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EIGENOSCILLATIONS AND STABILITY OF ORTHOTROPIC SHELLS, CLOSE

TO CYLINDRICAL ONES, WITH AN ELASTIC FILLER AND UNDER THE

ACTION OF MERIDIONAL FORCES, NORMAL PRESSURE AND

TEMPERATURE

S. KUKUDZHANOV

Abstract. Eigenoscillations and stability of closed orthotropic shells of revolution, close by their

form to cylindrical ones, with an elastic filler and under the action of meridional forces, external
pressure and temperature are investigated. The shells of positive and negative Gaussian curvature

are studied. Formulas and universal curves of dependence of the least frequency on orthotropy

parameters, meridional loading, external pressure, temperature, rigidity of an elastic filler, as well as
on the amplitude of shell deviation from the cylinder, are obtained. Critical values of outer effects

are defined.

We study eigenoscillations and stability of closed orthotropic shells of revolution, close by their forms
to cylindrical ones, with an elastic filler and under the action of meridional forces uniformly distributed
over the end-walls of the shell, external pressure and temperature. We consider a light filler for which
the influence of tangential stresses on the contact surface and the inertia forces may be neglected.
The shell is considered to be thin and elastic. Temperature in a shell body is uniformly distributed.
An elastic filler is modelled by the Winkler’s base, its extension by heating is not taken into account.
We investigate the shells of middle length whose form of midsurface generatrix is expressed by a
parabolic function. We consider the shells of positive and negative Gaussian curvature. The boundary
conditions on the end-walls correspond to a free support admitting certain radial displacement in the
initial state. Formulas and universal curves of dependance of the least frequency on the orthotropy
parameters, meridional loading, external pressure, temperature, rigidity of the elastic filler, as well
as on the deviation amplitude of the shell from the cylinder are obtained. It is shown that the
elastic orthotropy parameters affect significantly the least frequency and the corresponding form of
the waveformation. A degree of influence of orthotropy parameters under separate and joint action of
the above-mentioned outer factors on the lower frequencies is revealed. Critical values of outer effects
are defined.

We consider the shell whose middle surface is formed by the rotation of a square parabola around
the z-axis of the rectangular system of coordinates x, y, z with the origin in the middle of the segment
of the axis of rotation. It is assumed that the cross-section radius R of the middle surface is defined
by the equality R = r + δ0

[
1 − ξ2(r/`)2

]
, where r is the end-wall section radius, δ0 is the maximal

deviation from the cylindrical form (for δ0 > 0, the shell is convex, and for δ0 < 0, it is concave),
L = 2` is the shell length, ξ = z/r. We consider the shells of middle length [9], and it is assumed that

(δ0/r)
2 � 1, (δ0/`)

2 � 1. (1)

As the basic equations of oscillations we have taken those of the theory of shallow orthotropic
shells [8]. For the shells of middle length, the forms of oscillations that correspond to the least
frequencies have weak variability in longitudinal direction as compared with the circumferential one,
therefore the correlation

∂2f

∂ξ2
� ∂2f

∂ϕ2
(f = w,ψ) (2)

is valid, where w and ψ are, respectively, the functions of radial displacement and stress. As a result,
the system of equations for the shells under consideration is reduced to the following resolving equation
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(due to the adopted assumption, temperature terms are equal to zero [7]):

ε
∂8w

∂ϕ8
+
E1

E2

(
∂4w

∂ξ4
+ 4 δ

∂4w

∂ξ2 ∂ϕ2
+ 4 δ2

∂4w

∂ϕ4
− t01

∂6w

∂ξ2 ∂ϕ4

)
− t02

∂6w

∂ϕ6
− 2 s0

∂6w

∂ξ ∂ϕ5
+ γ

∂4w

∂ϕ4
+
ρ r2

E2

∂2

∂t2

(
∂4w

∂ϕ4

)
= 0, (3)

ε = h2/12 r2(1− ν1ν2), δ = δ0r/`
2, τi = T 0

i /E2h (i = 1, 2), s0 = S0/E2h, γ = βr2/E2h, E1, E2, ν1, ν2
are, respectively, the E1, E2, ν1, ν2 moduli of elasticity and Poisson coefficients in the axial and cir-
cumferential directions (E1ν2 = E2ν1); T 0

1 , T
0
2 are meridional and circumferential normal forces of

the initial state; S0 is the shearing stress of the initial state; h the shell thickness; ρ is the material
density of the shell; β is the “bed” coefficient of the elastic filler (characterizing elastic rigidity); ϕ is
an angular coordinate; t is time.

The initial state is assumed to be momentless. On the basis of the corresponding solution, taking
into account the reaction of the filler and also inequalities (1), we obtain the following approximate
expressions

T 0
1 = P1

[
1 +

δ0
r

(
ξ2(r/`)2 − 1

)]
+ qδ0

[
ξ2(r/`)2 − 1

]
,

T 0
2 = −2P1δ0r/`

2 − qr + β0rw0, S0 = 0,
(4)

where w0 and β0 are, respectively, deflection and a “bed” coefficient of the filler in the initial state;
P1 is meridional stress; q is external pressure.

Taking into account (2), we get∣∣ξ2(r/`)2 − 1
∣∣ ∂2w
∂ξ2

� 2(r/`)2
∂2w

∂ϕ2
,

δ0
2

∣∣ξ2(r/`)2 − 1
∣∣ ∂2w
∂ξ2

� ∂2w

∂ϕ2
.

Therefore expressions (4), after substitution into equation (3), can be simplified and written in the
following form:

T 0
1 = P1, T 0

2 = −2P1δ0r/`
2 − qr + w0β0r, T 0

i = σ0
i h (i = 1, 2). (4′)

Taking into account the fact that in the initial state the shell deformation ε0ϕ in the circumferential
direction is defined by the equalities

ε0ϕ =
σ0
2 − ν1σ0

1

E2
+ α2T, ε0ϕ = −w0

r
,

where α2 is the coefficient of linear extension in the circumferential direction and T is temperature,
we have

w0 =
(
− σ0

2 + ν1σ
0
1

) r
E2
− α2T2. (5)

Substituting expression (5) into (4′), we obtain

T 0
2

E2h
=
σ0
2

E2
= − qr

E2h
− 2

P1

E2h
δ + ν1

σ0
1

E2

β0r
2

E2h
− α2T

β0r
2

E2h
− σ0

2

E2

β0r
2

E2h
.

Introduce the notation

E1 = e1E, E2 = e2E,

qr

Eh
= q,

P1

Eh
= −p, β0r

2

Eh
= γ0, 1 + γ0e

−1
2 = g.

Then expressions (4′) take the form

− σ
0
1

E2
= −e−12 p, − σ

0
2

E2
=
(
q − 2pδ + ν1pγ0 + α2Tγ0

)
e−12 g−1. (5′)

Note that since R is close to r, in the expressions for stresses (5′) we adopted R ≈ r.
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As a result, equation (3) takes the form

ε
∂8w

∂ϕ8
+
e1
e2

[
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂ϕ2
+ 4
(
δ2 + γ/4e1

) ∂4w
∂ϕ4

]
+
(
q − 2pδ + ν1pγ0 + α2Tγ0

)
e−12 g−1

∂6w

∂ϕ6
+ p

∂6w

∂ξ2 ∂ϕ4
e−12 +

∂2

∂t2

(∂4w
∂ϕ4

)
e−12 = 0. (6)

We consider the harmonic oscillations. For the given boundary conditions of free support and for
equation (6) the solution

w = Amn cosλmξ sinnϕ cosωmnt, λm = mπr/2` (7)

(m = 2i+ 1, i = 0, 1, 2, . . . )

is satisfied.
Substituting expression (7) into (6), for finding eigenfrequencies, we obtain the following equality

(in the sequel, the indices ωmn will be omitted):

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4

(
δ2 + γ/4e1

)
− p
(
λ2m − 2 δ̃n2

)
−
(
q + d2Tγ0

)
g−1n2

)]
.

Introduce the notation

δ
2

= δ2 + γ/4e1 , δ̃ =
(
δ − 1

2
ν1γ0

)
g−1, q̃ =

(
q + αTγ0

)
g−1,

ω2 =
E

ρr2

[
e2εn

4 + e1
(
λ4mn

−4 + 4 δλ2mn
−2 + 4 δ

2 − p
(
λ2m − 2 δ̃n2

)
− q̃n2

)]
.

(8)

It is not difficult to see that for p = 0, δ > 0, to the least frequency there corresponds m = 1. It
can also be shown that this condition takes place for δ < 0, bearing in mind inequalities (1) and the
fact that ω2 > 0. Therefore, first of all, we consider the forms of oscillations under which there arises
one half-wave (m = 1) over the whole length of the shell and n waves in the circumferential direction.
For the compression p > 0, and for the tension p < 0; q is a normal pressure which is assumed to be
positive if it is external.

To present expression in a dimensionless form, we introduce the dimensionless values

θ = (e2/e1)1/4N, N = n2/n20, P = P/
√
e1e2, P = p/p∗,

Q̃ = q̃/q0∗, q̃ = (q + αTγ0)g−1, n2
0 = λ1ε

1/4, p∗ = 2ε1/2,

q0∗ = 0, 855(1− ν1ν2)−3/4
(h
r

)3/2 r
L
, δν∗ = (e1/e2)δ∗ ,

δ∗ = δε
−1/2
∗ , δ̃ ν = (e1/e2)1/4

(
δ − 1

2
ν1γ0

)
ε
−1/2
∗ g−1,

δ
ν2

= (e1/e2)1/2(δ2∗ + γ∗/4e1) = δ
ν2

+ e1e2)−1/2
γ∗
4
, γ∗ = γε−1∗ ,

ω2
∗ = 2λ21ε

1/2E/3r2 , ε = (1− ν2)−1/2
h

2

( r
L

)2
,

(9)

where p∗, q0∗, ω∗ are, respectively, critical loading of compression, critical pressure and the least fre-
quency for the cylindrical isotropic shell of middle length [1, 9]. Thus equality (8) can be written in
the following dimensionless form:

ω2(θ)/ω2
∗ = 0, 5

√
e1e2

(
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 4045 δ
ν2

∗
)

− 1, 755 e
−1/4
1 e

−3/4
2 θQ− 2P

(
1− 1, 185 δ̃ ν∗ θ

)
. (10)

The least frequency (for ω2(θ) > 0) is defined by the condition [ω2(θ)]′ = 0. As a result, we obtain

0, 8775 e
−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃ νP = θ − 1, 185 δν∗θ

−2 − θ−3 (11)
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or

θ4 −
(
0, 8775 e

−1/4
1 e

−3/4
2 Q̃− 1, 185 δ̃ νP

)
θ3 − 1, 185 δν∗θ − 1 = 0. (12)

This implies that for Q̃ = P = 0, we get

θ4 − 1, 185 δν∗θ − 1 = 0. (12′)

The above equation for an isotropic shell has been considered in [3]. Investigation of the roots of
the above equation, similar to that carried out in [3], leads to

θ =
√

1− 0, 0876 δ2∗(e1/e2)1/2 + 0, 2962 δ∗(e1/e2)1/4 (δ∗ > 0),

θ =
√

1− 0, 0876 δ2∗(e1/e2)1/2 − 0, 2962 δ∗(e1/e2)1/4 (δ∗ < 0).

(13)

In particular, for δ∗ = 0, we get the known formula for the cylindrical orthotropic shell of middle
length (n2 = (e1/e2)1/4λ1ε

−1/4) [5].
By θ0 we denote the value of θ which is defined by virtue of (13).
Defining thus the value of θ0 (for fixed e1, e2, δ∗) and substituting it into expression (10) (for

P = Q̃ = 0), we obtain the least frequency of a free shell ω(θ0). For clearness, we will now proceed to
considering the value N = θ(e1, e2)1/4.

Figure 1

Figure 2
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In Figures 1 and 2 we can see the graphs of dependencies N0 = n2/n20 and ω(N0)/ω∗ on the
parameter δ∗ for the cases e1 = e2 = 1(0), e1 = 1, e2 = 2(1); e1 = 2, e2 = 1(2); the corresponding
curves are denoted by N0(i) and (i) i = 0, 1, 2. It can be easily seen that for the convex shells (δ > 0)
the importance of the elastic parameter is greater in the axial direction than in the circumferential
one, whereas for the concave shells (δ < 0), the situation is inverse.

For ω = 0, P = 0 from equality (10), we have

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = θ + θ−3 + 2, 37 δν∗θ

−2 + 1, 404 δ
ν2

θ−1. (14)

The least value Q̃ > 0 depending on θ is realized for Q̃′θ. Thus we obtain

θ4 − 1, 404 δ
ν2

θ2 − 4, 74 δν∗θ − 3 = 0. (15)

Figure 3

The positive root of that equation θ = θ∗ (N = N∗) corresponds to the number of wave in the

transverse direction under which is realized the critical loading of stability loss Q̃∗. This equation
for an isotropic shell is considered in [3], where the expression of the positive root is given explicitly.
Generalizing this result to the orthotropic case, we present the roots of dependence of N∗ on δ∗ for
the cases i = 0, 1, 2 considered above. In Figure 1, these curves are denoted, respectively, by N∗(i).

The graphs of dependence of Q̃∗ on δ∗ for those cases are given in Figure 3.
Note that expression (14) for finding the critical loading can be simplified on the basis of (15).

From this equation implies that

2, 37 δν∗θ
−2 + 1, 404 δ

ν2

∗ θ−1 = −
(
2, 37 δν∗θ

−2 + 3 θ−3 − θ
)
. (16)

Substituting equality (16) into (14), we get

Q̃∗ = 1, 15 e
1/4
1 e

3/4
2

(
θ∗ − θ−3∗ − 1, 185 δν∗θ

−2
∗
)
. (17)

From the condition of minimality of frequency (11) for P = 0, we obtain the following dependence

between Q̃ and θ:

Q̃ = 1, 15 e
1/4
1 e

3/4
2

(
θ − θ−3 − 1, 185 δν∗θ

−2
∗
)
. (18)

It is not difficult to notice that from the above equality we have also the relation (17). On the

basis of equality (18), for Q̃ = 0, we obtain equation (12′), whose root θ = θ0 corresponds to the

least frequency of the unloaded shell ω(θ0); while for Q̃ = Q̃∗, we obtain equation (17), whose root θ∗
corresponds to the critical loading, and ω = 0.
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Thus, when Q̃ varies in the interval

0 ≤ Q̃ ≤ Q̃∗ (19)

the least frequency ω(θ, Q̃) varies in the interval ω(θ0, Q̃ = 0) ≥ ω(θ, Q̃) ≥ 0. Relying on the reasoning

similar to that cited in [2], we can show that as Q̃ varies in the interval (19), the value θ, realizing the

least frequency ω(θ, Q̃) and connected with Q̃ by the relation (18), lies in the interval

θ0 ≤ θ ≤ θ∗ . (20)

Let us pass now to the value N = θ(e1/e2)1/4. In particular, for δ = γ = 0, inequalities (19) and (20)
take the form

0 ≤ Q̃ ≤ e1/41 e
3/4
2 , (e1/e2)1/4 ≤ N ≤ 1, 315 (e1/e2)1/4. (21)

For an isotropic case, inequalities (21) coincide with those presented in [2], 0 ≤ Q̃ ≤ 1,
1 ≤ N ≤ 1, 315.

Figure 4

By virtue of equality (18) it is not difficult to construct the curves N(Q̃) realizing the least frequency
for different values e1, e2, δ∗ , γ∗ , T . Towards this end, we fix these parameters and having the value θ,

from the interval (20), we define the corresponding value Q̃ by formula (18). Substituting these values
in formula (10), we obtain (for the case P = 0 under considertion) the corresponding value of the

least frequency. In Figure 4, we can see the curves of dependence of the least frequency ω/ω∗ on Q̃
(for γ = 0) for δ∗ = 0, 4 and δ∗ = −0, 4 for the cases i = 0, 1, 2. The curves are denoted by (0)+, (1)+,
(2)+, and (0)−, (1)−, (2)−, respectively.

On the basis of the given curves and the results obtained in [1], it is easy to notice that if for the
cylindrical shell in the absence of prestress the influence of orthotropy parameters is practically the

same, then for the convex shells this effect occurs only for Q̃ ≈ 0, 9 and, in addition, on the interval

0 ≤ Q̃ ≤ 0, 9, the leading role belongs to the elastic parameter in the axial direction as compared with

the circumferential one, whereas on the interval 0, 9 ≤ Q̃ ≤ 1, 6 the situation is inverse.

Consider now the case P 6= 0, Q̃ = 0 (q = 0, γ = 0) with δ
ν2

∗ = δν
2

∗ , δ̃ ν∗ = δν∗ . On the basis of (10)
and (11), we have

ω2/ω2
∗ = 0, 5

√
e1e2

[
θ2 + θ−2 + 2, 375 δν∗θ

−1 + 1, 404 δν
2

∗ − 2P (1− 1, 185 δν∗θ)
]
, (22)

− 1, 185 δν∗P = Q− 1, 185 δν∗θ
−2 − θ−3 (23)

or

θ4 + 1, 185 δν∗Pθ
3 − 1, 185 δν∗θ − 1 = 0. (24)

From equation (24), for δ∗ = 0, we obtain the equation θ4 − 1 = 0 whose positive root θ = 1
(N = (e1/e2)1/4). Consequently, for the orthotropic cylindrical shell of middle length the least
frequency is realized for N = (e1/e2)1/4, independently of P . For the isotropic case, all the above-said
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is in a full agreement with [6]. Moreover, from (24), for P = 1, we find that the positive root of that
equation does not depend on δν∗ .

For ω = 0, equation (22) takes the form

P =
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗
2(1− 1, 185 δν∗θ)

. (25)

As is known, the least value of P is called a critical loading. In particular, for δ∗ = 0, θ = 1, from
(25), we get the known formula of the critical contracting force for the cylindrical orthotropic shell

P = 1 [9]. The least value P (P > 0), depending on θ, realizes for P
′
θ = 0. Thus we get

2
(
θ − θ−3 − 1, 185 δν∗θ

−2)(1− 1, 185 δν∗θ
)

= −1, 185 δν∗
(
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗
)
. (26)

In a simpler form, (26) is the fifth degree equation, so it is impossible to define its roots exactly.
Therefore we have suggested somewhat different way of finding the positive root of that equation.
We denote the positive root of that equation by θ∗p. The value θ = θ∗p corresponds to a number of

waves in the transversal direction under which is realized the critical loading of the stability loss P ∗.
Substituting equality (26) into (25), we obtain

−1, 185 δν∗P ∗ = θ∗p − 1, 185 δν∗θ
−2
∗p − θ−3∗p . (27)

It is not difficult to notice that equality (27) is likewise follows from equality (23) for ω = 0.
Consequently, the values P , θ satisfying equality (23) for which expression (22) vanishes, are the

critical values of P ∗, θ∗p.

By virtue of equality (24), for P = 0, we obtain equation (12′) whose positive root is denoted, as
above, by θ0 and corresponds to the least frequency of the unloaded shell, whereas for P = P ∗, we
obtain equation (27) whose positive root θ = θ∗p corresponds to ω = 0.

Thus, for P , varying in the interval

0 ≤ P ≤ P ∗ (28)

the least frequency varies in the interval [ω(θ0, P = 0), 0].
Analogously to the investigation carried out in [2], we can show that when P varies in the interval

(28) for δ∗ ≥ 0, the value of θ realizing the least frequency ω(θ, P ) lies in the interval

θ0 ≤ θ ≤ θ∗. (29)

In particular for δ∗ = 0 inequalities (28) and (29) take the form 0 ≤ P ≤ 1, θ0 = θ∗ = 1

(or 0 ≤ P ≤ e1/21 e
1/2
2 , N0 = N∗ = (e1/e2)1/4).

Figure 5
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Dependencies N∗ = n2∗/n
2
0 and P = p∗/p

2
0 on the parameter δ ≤ 0 for the cases i = 0, 1, 2 are given

in Figure 5. The corresponding curves are denoted by N∗(i) and (i). It is not difficult to see that for
the concave shells of importance is the elastic parameter in the circumferential direction as compared
with the axial one.

By virtue of equation (27), we can construct the dependence N(P ) which realizes the least frequency
of the prestressed shell for various values of δ∗. To this end, we fix the parameters e1, e2, δ∗ and having
the value of θ from the interval (29), we find P ∗ by formula (27).

Figure 6

Figure 7

In Figure 6, we can see the values N(P ) for the cases i = 0, 1, 2 (for δ∗ = 0, 4 and δ∗ = −0, 4) which
are denoted by i1 and i2. Figure 7, gives the curves of dependence of dimensionless least frequencies
ω(N,P )/ω∗ on P for the above-mentioned cases which are likewise denoted by i1 and i2. Moreover, in
Figure 7, we see the graph of dependence of ω/ω∗ on P for the cylindrical shell (δ∗ = 0) in the cases
i = 0, 1, 2 denoted, respectively, by 0, 1, 2. On the basis of these graphs, it is not difficult to notice
that if the influence of the ortotropy parameters for the cylindrical shell is practically the same, then
for the concave shell, the influence of an elastic parameter in the circumferential direction is much
more greater as compared with the axial elastic parameter, whereas the situation is opposite for the
convex shells.

In the case of tensile forces P < 0, equations (22) and (23) take the form

ω2/ω2
∗ = 0, 5 e

1/2
1 e

1/2
2

[
θ2 + θ−2 + 2, 37 δν∗θ

−1 + 1, 404 δν
2

∗ + 2|P |(1− 1, 185 δν∗θ)
]
, (30)

1, 185 δν∗ |P | = θ − 1, 185 δν∗θ
−2 − θ−3. (31)
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Analogously to the above-said, on the basis of formulas (30) and (31), we can construct the corre-
sponding dependencies. In Figure 7, on the left of the Oy-axis we can see the graphs of dependence
of ω/ω∗ on P < 0 for the cases i = 0, 1, 2 (for δ∗ = 0, 4 and δ∗ = −0, 4).

Consider now a general case P 6= 0, Q̃ 6= 0. Just as above, the frequency is defined by equality
(10). For ω = 0, by virtue of (10), we obtain

1, 755 e
−1/4
1 e

−3/4
2 Q̃ = θ + θ−3 + 2, 37 δν∗θ

−2 + 1, 404 δ
ν2

∗ θ−1 − 2P (θ−1 − 1, 185 δ
ν

∗ ). (32)

The least value Q̃ > 0 depending on θ is realized for Q′θ = 0. Thus we have

θ4 + cθ2 + dθ + e = 0, c = 2P − 1, 404 δ
ν2

∗ ,

d = −4, 74 δν∗ , e = −3.
(33)

The roots of the last equation coincide with those of the two square equations

θ2 +
A1,2

2
θ +

(
y − d

A1,2

)
= 0, A1,2 = ±

√
8α,

θ1,2 = −
√
α

2
±

√
d√
8α
− α1

2
, θ3,4 = −

√
α

2
±

√
− d√

8α
− α1

2
,

α = y1 − c/2, α1 = y1 + c/2,

(34)

where y1 is any real root of the cubic equation

y3 − c

2
y2 − ey +

(ce
2
− d2

8

)
= 0 (35)

or

z3 + 3 pz + 2 q = 0 (z = y − c/6), (36)

p = 1−
(

2P − 1, 404 δ
ν2

∗

)2/
36,

q = −1

2

(
2P + 1, 404 δ

ν

∗

)2 [
1−

(
2P − 1, 404 δ

ν2

∗
)3

108 (2P + 1, 404 δ
2

∗)

]
.

(37)

If we assume that (
2P − 1, 404 δ

ν2

∗

)2/
36� 1,

then expressions (37) take the form p = 1, q = − 1
2 (2P+1, 404 δ

ν2

∗ ). Since the discriminant of equation

(36) is D = q2 + p3 > 0, we have only one real root

z =
(
− q +

√
q2 + p3

)1/3
+
(
− q −

√
q2 + p3

)1/3
(38)

If we assume that (
2P + 1, 404 δ

ν2

∗
)/

36� 1 (38′)

and expand the expressions appearing in (38) in series, omitting all values of the second order of

smallness, we arrive at z =
[
2P + 1, 404 (δ

ν2

∗ − γ∗/4)
]
/3. Then on the basis of (34), (36) and (33),

we obtain

α = z − c/3 = 2 · 1, 404 δν
2

∗ ,

α1 = z +
2

3
c = 2P − 1, 404

(
δν

2

∗ +
3

4
γ∗

)/
3.

(39)

Taking into account that y1 is the root of equation (35), we have

d2

8(y1 − c/2)
= y21 − e,
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whence we get

|d|√
8α

=
√
y21 − e > y1 =

y1
2

+
y1
2

+
c

4
− c

4
=

1

2

(
y1 −

c

2

)
+

1

2

(
y1 +

c

2

)
.

Consequently,

|d|√
8α
− α1

2
>
α

2
. (40)

Since N2 = n2/n20, of our interest are only positive roots of equation (33). Taking into account
inequality (40), we find that for δ∗ < 0 (d > 0), positive is only the root θ1, and for δ∗ > 0 (d < 0),
positive is the root θ3. Substituting the values d, α, α1, according to equalities (33) and (39), into
(34), we obtain

θ1,2 =

√√
3 + 0, 234

(
δν2

∗ +
3

4 e1
γν∗

)
− P ± 0, 684 |δν∗ |, (41)

where the indices “1” and “2” correspond to δ∗ > 0 and δ∗ < 0, respectively. It should be noted that
the above formula is, according to inequality (38′), valid for comparatively not large values of rigidity
of the elastic filler γν∗ . Taking into account that θ in an expanded form is θ= (e1/e2)1/4n2/λ1ε

−14,
we have

n21,2 = (e1/e2)1/4
{(√

3 + 0, 270(e1/e2)1/2ε−1/2
[(δ0

`

)2
+

3

4

γ

e1

( `
r

)2]
− P

)1/2

± 0, 735
(e1
e2

)1/4
ϕ−1/4

|δ0|
`

}
λ1ε
−1/4. (42)

In particular, for δ0 = γ = p = 0, we obtain the well-known formula for a critical number of waves
of the cylindrical shell of middle length: n2 = (e1/e2)1/4

√
3λ1ε

−1/4 [5].
From formula (42), it is not difficult to notice that under the action of contracting forces a number of

critical circumferential waves decreases, while under the action of tensile forces this number increases.
Formula (39), as it has been mentioned above, takes place if condition (38′) is fulfilled. In the case

if this condition is not fulfilled we have to proceed from full expressions (37). Defining thus the values
θ∗ (for fixed δν∗ , γ

ν
∗ , P , e1, e2) and substituting into (32), we obtain the corresponding critical value of

Q̃∗. In an expanded form, formula (32) for a critical pressure has the form

qkp = 0, 570 e
1/4
1 e

3/4
2 g

[
θ∗ + θ−3∗ + 2, 37 δν∗θ

−2
∗

+ 1, 404
(
δν

2

∗ + γν∗/4e1
)
θ−1∗ − 2P

(
θ−1∗ − 1, 185 δ̃ ν∗

)]
q0∗ − γ0α2T.

Note that the obtained value of Q̃∗ on the basis of formula (32) for the isotropic cylindrical shell
coincides for (δ∗ = 0, γ∗ = 0) P > 0 practically with the results obtained in [4].

Consider now equation (12) and write it in the form

θ4 + bθ3 + dθ + e = 0, b = 1, 185 δν∗P − 0, 8775 Q̃ ν ,

Q̃ ν = e
−1/4
1 e

3/4
2 Q̃, d = −1, 185 δν∗ , e = −1.

(43)

The roots of this equation coincide with those of the following two equations

θ2 + (b+B1,2)
θ

2
+
(
y1 +

by1 − d
B1,2

)
= 0, B1,2 = ±

√
8
(
y1 − b2/8

)
. (44)

Introduce the notation

γ1 = y1 + b2/8, γ2 = y1 − b2/4. (45)



EIGENOSCILLATIONS AND STABILITY OF ORTHOTROPIC SHELLS 81

Then the roots of these equations will take the form

θ1,2 = −
√

8 γ1 + b

4
±

√
−by1 − d√

8 γ1
+
b
√

8 γ1 − 4 γ2
8

, (46)

θ3,4 =

√
8 γ1 + b

4
±

√
by1 − d√

8 γ1
− b
√

8 γ1 + 4 γ2
8

, (47)

where y1 is any real root of the cubic equation

y3 + 3 py + 2q = 0, 3 p = 1− 1, 1852δ̃ ν
2

∗ PM

4
,

2 q = −1, 1852δ̃ ν
2

∗ (1− P 2
M2)

8
, M = 1− 0, 7405 Q̃/δ̃ ν∗ P

for
1, 1852δ̃ ν

2 |PM |
4

� 1
(
δ̃ ν∗ ≤ 0, 5, |PM | ≤ 0, 5

)
,

p =
1

3
, q = −1, 1852 δ̃ ν

2

∗
(
1− P ν

M2
)
/16.

(48)

Since the discriminant of this equation D > 0, we have one real root

y1 =
(
− q +

√
D
)1/3

+
(
− q −

√
D
)1/3

,

√
D =

√
1 + 0, 208 δ̃ ν4

∗
(
1− P 2

M2
)
/33/2.

If we assume

0, 208 δ̃ ν
4

∗
(
1− P 2

M2
)
� 1 (49)

then in a full analogy with the above-said, we obtain y1 = 0, 1755 δ̃ ν
2

∗
(
1 − P

2
M2
)
. Under the

restrictions (48), inequality (49) is all the more fulfilled. Substituting the values y1, b, d, e1, e2 into
expressions (46) and (47) and also taking into account inequality (48), we find that for d > 0 (δν∗ < 0),
positive is only the root θ1, whereas for d < 0 (δν∗ > 0), positive is the root θ3. As a result, we have

θ1 =
[
1 + 0, 1755 δ̃ ν

2

∗ PM1

(
1− P 2

M2
1

)
− 0, 0877 δ̃ ν

2

∗
(
1 + 2PM1

− 2P
2
M2

1

)]1/2
+ 0, 2962 δ̃ ν∗

(
1− PM1

)
(δν∗ > 0), (50)

θ2 =
[
1 + 0, 1755 δ̃ ν

2

∗ PM2

(
1− P 2

M2
2

)
− 0, 0877 δ̃ ν

2

∗
(
1 + 2PM2

− 2PM2

)]1/2
− 0, 2962 δ̃ ν∗

(
1− PM1

)
(δν∗ < 0) (51)

M1 = 1− 0, 7405 Q̃ν/δνP , M1 = 1 + 0, 7405 Q̃ν/|δν |P .

For δ̃ ν∗ > 0, P/Q̃ > 0 the value M1 = 0, if δν∗ = 0, 7405P/Q̃ ν ; for δν∗ < 0, P/Q̃ ν < 0, the value

M2 = 0, if |δν∗ | = −0, 7405P/Q̃ ν , and formulas (50), (51) take the form

θ =

√
1− 0, 0877 δ̃ ν2

∗ + 0, 2962 δ̃ ν∗ (δν∗ > 0),

θ =

√
1− 0, 0877 δ̃ ν2

∗ − 0, 2962
∣∣δ̃ ν∗ ∣∣ (δν∗ < 0).

Note that this case of the certain values δ̃ ν∗ corresponds to the cases for which the normal circum-
ferential stresses due to meridional loading, external pressure and also temperature effect neutralise
mutually each other.

For γ0 = 0, e1 = e2 = 1 we have δ̃ν∗ = δ∗, q̃ = q and for θ, we obtain the formula given in [3].

Substituting the obtained expression for θ (for fixed δν∗ , P , Q̃, γν) into formula (10), we obtain the
corresponding least value of the dimensionless frequency ω/ω∗.
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The above obtained formulas and graphs show how much substantially vary critical loading, the
least frequency and the forms of wave formation depending on the orthotropy parameters, shell shape
and external effects.
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1. A. L. Gol’denvĕızer, V. B. Lidskĭı, P. E. Tovstik, Free Oscillations of Thin Elastic Shells. (Russian) Nauka, Moscow,

1979.

2. S. Kukudzhanov, On influence of normal pressure on the frequencies of natural oscillations of cylindrical shells.
(Russian) Inzh. Zh. Mekh. Tverd. Tela, 3 (1968), 140–144.

3. S. Kukudzhanov, On the effect of normal pressure on frequencies of proper oscillations of shells of revolution, close

by their form to cylindrical ones. (Russian) Izvestiya RAN, MTT 6 (1996), 121–126.
4. H. M. Mushtari, A. V. Sachenkov, On stability of cylindrical and conical shells of circular section under the simul-

taneous action of axial compression and external normal pressure. (Russian) Prikl. Mat. Meh. 18 (1954), 667–674.
5. H. M. Mushtari, K. Z. Vlasov, Nonlinear Theory of Elastic Shells. (Russian) Tatknigoizdat, Kazan, 1957.

6. M. V. Nikulin, Influence of Axial Forces on Proper Oscillation Frequencies of a Cylindrical Shell. (Russian) Oboron-

giz, Moscow, 1959.
7. P. M. Ogibalov, V. F. Gribanov, Thermal Stability of Plates and Shells. (Russian) Moskow State Univ. 1968.

8. V. Z. Vlasov, General Theory of Shells and Its Applications in Technology. (Russian) Gosudarstvennoe Izdatel’stvo
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