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ON MEIR-KEELER CONTRACTION IN BRANCIARI --METRIC SPACES

7. MITROVIC! AND S. RADENOVIC?2

ABSTRACT. In this paper we consider Meir—Keeler type results in the context of Branciari b-metric
spaces. Our results generalize, improve and complement several ones in the existing literature.

1. INTRODUCTION AND PRELIMINARIES

In the paper [14] the authors introduced the concept of b, (s)-metric space as follows.

Definition 1.1 ([14]). Let X be a set, let d be a function from X x X into [0, c0) and let v € N. Then
(X, d) is said to be a b, (s)-metric space if for all z,y € X and for all distinct points uy, ug, ..., u, € X,
each of them different from x and y the following hold:

(B1) d(z,y) = 0 if and only if x = y;

(B2) d(z,y) = d(y, z);

(By3(s)) there exists a real number s > 1 such that

d(l‘,y) < S[d(xvul) + d(u17u2) +oe d(uvvy)]
Note that:
e by (1)-metric space is usual metric space,

b1(s)-metric space is b-metric space with coefficient s of Czerwik [3,4],
bo(1)-metric space is rectangular metric space or Branciari metric space [2],
ba(s)-metric space is rectangular b-metric space with coefficient s of George et al [8] or Bran-
ciari b-metric space [9],
b, (1)-metric space is v-generalized metric space of Branciari [2],
e Let (X,dk) be a N-polygonal K-metric space over an ordered Banach space (V.|| - ||, K)

(see [7]) such that K is a closed normal cone with normal constant A and the function D :

X x X — [0,00) defined by D(z,y) = ||dx(z,y)||. Then (X, D) is by (\)-metric space.

Definition 1.2 ([14]). Let (X,d) be a b,(s)-metric space, {x,,} be a sequence in X and z € X. Then

(a) The sequence {x,,} is said to be convergent in (X, d) and converges to z, if for every € > 0 there
exists ng € N such that d(x,,z) < e for all n > ng and this fact is represented by nh_)rr;o T, = X Or
Ty, — T 88 N — 00.

(b) The sequence {z,,} is said to be Cauchy sequence in (X, d) if for every € > 0 there exists ng € N
such that d(x,,, Tp1p) < € for all n > ng,p > 0.

(¢) (X,d) is said to be a complete b,(s)-metric space if every Cauchy sequence in X converges to
some x € X.

Definition 1.3 ([11]). Let (X,d) be a metric space. A mapping T : X — X is called Meir—Keeler
contraction if for every e > 0 there exists § > 0 such that

e <d(z,y) <e+0=dTz,Ty) <eforal z,y € X.

Definition 1.4 ([16]). A mapping T': X — X is called a-admissible if for all z,y € X we have
a(z,y) > 1= a(Tz,Ty) > 1,
where a: X x X — [0,00) is a given function. A function « is transitive if, given z,y,z € X,
alz,y) > 1,a(y,z) > 1= a(z,z) > 1.
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Lemma 1.1 ([1]). Let T : X — X be an a-admissible mapping and let {x,} be a Picard sequence
of T based on a point xy € X. If xg satisfies a(xo,Txo) > 1, then a(zn, zpy1) > 1 for alln € N.
Additionally, if « is transitive, then a(zy, Tm) > 1 for all ny,m € N such that n < m.

One generalization on Meir—Keeler mappings was given by Giilyaz et al in the paper [9].

Definition 1.5 ([9]). Let (X, d) be a Branciari b-metric space with a constant s > 1. Let T : X — X
be an a-admissible mapping. If for every ¢ > 0 there exists § > 0 such that

e < M(z,y) < e+ § implies a(x,y)d(Tz, Ty) < E, (1)

where
M(z,y) = max{d(z,y),d(Tz, x),d(Ty,y)}
for all z,y € X, then T is called generalized a-Meir—Keeler contraction.

Definition 1.6 (]9]). A Branciari b-metric space (X,d) is called a-regular if for any sequence {x,}
such that lim d(x,,z) = 0 and satisfying a(2y,, zp+1) > 1 for all n € N, we have a(x,,z) > 1 for all
n € N.

We note that Giilyaz et al in the paper [9] define Brancari b-metric spaces, but this class of space
has already been defined by George et al in the paper [8] and others called them rectangular b-metric
spaces. Also in the paper [9] Giilyaz et al prove Lemma 2. 5 (see [9, p. 5449)]).

Lemma 1.2 (Lemma 2. 5. in [9]). Let (X,d) be a Branciari b-metric space with a constant s > 1.
Let {z,} be a sequence in X satisfying

1. &y # zy for allm #n,m,n € N,

2. d(@n, Tnq1) < 2d(zn_1,2,), for alln € N,

3. limy, 00 d(@p, Tpyo) = 0. Then {z,} is a Cauchy sequence in (X,d).

Unfortunately, the Lemma 1.2 is not correct, as shown in the following example.

Example 1.1. Put X = R, d(z,y) = [t —yl,z,y € X and x, = 1 + 5 + - + +. Then (X,d) is
Branciari b-metric space with coefficient s = 1 and sequence {x,, } fulfills the conditions of Lemma 1.2
but not the Cauchy sequence.

Of course, then main result in the [9] is not correct, because its proof is needed by Lemma 2. 5.
Here we prove the new version of Lemma 2. 5. in [9], also we show that continuity of function T is
not necessary. Also, note that condition (1) follows the following condition

a(z,y)d(Tz,Ty) < AM(z,y),
for all ,y € X, where A € (0, ). In addition, the authors in [9] use that is the next result.

Proposition 1.1 (Proposition 1.6. in [9]). Let {z,} be a Cauchy sequence in a Branciari metric
space (X, d) such that imd(z,,x) = 0, where x € X. Then imd(z,,y) = d(z,y), for ally € X. In
particular, the sequence {x,} does not converge to y if y # x.

For proof of the main result in [9] (Theorem 2.6) authors used that the Proposition 1.1 is valid if
replace Branciari metric space by a Branciari b-metric space.
Unfortunately, Proposition 1.1 is not true in Branciari b-metric space (see Example 1.7. in [8]).

2. MAIN RESULTS

Lemma 2.1. Let (X, d) be a complete ba(s)-metric space and let {x,,} be a sequence in X such that
x, (n>0) are all different. Suppose that exists A € [0, ==) such that

\/g
(1) d(zn, Tnt1) < Ad(@n—1,Tn),
(2) d(@n, Tpi2) < Ad(Tn—1,Tnt1),
for alln > 1. Then {x,} is a convergent sequence in (X,d). Additionally, if d is continuous, then for
x* for which x* = lim x,, the next estimate holds
28 \™

* <7
d(wn,27) < 1 — s)\2

d(zg,x1) + 3A"[d(z0, 71) + d(z0, T2)]. (2)
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Proof. First, we note that from conditions 1 and 2 we follow
d(Tp, Tpy1) < A'd(w0,71), (3)
and
d(xna :L"I’L+2) S )\nd(x(h .’L'Q), (4)
for all n > 1.
Let n,m € N and m > n.
1. Case: m —n = 2k for any k € N.
From condition (B23(s)) we have
sld
s|d

82

Tn, $n+1) + d(xn+1; :En+2) + d($n+27 xm)]
Ty, $n+1) + d(wn+1; xn+2)]

d(Tp, Tm) (
(

[d(xn+2ﬂ $n+3) + d(xn+37 xn+4)]
83 [d($n+4; $n+5) + d($n+5, xn+6)]

+ + INIA

+ "2 [d(Tnrok—6, Tniok—s) + A(Tniok—5, Tnrok—1)]
+ Sk—l[d

+  s* 7 d(z ok, Toiok)

(Tnt2k—a, Tniok—3) + Ad(Tniok—3, Tntor—2)]

From conditions (3) and (4) we obtain

< sA"(14 AN)d(zo, 1)

+  S2AT2(1 4+ N)d(xo, 71)
+ AL 4 N)d(zg, 1)

d(Tn, Ton)

4+ SN2 4 N)d (o, 1)
+ sFATERT2 (20, 10).
So,
d(w,2m) < sA"(L+ Nd(xo, w1)[1+ 5207+ 4 (sA%)" ]
+ (X)) (20, 20).
How is it 0 < sA2 < 1, we obtain
sA(1 4+ N)d(zo, 1)
1— A2
Now from (5), we conclude that {z,} is Cauchy.

2. Case: m —n = 2k + 1 for any k£ € N. Similar to the previous case from condition By3(s) we
have

+ \d(x0, z2). (5)

d(Xn, Tm) <

s[d
sld
s2[d
s3[d

Ty, Tnt1) + A(Tnt1, Tni2) + A(Tnt2, Tm)]
Ty Tnt1) + A(Tnt1, Tnt2)]

(Tnt2: Tnt3) + d(Tnts, Tnya)]

(Tnta, Tnts) + d(Tnts, Tnto)]

d(Xp, Tim)

(
(

+ + INIA

P2 d(2n12k—6, Tnyok—s) + A(Tntok—5, Tniok—a)]

P d(@nr2k—a, Tng2k—3) + d(Tntok—3, Tnt2k—2)]

sMd(Tny2k—2, Trgok—1) + A(Tny2n—1, Tnyor)

+ o+ + o+

A(Tnt2ks Tnt2kt1))s
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and from here again using the inequalities (3) and (4) we get

d(xn, Tm) < sA™ (14 N)d(zo, 1)
+ SN2 (1 4 N)d(xo, 1)
+ 33/\n+4(1 + )\)d(l‘o, 1‘1)
+ SPAPTER2(1 4 N)d(zo, 1)

+ o sPATTER2 (1 4\ A d (g, 7).

So we have
sSA™(1 + N)d(zo, 1)
1—s\2
+ SN (AL 4+ A+ M%) d(0, 21)

d(Tp, xm) <

8)\”(1 + /\)d(ﬂ?o, xl)
1—sA2
So, {z,} is Cauchy. The estimate (2) follows from (5) and (6) when we let us m run infinitely. O

+ A" (1 + A+ A?)d(zo, z1). (6)

d(Tp, Tm) <

Lemma 2.2. Let T : X — X be an a-admissible mapping and let {x,} be a Picard sequence of T
based on a point xy € X. If v is transitive, xo satisfies a(xg, Txo) > 1 and

a(z,y)d(Tz, Ty) < Md(z,y), (7)
for all x,y € X, where X € (0,1), then it is
ATt ky Ttk) < )\kd(ac,mncn)7
for allm,n,k € N,n <m.
Proof. Using Lemma 1.1 we get
(T, xy) > 1 for all n < m.

From condition (7) follows

A
d(@mses Tnrn) < Wbt T
(@mtre; Tntk) A(Tomgk—1,Tnik—1) (Frntiet, Tutr)
< A(@imtk—1, Tntk—1)
< Akd(xmaxn)' 0

Lemma 2.3. Let (X,d) be a b,(s)-metric space, T : X — X be a mapping and let {x,,} be a sequence
in X such that xg € X and xp41 = Tay,. If there exists A € [0,1) and such that

AT, Tnt1) < Ad(Tp—1,2,) for alln > 1, (8)
then T has a fized point or x, # xn, for all m # m.

Proof. If x,, = x,11 then z,, is fixed point of T and proof is hold. So, suppose that x,, # x,1 for all
n > 0. Then x,, # x,4 for all n > 0,k > 1. Namely, if z,, = z, 1, for some n > 0 and k > 1 we have
that Tx,, = Txp4k and Tp41 = Tpigt1. Then (8) implies that

d(Zni1,Tn) = d(Tpprs1, Tnir) < Akd(xn+1>$n> <d(rpi1,Tn)

is a contradiction. Thus we assume that x,, # x,, for all distinct n,m € N. O
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Theorem 2.1. Let (X, d) be a complete a-regular by (s)-metric space and T : X — X be a a-admissible
such that T satisfies the conditions

oz, y)d(Tz, Ty) < Md(x,y),

for all x,y € X, where A € (0,1). If a(xo,Txp) > 1 for some zg € X and « transitive then T has a
fixed point in X.

Proof. Let A € [0,1). Since lim A" = 0, there exists a natural number N such that

n—oo
0<A\.s<1, (9)

for all £ > N.
Let zy € X such that a(xg, Tzg) > 1. From Lemma 1.1 we have that

oy, Tpy1) > 1 for all n € N.

Define the sequence {z,} by z,+1 = Tx, for all n > 0. If z,, = x4 then x,, is fixed point of T" and
proof is hold. So, suppose that x,, # 2,41 for all n > 0. Then z,, # z,, for all n < m. Since, (X, d) is
ba(s)-metric space, from condition (Ba(s)) we have

d(xmm xn) S S[d((Em, merk) + d(merka (En+k:) + d(anrlm xn)]
Using Lemma 2.2 we get

s[A™d(xo, xk) + )\kd(xm, ZTn) + A"d(zo, 21)]
s(A™ + AM)d(xo, k).

d(xm,zn) <

(1 — s\ d(zpm, z,) <

From this, together with (9), we obtain

S(A™ + A™)
1—sA\k

Thus {x,} is a Cauchy sequence in X. By completeness of (X, d) there exists * € X such that

AT, xp) < d(xo,xk).

lim z, = z*.
n—oo

Now we obtain that x* is a fixed point of T'. Namely, for any n € N we have

d(z*,Tz*) < s[d(z*,zn) + d(@n, Tni1) + d(@pt1, Tx¥))
= sld(z*,zp) +d(zn, Tnt1) + d(Txy,, Tx™)]
Ad(zp,x*)
< * _
< sld(@,xn) + d(@n, Tni1) + (s ) }
< sld(z”, zp) + d(n, Tnt1) + Ad(zp, 7).
Since, ILm d(z*,z,) =0 and le d(xpn, Tpt1) =0, we have d(z*, Tz*) =0 1. e., Ta* = x*. O

Remark 2.1. We note that the previous Theorem is an improvement in the results in [13] (Theorem
2.1).

In the next Theorem we do not assume that the function « is transitive.

Theorem 2.2. Let (X, d) be a complete a-reqular ba(s)-metric space and T : X — X be a a-admissible
such that T satisfies the conditions

a(z,y)d(Tz, Ty) < AM(z,y), (10)

for all z,y € X, where A € (0,1). If min{a(zo, Txo), a(wo, T?x0)} > 1 for some zg € X, then T has
a fixed point in X .
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Proof. Let xg € X such that a(zg, Tzo) > 1 and a(zo, T?2¢) > 1 and 2,41 = Tzn,n = 1,2,....
Since T is a a-admissible, from Lemma 1.1 we obtain

(X, Tpy1) > 1 for all n € N. (11)
Similarly, from a(zq, T%x¢) > 1 follows

a(xy, Tpye) > 1 for all n € N. (12)
From conditions (10) and (11) we have

d(Txy, Txpy1)

d(xn+1 ) xn+2)

S O[(l'n, xn+1)d(T$na Txn+1)
S AM(xn7In+1)7
since
M(zp, vpy1) = max{d(zn, Tni1), d(Tpi1, Tny2)}
and

d(xn-ﬁ-la -Tn+2) S )\d(xn—i-lv xn+2)
not possible, we conclude that it is
A(Tna1, Tny2) < A(Tp, Try), (13)

S0, we obtain
d(-rn-i-la xn+2) S And(ajla -TO)~

Similarly, from conditions (10) and (12) we obtain

d(l’n,In+2) = d(Txn—laTzn—&-l)
S a(xn—hxn-‘rl)d(Txn—laTxn-i-l)
S )\M(:EnflwrnJrl)v
since
M(zp—1,2n41) = max{d(zp_1, Tnt1),d(Tn-1,2pn), d(Tpy1, Tni2)}
and

d(xn+1> xn+2) S )\2d(xn—1; zn)a

we conclude that it is

d(Xp, Tpio) < Amax{d(xn_1,Tnt1), d(Tn_1,%n)} (14)
From conditions (13) and (14) we obtain
(T, Tnta) < A" max{d(x1,zg), d(zxo, x2)}. (15)

From (13) and (15) and Lemma 2.1 we conclude that {z,} is Cauchy, so it converges to a limit z* € X.
How is (X, d) a-regular by(s)-metric space, from (11) we get that a(zy,z*) > 1 for all n € N. From
Lemma 2.3 we conclude that x,, # x,, for all n # m. Now we obtain that x* is the fixed point of 7.
Namely, for any n € N we have

d(z*,Tz*) < s[d(@",z,) + d(zn, Tny1) + d(@p41, T2")]
= sld(a",z,) + d(xn, Tpt1) + d(Txn, Tx™)]

. AM (24, %)

< Pt Sod L2 ety
< sld(@®,zn) +d(zn, Tp1) + (w2 ]

sld(x*, xn) + d(Xp, Tpi1)
Amax{d(x,, z"), d(Xn, Tpi1), d(x”, Tax*)}.

+ IA

1

Since, {x,,} converges to z* and A < -, we have T'z* = z*. O
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Remark 2.2. We note that in the previous Theorem 2 2, for the proof of the convergence of the
sequence {z,}, a sufficient condition is that it is A € (0, ) Also, if M(x,y) = d(z,y), we get that

d(z*, Tx*) < sld(z*,x,)+d

Ty, Tpg1) + d(@py1, T2")]
Ty Tpg1) + ATy, Tx™))
)+ Ad(xp, )]

(@, T*)

d(xp, Tpy1) + Md(zy, 7).

*

= sld(z*,z,) +d

IA
»
=

LTny Tn+1

/\/\/\/\

( )
(*, ) +d
( )

IN
2
Y
8
\'*
8
3

So, Tz* =
Thus, the following result follows from the Theorem 2.2 and Remark 2.2.

Theorem 2.3. Let (X, d) be a complete a-regular by (s)-metric space and T : X — X be a a-admissible
such that T satisfies the conditions

oz, y)d(Tz, Ty) < Md(x,y),

for all z,y € X, where A € (0, %) If min{a(zq, Tzo), (w0, T?20)} > 1 for some zg € X, then T
has a fixed point in X.

Remark 2.3. If a(z,y) = 1, for all z,y € X then T has unique fixed point. Let y* be another
fixed point of T. Then it follows from (8) that d(z*,y*) = d(Tx*, Ty*) < Md(z*,y*) < d(z*,y*), is a
contradiction. Therefore, we must have d(z*,y*) =0, i.e., * = y*.

We note that from Theorem 2.3 we obtain the following result (Theorem 2.1. in [8]).

Theorem 2.4 ([8]). Let (X,d) be a complete rectangular b-metric space with coefficient s > 1 and
T:X — X be a mapping satisfying:

d(Tz, Ty) < Ad(z,y)
for all z,y € X, where X € [0,1]. Then T has a unique fized point.

Remark 2.4. As % < %, (s > 1), using the Lemma 2.1, the following results can be improved
Theorem 2.1. in [6], Theorem 2. 1. in [5], Theorem 1. in [15], Theorem 2.1. in [18].

The following result is known for by (s)-metric space (see R. Miculescu and A. Mihail [12, Lemma
2.2] and T. Suzuki [17, Lemma 6]).

Lemma 2.4 ([12,17]). Every sequence (x,)nen of elements from a b-metric space (X,d, s), having
the property that there exists v € [0,1) such that

d(xn-‘rla xn) S r)/d(]:n; xn—l)v
for every n € N, is Cauchy.

It is therefore natural to ask the following question.

Question. Does the conclusion of Lemma 2.1 hold if ﬁ is replaced by 17
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