1 for all
n ≥ 0. Then xn 6= xn+k for all n ≥ 0, k ≥ 1. Namely, if xn = xn+k for some n ≥ 0 and k ≥ 1 we have
that Txn = Txn+k and xn+1 = xn+k+1. Then (8) implies that

d(xn+1, xn) = d(xn+k+1, xn+k) ≤ λkd(xn+1, xn) < d(xn+1, xn)

is a contradiction. Thus we assume that xn 6= xm for all distinct n,m ∈ N. �
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Theorem 2.1. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ (0, 1). If α(x0, Tx0) ≥ 1 for some x0 ∈ X and α transitive then T has a
fixed point in X.

Proof. Let λ ∈ [0, 1). Since lim
n→∞

λn = 0, there exists a natural number N such that

0 < λk · s < 1, (9)

for all k ≥ N.
Let x0 ∈ X such that α(x0, Tx0) ≥ 1. From Lemma 1.1 we have that

α(xn, xn+1) ≥ 1 for all n ∈ N.

Define the sequence {xn} by xn+1 = Txn for all n ≥ 0. If xn = xn+1 then xn is fixed point of T and
proof is hold. So, suppose that xn 6= xn+1 for all n ≥ 0. Then xn 6= xm for all n < m. Since, (X, d) is
b2(s)-metric space, from condition (B2(s)) we have

d(xm, xn) ≤ s[d(xm, xm+k) + d(xm+k, xn+k) + d(xn+k, xn)].

Using Lemma 2.2 we get

d(xm, xn) ≤ s[λmd(x0, xk) + λkd(xm, xn) + λnd(x0, xk)]

(1− sλk)d(xm, xn) ≤ s(λm + λn)d(x0, xk).

From this, together with (9), we obtain

d(xm, xn) ≤ s(λm + λn)

1− sλk
d(x0, xk).

Thus {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

Now we obtain that x∗ is a fixed point of T . Namely, for any n ∈ N we have

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s
[
d(x∗, xn) + d(xn, xn+1) +

λd(xn, x
∗)

α(xn, x∗)

]
≤ s[d(x∗, xn) + d(xn, xn+1) + λd(xn, x

∗)].

Since, lim
n→∞

d(x∗, xn) = 0 and lim
n→∞

d(xn, xn+1) = 0, we have d(x∗, Tx∗) = 0 i. e., Tx∗ = x∗. �

Remark 2.1. We note that the previous Theorem is an improvement in the results in [13] (Theorem
2.1).

In the next Theorem we do not assume that the function α is transitive.

Theorem 2.2. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λM(x, y), (10)

for all x, y ∈ X, where λ ∈ (0, 1
s ). If min{α(x0, Tx0), α(x0, T

2x0)} ≥ 1 for some x0 ∈ X, then T has
a fixed point in X.
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Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
2x0) ≥ 1 and xn+1 = Txn, n = 1, 2, . . . .

Since T is a α-admissible, from Lemma 1.1 we obtain

α(xn, xn+1) ≥ 1 for all n ∈ N. (11)

Similarly, from α(x0, T
2x0) ≥ 1 follows

α(xn, xn+2) ≥ 1 for all n ∈ N. (12)

From conditions (10) and (11) we have

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ α(xn, xn+1)d(Txn, Txn+1)

≤ λM(xn, xn+1),

since

M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)}
and

d(xn+1, xn+2) ≤ λd(xn+1, xn+2)

not possible, we conclude that it is

d(xn+1, xn+2) ≤ λd(xn, xn+1), (13)

so, we obtain

d(xn+1, xn+2) ≤ λnd(x1, x0).

Similarly, from conditions (10) and (12) we obtain

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ α(xn−1, xn+1)d(Txn−1, Txn+1)

≤ λM(xn−1, xn+1),

since

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}
and

d(xn+1, xn+2) ≤ λ2d(xn−1, xn),

we conclude that it is

d(xn, xn+2) ≤ λmax{d(xn−1, xn+1), d(xn−1, xn)}. (14)

From conditions (13) and (14) we obtain

d(xn, xn+2) ≤ λn max{d(x1, x0), d(x0, x2)}. (15)

From (13) and (15) and Lemma 2.1 we conclude that {xn} is Cauchy, so it converges to a limit x∗ ∈ X.
How is (X, d) α-regular b2(s)-metric space, from (11) we get that α(xn, x

∗) ≥ 1 for all n ∈ N. From
Lemma 2.3 we conclude that xn 6= xm for all n 6= m. Now we obtain that x∗ is the fixed point of T .
Namely, for any n ∈ N we have

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s
[
d(x∗, xn) + d(xn, xn+1) +

λM(xn, x
∗)

α(xn, x∗)

]
≤ s[d(x∗, xn) + d(xn, xn+1)

+ λmax{d(xn, x
∗), d(xn, xn+1), d(x∗, Tx∗)}].

Since, {xn} converges to x∗ and λ < 1
s , we have Tx∗ = x∗. �
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Remark 2.2. We note that in the previous Theorem 2.2, for the proof of the convergence of the
sequence {xn}, a sufficient condition is that it is λ ∈ (0, 1√

s
). Also, if M(x, y) = d(x, y), we get that

d(x∗, Tx∗) ≤ s[d(x∗, xn) + d(xn, xn+1) + d(xn+1, Tx
∗)]

= s[d(x∗, xn) + d(xn, xn+1) + d(Txn, Tx
∗)]

≤ s[d(x∗, xn) + d(xn, xn+1) +
λd(xn, x

∗)

α(xn, x∗)
]

≤ s[d(x∗, xn) + d(xn, xn+1) + λd(xn, x
∗)].

So, Tx∗ = x∗.

Thus, the following result follows from the Theorem 2.2 and Remark 2.2.

Theorem 2.3. Let (X, d) be a complete α-regular b2(s)-metric space and T : X → X be a α-admissible
such that T satisfies the conditions

α(x, y)d(Tx, Ty) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ (0, 1√
s
). If min{α(x0, Tx0), α(x0, T

2x0)} ≥ 1 for some x0 ∈ X, then T

has a fixed point in X.

Remark 2.3. If α(x, y) = 1, for all x, y ∈ X then T has unique fixed point. Let y∗ be another
fixed point of T. Then it follows from (8) that d(x∗, y∗) = d(Tx∗, T y∗) ≤ λd(x∗, y∗) < d(x∗, y∗), is a
contradiction. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗.

We note that from Theorem 2.3 we obtain the following result (Theorem 2.1. in [8]).

Theorem 2.4 ([8]). Let (X, d) be a complete rectangular b-metric space with coefficient s > 1 and
T : X → X be a mapping satisfying:

d(Tx, Ty) ≤ λd(x, y)

for all x, y ∈ X, where λ ∈ [0, 1
s ]. Then T has a unique fixed point.

Remark 2.4. As 1
s < 1√

s
, (s > 1), using the Lemma 2.1, the following results can be improved

Theorem 2.1. in [6], Theorem 2. 1. in [5], Theorem 1. in [15], Theorem 2.1. in [18].

The following result is known for b1(s)-metric space (see R. Miculescu and A. Mihail [12, Lemma
2.2] and T. Suzuki [17, Lemma 6]).

Lemma 2.4 ([12, 17]). Every sequence (xn)n∈N of elements from a b-metric space (X, d, s), having
the property that there exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N, is Cauchy.

It is therefore natural to ask the following question.
Question. Does the conclusion of Lemma 2.1 hold if 1√

s
is replaced by 1?
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5. H. S. Ding, M. Imdad, S. Radenović, J. Vujaković, On some fixed point results in b-metric, rectangular and b-

rectangular metric spaces. Arab J. Math. Sci. 22 (2016), no. 2, 151–164.
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