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RINGS WHOSE ELEMENTS ARE LINEAR EXPRESSIONS OF THREE

COMMUTING IDEMPOTENTS

P. DANCHEV

Abstract. We classify up to isomorphism those rings in which all elements are linear expressions
over the ring of integers Z of at most three commuting idempotents. Our results substantially

improve on recent publications by the author in Albanian J. Math. (2018), Gulf J. Math. (2018),

Mat. Stud. (2018), Bull. Iran. Math. Soc. (2018) and Lobachev. J. Math. (2019) as well as on
publications due to Hirano-Tominaga in Bull. Austral. Math. Soc. (1988), Ying et al. in Can.

Math. Bull. (2016) and Tang et al. in Lin. & Multilin. Algebra (2019).

1. Introduction and Background

Throughout the text of the paper, all rings R are assumed to be associative, containing the identity
element 1 which differs from the zero element 0 of R. The standard terminology and notations are
mainly in close agreement with [8]. For instance, U(R) denotes the group of units in R, Id(R) the set
of idempotents in R, Nil(R) the set of nilpotents in R and J(R) the Jacobson radical of R. As usual,
Z stands for the ring of integers, and Zk

∼= Z/kZ is its quotient modulo the principal ideal (k) = kZ,
where k ∈ N is the set of naturals.

About the specific notions, they will be explained below in detail.
The aim of the present work is to describe the isomorphic structure of the following class of rings.

Definition 1.1. We shall say that the ring R is from the class R3 if, for any r ∈ R, there exist
commuting each to other e1, e2, e3 ∈ Id(R) such that r = e1 + e2 − e3 or r = e1 − e2 − e3.

It is worthwhile to mention that by substituting r → −r and an eventual re-numeration of the
idempotents, the first equality will yield the second equality, and reversible.

Obvious examples of such rings are the rings Zk, where k = 2, 3, 4, 5, 6. Contrasting with that, the
ring Z7 need not be so.

The most important principally known achievements concerning the subject are as follows: Clas-
sically, a ring is said to be boolean if each its element is an idempotent – such a ring is known to be
a subdirect product of a family of copies of the two element field F2. A very successful attempt to
generalize that concept was made in [7] to the rings whose elements are the sum of two commuting
idempotents – in fact, these rings are known to be commutative being a subdirect product of a family
of copies of the two and three element fields F2 and F3, respectively. In particular, if every element of
a ring is an idempotent or minus an idempotent, then this ring is either boolean, or F3, or the direct
product of two such rings.

Further expansions of these notions, in terms of linear expressions over Z of at most three commuting
idempotents, are subsequently given below as follows:
• ∀r ∈ R, r = e1 + e2 or r = e1 − e2 for some two commuting e1, e2 ∈ Id(R) (see [10]).
• ∀r ∈ R, r = e1 + e2 or r = −e1 − e2 for some two commuting e1, e2 ∈ Id(R) (see [5]).
• ∀r ∈ R, r = e1 + e2 + e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [4] and [9]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 for some three commuting e1, e2, e3 ∈ Id(R) (see [2]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = e1 − e2 for some three commuting e1, e2, e3 ∈ Id(R) (see [4])
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 − e2 for some three commuting e1, e2, e3 ∈ Id(R) (see [1]).
• ∀r ∈ R, r = e1 + e2 + e3 or r = −e1 − e2 − e3 for some three commuting e1, e2, e3 ∈ Id(R)

(see [3]).
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• ∀r ∈ R, r = e1 +e2 +e3 or r = e1 +e2−e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [6]).
• ∀r ∈ R, r = e1 +e2 +e3 or r = e1−e2−e3 for some three commuting e1, e2, e3 ∈ Id(R) (see [6]).
Actually, the rings from the last two bullets are rings lying in the classes R1 and R2, respectively.
In all of the aforementioned variations, the ring is of necessity commutative, which suggest us to

state at the end of the article two conjectures which are of some interest and importance.
Our working tactic is somewhat to develop the techniques utilized in [1–6] as well as to build some

new methods inspired by the specification of the ring structure. Especially, we shall careful study the
rings from the class R3, stated above in Definitions 1.1, by characterizing them up to an isomorphism.

2. Main Results

We start here with the following useful technicality.

Proposition 2.1. Any ring R from the class R3 decomposes as R1 ×R2 ×R3, where R1, R2, R3 are
either zero rings or rings belonging to the class R3 such that 4 = 0 in R1, 3 = 0 in R2 and 5 = 0
in R3.

Proof. Let us write 3 = e1 + e2 − e3. Observing that e1 − e3 = e1(1− e3)− e3(1− e1) is a difference
of two orthogonal commuting idempotents, we can assume with no harm in generality that e1e3 = 0.
Moreover, since e3(1− e1) remains an idempotent, we may also assume that e2e3 = 0.

Thus, squaring the equality for 3, one infers that 6 = 2e1e2 + 2e3 which multiplying by e3 gives
that 4e3 = 0. Furthermore, a multiplication of the same equality by e1e2 ensures that 4e1e2 = 0 and,
finally, the multiplication of the same by 2 riches us that 12 = 0.

Writing next 3 = e1−e2−e3, as above demonstrated, we can assume without loss of generality that
e1e2 = e1e3 = 0. Multiplying the equality of 3 by e1 leads to 2e1 = 0. On the other side, squaring the
equality for 3 assures that 12 = 2e2e3 and the multiplication of this with e2e3 forces that 10e2e3 = 0.
Therefore, 12.5 = 60 = 4.3.5 = 0, as wanted.

Consequently, the Chinese Remainder Theorem now applies to conclude that R ∼= R1 × R2 × R3,
where R1, R2, R3 are either zero or rings again from the class R3 with characteristics ≤ 4, 3 and 5,
respectively. �

The following assertion is pivotal, strengthening [1, Proposition 2.2].

Lemma 2.2. Suppose that R is a ring of characteristic 5. Then the following four conditions are
equivalent:

(i) x3 = x or x4 = 1, ∀x ∈ R.
(ii) x3 = −x or x4 = 1, ∀x ∈ R.
(iii) x3 = x or x3 = −x, ∀x ∈ R.
(iv) R is isomorphic to the field Z5.

Proof. (i)⇒ (iii). For an arbitrary y ∈ R satisfying y4 = 1 but y3 6= y, considering the element y2−1,
it must be that (y2 − 1)4 = 1 or (y2 − 1)3 = y2 − 1. In the first case we receive y2 = −1 and thus
y3 = −y, as required, while in the second one we arrive at y2 = 1 and so y3 = y which is against our
initial assumption.

(ii) ⇒ (iii). The same trick as that in the previous implication will work, assuming now that
y3 6= −y.

(iii) ⇐⇒ (iv). Let P be the subring of R generated by 1, and thus note that P ∼= Z5. We claim
that P = R, so we assume in a way of contradiction that there exists b ∈ R \ P . With no loss of
generality, we shall also assume that b3 = b since b3 = −b obviously implies that (2b)3 = 2b as 5 = 0
and b 6∈ P ⇐⇒ 2b 6∈ P .

Let us now (1+b)3 = −(1+b). Hence b = b3 along with 5 = 0 enable us that b2 = 1. This allows us
to conclude that (1 + 2b)3 6= ±(1 + 2b), however. In fact, if (1 + 2b)3 = 1 + 2b, then one deduces that
2b = 3 ∈ P which is manifestly untrue. If now (1 + 2b)3 = −1 − 2b, then one infers that 2b = 2 ∈ P
which is obviously false. That is why, only (1 + b)3 = 1 + b holds. This, in turn, guarantees that
b2 = −b. Moreover, b3 = b is equivalent to (−b)3 = −b as well as b3 = −b to (−b)3 = −(−b) and
thus, by what we have proved so far applied to −b 6∈ P , it follows that −b = b2 = (−b)2 = −(−b) = b.
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Consequently, 2b = 0 = 6b = b ∈ P because 5 = 0, which is the wanted contradiction. We thus
conclude that P = R, as expected.

Conversely, it is trivial that the elements of Z5 = {0, 1, 2, 3, 4 | 5 = 0} are solutions of one of the
equations x3 = x or x3 = −x.

(iv) ⇒ (i), (ii). It is self-evident that all elements of Z5 = {0, 1, 2, 3, 4 | 5 = 0} satisfy one of the
equations x3 = x or x4 = 1 as well as one of x3 = −x or x4 = 1. �

We now come to the following.

Theorem 2.3. A ring R lies in the class R3 if, and only if, it is commutative and R ∼= R1×R2×R3,
where R1, R2, R3 are rings for which

(1) R1 = {0}, or R1/J(R1) is a boolean factor-ring with nil J(R1) = 2 Id(R1) such that 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of a family of copies of the fields Z2 and Z3;
(3) R3 = {0}, or R3

∼= Z5.

Proof. Necessity. Appealing to Proposition 2.1, there is a decomposition R ∼= R1×R2×R3, where the
direct factors R1, R2 and R3 still belong to the class R3. What we need to do is to describe explicitly
these three rings.

Describing R1: Here 4 = 0. Since 2 ∈ J(R1), we elementarily observe that the quotient-ring R1/J(R1)
is of characteristic 2 ring from the class R3. Thus it has to be a boolean ring. What it needs to show is
the equality J(R1) = 2 Id(R1). In fact, given z ∈ J(R1), we write z = e1+e2−e3 with e1e3 = e2e3 = 0,
or z = e1 − e2 − e3 with e1e2 = e1e3 = 0, for some three commuting idempotents e1, e2, e3 in R1.
In the first case, ze3 = −e3 still lies in J(R1), so that e3 = 0. Hence z = e1 + e2 implying that
z(1 − e2) = e1(1 − e2) ∈ J(R1) ∩ Id(R1) = {0} and thus that e1 = e1e2. By a reason of symmetry,
e2 = e1e2 whence e1 = e2 giving up that z = 2e1 ∈ 2 Id(R1), as needed.

In the second case, ze1 = e1 ∈ J(R1) ∩ Id(R1) = {0} and hence z = −e2 − e3 = −(e2 + e3).
Similarly, as in the previous case, z = −2e2 = 2e2 ∈ 2 Id(R1) because 4 = 0, as required.

Describing R2: Here 3 = 0. In fact, by the same token as in the preceding situation for R1, we
have that J(R2) = 2 Id(R2) or J(R2) = −2 Id(R2). If for any j ∈ J(R2) we write j = 2i for some
i ∈ Id(R2), then −j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} whence i = 0 = j. Symmetrically, if j = −2i,
then j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} and hence i = 0 = j, as required. Furthermore, since 3 = 0,
it easily follows that x3 = x for all x ∈ R2 and thus [7] is applicable to get the wanted description
of R2.

Describing R3: Here 5 = 0. For any x ∈ R3 we write that x = e1 + e2 − e3 with e1e3 = e2e3 = 0,
or x = e1 − e2 − e3 with e1e2 = e1e3 = 0. In the first case, squaring the equality for x gives that
x2−x = 2(e1e2+e3) which allows us to deduce that (x2−x)2 = 2(x2−x) since e1e2+e3 is obviously an
idempotent as e1e2 and e3 are orthogonal idempotents. We, therefore, have that x4−2x3−x2+2x = 0.
In the second case, again by squaring the equality for x, one derives that x2 + x = 2(e1 + e2e3) which
enables us that (x2 +x)2 = 2(x2 +x) because e1 + e2e3 is obviously an idempotent as e1 and e2e3 are
orthogonal idempotents. We, consequently, have that x4 + 2x3 − x2 − 2x = 0. One also observes that
by the substitution x→ −x the first equation will imply the second equation, and vice versa.

Furthermore, replacing x → 2x and x → 3x in the equation x4 − 2x3 − x2 + 2x = 0, we derive
that x4 − x3 + x2 − x = 0 and that x4 + x3 + x2 + x = 0, respectively. The same replacements in the
equation x4 + 2x3 − x2 − 2x = 0 lead respectively to x4 + x3 + x2 + x = 0 and x4 − x3 + x2 − x = 0,
which are definitely the same equations in a rotating way, arising from the map x→ −x.

The next four main combinations must be considered:

Combination 1. x4 − x3 + x2 − x = 0 with x4 + x3 + x2 + x = 0 implies that 2x3 = −2x, which
multiplying it by 3 implies that x3 = −x because 5 = 0.

Combination 2. x4 − 2x3 − x2 + 2x = 0 with x4 + x3 + x2 + x = 0 implies that 3x3 + 2x2 − x = 0.

Combination 3. x4 − 2x3 − x2 + 2x = 0 with x4 − x3 + x2 − x = 0 implies that x3 + 2x2 − 3x = 0.

Now, combining 3x3 + 2x2 − x = 0 and x3 + 2x2 − 3x = 0, we get once again that 2x3 = −2x, i.e.,
x3 = −x.
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Similar arguments work for the other initial equation x4 + 2x3 − x2 − 2x = 0 getting also that
x3 = −x which as noticed above arisen from x→ −x.

Combination 4. x4 + 2x3 − x2 − 2x = 0 with x4 − 2x3 − x2 + 2x = 0 implies that 4x3 = 4x, that is,
x3 = x since 5 = 0.

After taking into account these four possibilities, one concludes that it must be x3 = x or x3 = −x
after all. That is why, Lemma 2.2 (iii) finally tells us to obtain the wanted description of R3 as being
isomorphic to Z5.

Concerning the commutativity of the whole ring R, since R2 and R3 are obviously commutative,
what remains to show is that this property holds for R1. This, however, follows by the usage of
[4, Theorem 2.2].
Sufficiency. A direct consultation with [7] informs us that every element of R2 is a sum of two
idempotents. Likewise, as in [1, 4] or [5], each element in R1 is a sum of three idempotents. Since R3

has only five elements, we are, therefore, in a position to exploit the same manipulation as that in the
corresponding results from [1,4] and [5] getting that the direct product R1 ×R2 ×R3 belongs to the
class R3, as expected. �

It will definitely be somewhat interesting to examine now the equalities r = e1 + e2 − e3 and
r = e1− e2− e3 in an arbitrary ring R separately, comparing them with the equation r = e1 + e2 + e3
in R which was independently explored in [4] and [9], respectively. Specifically, the latter rings were
defined in [4] to be members from the class K. Inspired by this, let we define the rings R for which
r = e1 + e2 − e3 to lie in the class K1, and the rings for which r = e1 − e2 − e3 in the class K2.

Proposition 2.4. Any ring R either from the class K1 or K2 decomposes as R1 ×R2, where R1, R2

are rings again from the same ring class such that 2 = 0 in R1 and 3 = 0 in R2.

Proof. Firstly, writing 3 = e1 + e2 − e3, we obtain as in the first part of Proposition 2.1 that 12 =
4.3 = 0, as asked for.

Secondly, writing 2 = e1 − e2 − e3, we may assume as in the second part of Proposition 2.1 that
e1e2 = e1e3 = 0. Thus 2e1 = e1 yields that e1 = 0. Therefore, 2 = −e2 − e3 implies by squaring
that 6 = 2e2e3. As a final step, 2e2e3 = −e2e3 − e2e3, i.e., 4e2e3 = 0 insuring that 12 = 4.3 = 0, as
pursued.

Furthermore, the Chinese Remainder Theorem is applicable to get the desired decomposition. �

So, we now arrive at the following.

Theorem 2.5. A ring R is either from the class K1 or K2 if, and only if, it is commutative and
R ∼= R1 ×R2, where R1, R2 are rings for which

(1) R1 = {0}, or R1/J(R1) is a boolean quotient-ring with nil J(R1) = 2 Id(R1) such that 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of copies of the fields Z2 and Z3.

Proof. Necessity. According to Proposition 2.4, there is a decomposition R ∼= R1 × R2, where the
direct factors R1 and R2 still belong to either of classes K1 or K2. What we need to do is to describe
in an explicit form these two rings.

Describing R1: Here 4 = 0. Since 2 ∈ J(R1), we routinely see that the factor-ring R1/J(R1) is of
characteristic 2 ring from one of the classes K1 or K2. Thus it has to be a boolean ring. What suffices
to prove is the equality J(R1) = 2 Id(R1) which can be handled analogously to the corresponding part
of Theorem 2.3.

Describing R2: Here 3 = 0. We claim that J(R2) = {0}. In fact, as in the preceding case, we
have that J(R2) = 2 Id(R2) or J(R2) = −2 Id(R2). If for any j ∈ J(R2) we write j = 2i for some
i ∈ Id(R2), then −j + 3i = i ∈ J(R2) ∩ Id(R2) = {0} whence i = 0 = j. Symmetrically, if j = −2i,
then j + 3i = i ∈ J(R2)∩ Id(R2) = {0} and hence i = 0 = j, as required. Furthermore, since 3 = 0, it
easily follows that x3 = x for all x ∈ R2 and thus [7] is working to get the wanted description of R2.

The commutativity of the former ring R follows in the same way as in Theorem 2.3 above.
Sufficiency. It follows by adapting the same idea as in the “sufficiency part” of Theorem 2.3. �
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Now, to close all possible variations of equalities which depend on idempotents, we shall say that
the ring R belongs to the class P, provided that for any r from R the equalities r = e1 + e2 − e3 or
r = −e1 − e2 are valid for some commuting idempotents e1, e2, e3 ∈ Id(R). This is tantamount to
r = e1 − e2 − e3 or r = e1 + e2 via the substitution r → −r and re-numerating.

One sees that the direct product Z4×Z5 6∈ P by considering the element (1, 3), where 1 = 1+0−0 =
1 + 1− 1 whereas 3 = −1− 1. Contrastingly, for the element (2, 3) we have 2 = 1 + 1 = −1− 1 and
3 = −1− 1. However, the ring Z4 × Z5 ∈ R3 which shows that these two classes are different.

What is currently offer by us is the following slight enlargement of the preceding Theorem 2.5 and
of results from [2,5] and [10].

Theorem 2.6. The ring R lies in the class P if, and only if, R ∼= R1 ×R2 ×R3, where
(1) R1 = {0}, or R1/J(R1) is a boolean ring such that J(R1) = 2 Id(R1) with 4 = 0;
(2) R2 = {0}, or R2 is a subdirect product of a family of copies of the fields Z2 and Z3;
(3) R3 = {0} which must be fulfilled when J(R1) 6= {0}, or R3

∼= Z5.

Proof. Necessity. We claim that 60 = 4.3.5 = 0 in R, and thus the Chinese Remainder Theorem
applies to infer the wanted decomposition of R into R1×R2×R3 with R1, R2, R3 ∈ P such that 4 = 0
in R1, 3 = 0 in R2 and 5 = 0 in R3.

In fact, write 3 = e1 + e2 − e3 with e1e3 = e2e3 = 0. Therefore, 3e3 = −e3 yields that 4e3 = 0.
Also, 3e1e2 = e1e2 + e1e2 gives e1e2 = 0. On the other hand, squaring the equality for 3 forces that
6 = 2(e1e2 + e3) = 2e3. Finally, 6.2 = 4.3 = 0, as expected. Writing now 3 = −e1 − e2, we obtain
3e1e2 = −e1e2−e1e2 amounts to 5e1e2 = 0. The squaring of the equality for 3 ensures that 12 = 2e1e2
whence 12.5 = 4.3.5 = 0, as promised.

Furthermore, describing separately these three direct factors, one has that:

About R1: Here 4 = 0. Since 2 ∈ J(R1), it is self-evident that the quotient R1/J(R1) is a ring of
characteristic 2 also belonging to the class P, and thus it is necessarily a boolean ring. As for the
equality concerning J(R1), given z ∈ J(R1), we may write that z = e1+e2−e3 or that z = −e1−e2 for
some three commuting idempotents e1, e2, e3 ∈ R1. In the first case, as above demonstrated, we may
assume with no harm of generality that e1.e3 = e2.e3 = 0. Hence −ze3 = e3 ∈ J(R1)∩ Id(R1) = {0},
that is, e3 = 0. Thus the record z = e1+e2 riches us that z(1−e2) = e1(1−e2) ∈ J(R1)∩ Id(R1) = {0},
i.e., e1 = e1e2. In a way of similarity e2 = e1e2 and, finally, e1 = e2. Consequently, z = 2e1 ∈ 2 Id(R1),
as pursued. In the second case, z = −(e1 + e2) and processing by the same token as in the former
case, one concludes that z ∈ −2 Id(R1) = 2 Id(R1) since 4 = 0. This substantiates the desired equality
after all.

About R2: Here 3 = 0. So, as R2 ∈ P, it is plainly checked that each element x in R2 satisfies the
equation x3 = x. Furthermore, a simple consultation with [7] assures that R is a subdirect product
of copies of the fields Z2 and Z3, as stated.

About R3: Here 5 = 0. Writing x = e1+e2−e3 or x = −e1−e2 for some three commuting idempotents
e1, e2, e3 ∈ R3. In the first case, additionally assuming without loss of generality that e1.e3 = e2.e3 = 0,
one deduces that x2 − x = 2(e1e2 + e3). But since the expression in the brackets is obviously an
idempotent too being the sum of two orthogonal idempotents, we derive that (x2 − x)2 = 2(x2 − x).
This, in turn, yields that x4 − 2x3 − x2 + 2x = 0. In the second case, one obtains x2 + x = 2e1e2
enabling us that (x2 + x)2 = 2(x2 + x). This, in turn, implies that x4 + 2x3 − x2 − 2x = 0. Actually,
one easily sees that these two equations arise one from other via the substitution x→ −x. Since the
equations are the same as in the corresponding part of Theorem 2.3, we may process analogically to
finish the conclusion that R3 is the simple five element field, as formulated.
Sufficiency. Identical arguments to these from the “sufficiency part” of Theorem 2.3 work to deduce
the wanted assertion. �

As a concluding discussion, we state:

Remark 2.7. Comparing the results established above with these from [6], it seems that the rela-
tionships

R1 ≡ R2 ≡ R3,
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showing the equivalences between the three ring classes R1, R2 and R3, hold. Likewise, these three
classes surprisingly coincide with the class of rings from [3] for which each element is the sum or the
minus sum of three commuting idempotents.

Besides, concerning the classes K, K1 and K2, it seems also by comparison of the already established
results with these from [4] that these three classes curiously do coincide.

We close our comments by observing that in the proof of [3, Proposition 2.3], the ring P [b] with
b4 = b is the quotient ring of the ring P [t]/〈t(t− 1)(t− 2)(t− 4)〉 which, in its turn, is the direct sum
of four copies of the field P . It follows immediately that if P [b] 6= P , then the requirements of this
proposition do not hold. The same idea can be successfully applied to Case 3 and especially to Case
4 in the proof of necessity of Theorem 2.4 from [3]. Nevertheless, the methodology illustrated in [3],
although somewhat elusive, is rather more transparent.

On the other vein, in ‘Sufficiency’ of the proof of [5, Theorem 2.4] on line 2 the phrase is also a
ring should be written and read as in the presence of points (1), (2) and (3) is also a ring, which is,
definitely, an involuntarily omission.

In ending, we pose the following two conjectures:

Conjecture 1. If every element of a ring is a sum of (a fixed number of) commuting idempotents,
then this ring is commutative itself.

Conjecture 2. If each element of a ring is expressed as a linear combination over Z of (a fixed number
of) commuting idempotents, then that ring is necessarily commutative.
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