CHARACTERIZATION OF SETS OF SINGULAR ROTATIONS FOR A CLASS OF DIFFERENTIATION BASES

G. ONIANI AND K. CHUBINIDZE

ABSTRACT. We study the dependence of differential properties of an indefinite integral on rotations of the coordinate system. Namely, the following problem is studied: For a summable function fof what kind can be the set of rotations γ for which $\int f$ is not differentiable with respect to the γ -rotation of a given basis B? The result obtained in the paper implies a solution of the problem for any homothecy invariant differentiation basis B of two-dimensional intervals which has symmetric structure.

1. Definitions and Notation

A collection B of open bounded and non-empty subsets of \mathbb{R}^n is called a *differentiation basis* (briefly: *basis*) if for every $x \in \mathbb{R}^n$ there exists a sequence (R_k) of sets from B such that $x \in R_k$ $(k \in \mathbb{N})$ and lim diam $R_k = 0$.

For a basis B by B(x) ($x \in \mathbb{R}^n$) it will be denoted the collection of all sets from B containing the point x.

Let B be a basis. For $f \in L(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, the upper and lower limits of the integral means $\frac{1}{|R|} \int_R f$, where R is an arbitrary set from B(x) and diam $R \to 0$, are called the *upper and the lower derivatives with respect to B of the integral of f at the point x*, and are denoted by $\overline{D}_B(\int f, x)$ and $\underline{D}_B(\int f, x)$, respectively. If the upper and the lower derivatives coincide, then their common value is called the *derivative of* $\int f$ at the point x and denoted by $D_B(\int f, x)$. We say that B differentiates $\int f$ (or $\int f$ is differentiable with respect to B) if $\overline{D}_B(\int f, x) = \underline{D}_B(\int f, x) = f(x)$ for almost all $x \in \mathbb{R}^n$. If this is true for each f in the class of functions $F \subset L(\mathbb{R}^n)$ we say that B differentiates F. By F_B denote the class of all functions $f \in L(\mathbb{R}^n)$ the integrals of which are differentiable with respect to B. The maximal operator M_B corresponding to B is defined as follows: $M_B(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} \int_R |f|$, where $f \in L(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$.

A basis B is called *translation invariant* (homothecy invariant) if for any set R from B and any translation (homothecy) $M : \mathbb{R}^n \to \mathbb{R}^n$ the set M(R) also belongs to B. It is easy to check that each homothecy invariant basis is translation invariant also. Let us call a basis B convex if each set $R \in B$ is convex.

Denote by $\mathbf{I} = \mathbf{I}(\mathbb{R}^n)$ the basis consisting of all *n*-dimensional intervals. Differentiation with respect to \mathbf{I} is called *strong differentiation*.

Let us call a basis *B* non-standard if there exists a function $f \in L(\mathbb{R}^n)$ the integral of which is not differentiable with respect to *B* (i.e. if *B* does not differentiate $L(\mathbb{R}^n)$).

The basis I is non-standard (see, e.g., [3, Ch. IV, §1]). Note that (see, [3, Appendix III]) a homothecy invariant basis B of multi-dimensional intervals is non-standard if and only if $\sup\{I \in B : l^I/l_I\} = \infty$, where l^I and l_I are the lengthes of the biggest and of the smallest edges of an interval I, respectively. Moreover, a clear geometrical criterion for the non-standartness it is known also for translation invariant bases of multi-dimensional intervals (see [14, 16]).

By $\Gamma(\mathbb{R}^n)$ denote the collection of all rotations in \mathbb{R}^n .

Let B be a basis in \mathbb{R}^n and $\gamma \in \Gamma(\mathbb{R}^n)$. The γ -rotated basis B is defined as follows: $B(\gamma) = \{\gamma(R) : R \in B\}.$

Denote by ρ_k (k = 0, 1, 2, 3) the rotation of the plane by the angle $\pi k/2$.

²⁰¹⁰ Mathematics Subject Classification. 28A15.

Key words and phrases. Differentiation of integrals; Translation invariant basis; Homothecy invariant basis; Rotation.

Let us call a set $E \subset \Gamma(\mathbb{R}^2)$ symmetric if for any $\gamma \in E$ the rotations $\rho_1 \circ \gamma, \rho_2 \circ \gamma$ and $\rho_3 \circ \gamma$ also belong to the set E.

Let us call a translation invariant basis B of two-dimensional intervals symmetric if the bases $B(\rho_1), B(\rho_2)$ and $B(\rho_3)$ are equal to B. Obviously, the basis $I(\mathbb{R}^2)$ is symmetric.

The set of two-dimensional rotations $\Gamma(\mathbb{R}^2)$ can be identified with the circumference $\mathbb{T} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$, if to a rotation γ we put into correspondence the point $\gamma((1,0))$. The distance $d(\gamma, \sigma)$ between rotations $\gamma, \sigma \in \Gamma(\mathbb{R}^2)$ is assumed to be equal to the length of the smallest arch of the circumference \mathbb{T} connecting the points $\gamma((1,0))$ and $\sigma((1,0))$.

A class of functions F is called *invariant with respect to a class of transformations of a variable* Λ if $(f \in F, \lambda \in \Lambda) \Rightarrow f \circ \lambda \in F$.

2. INTRODUCTION

The dependence of properties of functions of several variables on rotations of the system of coordinates (that is, on a transformation of the variables that is a rotation) has been studied by various authors.

Zygmund posed the following problem (see, [3, Ch. IV, §2]): Is it possible to improve an arbitrary function $f \in L(\mathbb{R}^2)$ by means of a rotation of the coordinate system to achieve strong differentiability of the integral of f? In [7] Marstrand gave a negative answer to this problem by constructing a non-negative function $f \in L(\mathbb{R}^2)$ such that $\overline{D}_{\mathbf{I}}(\int f \circ \gamma, x) = \infty$ a.e. for every $\gamma \in \Gamma(\mathbb{R}^2)$. In the works [6, 10, 13] and [11] the result of Marstrand was extended to bases of quite general type.

As established by Lepsveridze [5], Oniani [8] and Stokolos [15], the property of strong differentiability (that is, the class $F_{\mathbf{I}}$) is not invariant with respect to linear changes of variables and, in particular, to rotations. A similar result was proved by Dragoshanskii [2] for the class of continuous functions of two variables whose Fourier series (Fourier integral) is Pringsheim convergent almost everywhere.

In [11] non-invariance of a class F_B with respect to rotations was proved for any non-standard translation invariant basis B of multi-dimensional intervals.

Suppose B is a translation invariant basis. Then it is easy to verify that the differentiation of the integral of a "rotated" function $f \circ \gamma$ with respect to B at a point x is equivalent to the differentiation of the integral of f with respect to the "rotated" basis $B(\gamma^{-1})$ at the point $\gamma^{-1}(x)$. Consequently, we can reduce the study of the behavior of functions $f \circ \gamma$ ($\gamma \in \Gamma(\mathbb{R}^n)$) with respect to the basis B to the study of the behavior of f with respect to the rotated bases $B(\gamma)$ ($\gamma \in \Gamma(\mathbb{R}^n)$). Below we will use this approach.

If for a translation invariant basis B the class F_B is not invariant with respect to the rotations then there exists a function $f \in L(\mathbb{R}^n)$ having non-homogeneous behaviour with respect to rotated bases $B(\gamma)$ ($\gamma \in \Gamma(\mathbb{R}^n)$), more exactly, $\int f$ is not differentiable with respect to $B(\gamma)$ for some rotations and $\int f$ is differentiable with respect $B(\gamma)$ for some other rotations. Thus, for f some rotations γ are "singular" and some other rotations γ are "regular". In this connection naturally arises the problem: Of what kind can be the sets of singular and of regular rotations for a fixed function? Note that by duality argument we can restrict ourselves by studying sets of singular rotations.

In connection to the posed problem let us formulate rigor definition of a set of singular rotations: Suppose B is a translation invariant basis in \mathbb{R}^n and $E \subset \Gamma(\mathbb{R}^n)$. Let us call E a W_B -set if there exists a function $f \in L(\mathbb{R}^n)$ with the following two properties: 1) $f \notin F_{B(\gamma)}$ for every $\gamma \in E$; 2) $f \in F_{B(\gamma)}$ for every $\gamma \notin E$.

Let us formulate also the definition of a set of "strongly" singular rotations: Suppose B is a translation invariant basis in \mathbb{R}^n and $E \subset \Gamma(\mathbb{R}^n)$. Let us call E an R_B -set if there exists a function $f \in L(\mathbb{R}^n)$ with the following two properties: 1) $\overline{D}_{B(\gamma)}(\int f, x) = \infty$ a.e. for every $\gamma \in E$; 2) $f \in F_{B(\gamma)}$ for every $\gamma \notin E$.

Now the problem can be formulated as follows: For a given translation invariant basis B what kind of sets are W_B -sets $(R_B$ -sets)?

Note that for a standard basis B, i.e. for a basis B differentiating $L(\mathbb{R}^n)$, the problem is trivial. Here note also that if a translation invariant basis B of two-dimensional intervals is symmetric then every W_B -set and every R_B -set is symmetric. In [1] for an arbitrary translation invariant basis B in \mathbb{R}^2 it was established the following three structural properties of sets of singular rotations: 1) Each W_B -set is of type $G_{\delta\sigma}$; 2) Each R_B -set is of type G_{δ} ; 3) At most countable union of R_B -sets is a W_B -set.

Sets of singular rotations for the case of strong differentiability process on the plane (i.e., for the case $B = \mathbf{I}(\mathbb{R}^2)$) was characterized by G. Karagulyan [4] proving that: 1) a set $E \subset \Gamma(\mathbb{R}^2)$ is a $W_{\mathbf{I}(\mathbb{R}^2)}$ -set if and only if E is symmetric and of type $G_{\delta\sigma}$; 2) a set $E \subset \Gamma(\mathbb{R}^2)$ is an $R_{\mathbf{I}(\mathbb{R}^2)}$ -set if and only if E is symmetric and of type $G_{\delta\sigma}$.

Our purpose is to show that the idea in Karagulyan's construction works for bases of two-dimensional intervals of quite general type.

3. Result

For a translation invariant convex basis B let us define the following function $\sigma_B(\lambda) = \overline{\lim_{\varepsilon \to 0}} |\{M_B(\chi_{V_{\varepsilon}}) > \lambda\}| / |V_{\varepsilon}| \ (0 < \lambda < 1)$, where V_{ε} is the ball with the centre at the origin and with the radius ε . Here and below everywhere χ_E denotes the characteristic function of a set E. We call σ_B a spherical halo function of B. It is easy to check that if B is homothecy invariant, then $\sigma_B(\lambda) = |\{M_B(\chi_V) > \lambda\}|$, where V is the unit ball.

We say that a translation invariant convex basis B has the non-regular spherical halo function if $\overline{\lim} \lambda \sigma_B(\lambda) = \infty$.

Theorem 1. Let B be a non-standard translation invariant basis of two-dimensional intervals which is symmetric and has the non-regular spherical halo function. Then:

- a set $E \subset \Gamma(\mathbb{R}^2)$ is a W_B -set if and only if E is symmetric and of type $G_{\delta\sigma}$;
- a set $E \subset \Gamma(\mathbb{R}^2)$ is an R_B -set if and only if E is symmetric and of type G_{δ} .

In [11] (see Lemma 2.4) it was shown that every non-standard homothecy invariant convex basis B has the non-regular spherical halo function. Taking into account this fact, we obtain from Theorem 1 the following corollary.

Corollary 1. Let B be a non-standard homothecy invariant basis of two-dimensional intervals which is symmetric. Then for W_B -sets and R_B -sets characterizations analogous to the ones given in Theorem 1 are true.

4. AUXILIARY PROPOSITIONS

By $\mathfrak{B}_{\mathrm{TI}}$ and $\mathfrak{B}_{\mathrm{HI}}$ we will denote the classes of all translation invariant and homothecy invariant bases in \mathbb{R}^2 , respectively. By $\mathfrak{B}_{\mathrm{I}}$ it will be denoted the class of all bases consisting of two-dimensional intervals. The lower left vertex of an interval $I \subset \mathbb{R}^2$ denote by a(I). For a set $A \subset \mathbb{R}^n$ with the centre of symmetry at a point x and for a number $\alpha > 0$ we denote by αA the dilation of A with the coefficient α , i.e. the set $\alpha A = \{x + \alpha(y - x) : y \in A\}$.

Let $B \in \mathfrak{B}_{\mathbf{I}}$. For a square interval Q and $\lambda \in (0, 1)$ by $\Omega_B(Q, \lambda)$ denote the collection of all intervals $I \in B$ with the properties: $a(I) = a(Q), I \supset Q$ and $|Q|/|I| > \lambda$. The set $E_B(Q, \lambda)$ will be defined as the union of all intervals from the collection $\Omega_B(Q, \lambda)$. Obviously, $\frac{1}{|I|} \int_I \chi_Q > \lambda$ for each $I \in \Omega_B(Q, \lambda)$ and $E_B(Q, \lambda) \subset \{M_B(\chi_Q) > \lambda\}$.

Lemma 1. Let $B \in \mathfrak{B}_{TI} \cap \mathfrak{B}_I$, Q be a square interval and $0 < \lambda < 1$. Then $|E_B(Q,\lambda)| \geq c(|\{M_B(\chi_Q) > \lambda\}| - 18|Q|/\lambda)$, where c is a positive absolute constant.

Proof. Without loss of generality let us assume that Q is a square interval of the type $(-\varepsilon, \varepsilon)^2$. Let Θ be the collection of all intervals $I \in B$ such that $\frac{1}{|I|} \int_I \chi_Q > \lambda$. Obviously, $\{M_B(\chi_Q) > \lambda\} = \bigcup_{I \in \Theta} I$.

Denote by Θ_0 the collection of all intervals $I \in \Theta$ having at least one side with the length smaller than 2ε . It is easy to check that every $I \in \Theta_0$ is contained in the union of the intervals $(-3\varepsilon, 3\varepsilon) \times (-\varepsilon - 2\varepsilon/\lambda, \varepsilon + 2\varepsilon/\lambda)$ and $(-\varepsilon - 2\varepsilon/\lambda, \varepsilon + 2\varepsilon/\lambda) \times (-3\varepsilon, 3\varepsilon)$. Consequently, $|\bigcup_{I \in \Theta_0} I| < 18|Q|/\lambda$.

Let \mathbb{R}_k^2 $(k \in \overline{1,4})$ be the k-th coordinate quarter. Denote by Θ_k $(k \in \overline{1,4})$ the collection of all intervals $I \in \Theta \setminus \Theta_0$ for which $|I \cap \mathbb{R}_k^2| = \max\{|I \cap \mathbb{R}_m^2| : m \in \overline{1,4}\}$. Obviously, $\Theta = \bigcup_{k=0}^4 \Theta_k$. The unions $\bigcup_{I \in \Theta_k} I$ and $\bigcup_{I \in \Theta_m} I$ are symmetric with respect to Ox_2 if k = 1, m = 2 or k = 3, m = 4 and

are symmetric with respect to Ox_1 if k = 2, m = 3 or k = 4, m = 1. Hence, the sets $\bigcup_{I \in \Theta_k} I$ $(k \in 1, 4)$ have one and the same measure. Consequently,

$$\left|\bigcup_{I\in\Theta_{1}}I\right| \geq \frac{1}{4}\left(\left|\bigcup_{I\in\Theta}I\right| - \left|\bigcup_{I\in\Theta_{0}}I\right|\right) \geq \frac{1}{4}\left(\left|\{M_{B}(\chi_{Q}) > \lambda\}\right| - \frac{18|Q|}{\lambda}\right).$$
(1)

For arbitrary $I \in \Theta_1$ let us consider the translation T for which $T(I) \in \Omega_B(Q, \lambda)$. It is clear that $I \subset 2T(I)$. Consequently, $\bigcup_{I \in \Theta_1} I \subset \bigcup_{I \in \Omega_B(Q,\lambda)} 2I$. Therefore, by (1): $|\bigcup_{I \in \Omega_B(Q,\lambda)} 2I| \ge \frac{1}{4}(|\{M_B(\chi_Q) > \lambda\}| - 18|Q|/\lambda)$. On the other hand, by virtue of the inclusion $\bigcup_{I \in \Omega_B(Q,\lambda)} 2I \subset \{M_{I(\mathbb{R}^2)}(\chi_A) \ge 1/4\}$, where $A = \bigcup_{I \in \Omega_B(Q,\lambda)} I$, and the strong maximal inequality (see, e.g., [3, Ch. II, §3]), we have: $|\bigcup_{I \in \Omega_B(Q,\lambda)} 2I| \le C|\bigcup_{I \in \Omega_B(Q,\lambda)} I|$, where C is a positive absolute constant. From the last two estimations it follows the validity of the lemma.

Lemma 2. Let $B \in \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{I}}$ and $0 < \lambda < 1$. If $\sigma_B(\lambda) > 144/\lambda$, then for every $\varepsilon > 0$ there is a square interval Q such that diam $Q < \varepsilon$ and $|E_B(Q, \lambda)| \ge c\sigma_B(\lambda)|Q|/8$, where c is the constant from Lemma 1.

Proof. Taking into account the definition of the spherical halo function σ_B , we can find a ball $V_{\delta} = \{x \in \mathbb{R}^2 : \operatorname{dist}(x, O) < \delta\}$ such that $\delta < \varepsilon/4$ and $|\{M_B(\chi_{V_{\delta}}) > \lambda\}|/|V_{\delta}| > \sigma_B(\lambda)/2$. Let us consider the square interval Q superscribed around V_{δ} , i.e. $Q = (-\delta, \delta)^2$. Then diam $Q < \varepsilon$ and $|\{M_B(\chi_Q) > \lambda\}| \geq |\{M_B(\chi_{V_{\delta}}) > \lambda\}| > \sigma_B(\lambda)|V_{\delta}|/2 > \sigma_B(\lambda)|Q|/4$. Now, taking into account the estimation $\sigma_B(\lambda) > 144/\lambda$, by virtue of Lemma 1, we write: $|E_B(Q, \lambda)| \geq c(\sigma_B(\lambda)|Q|/4 - 18|Q|/\lambda) \geq c\sigma_B(\lambda)|Q|/8$. This proves the lemma.

Suppose, $S = (0, \varepsilon) \times (0, \varepsilon)$, $0 < \alpha \le \pi/4$ and $n \in \mathbb{N}$. For each $k \in \overline{1, n}$ let us define the points $P_k^+(S, \alpha)$, $P_k^-(S, \alpha)$ and the balls $V_k^+(S, \alpha, n)$, $V_k^-(S, \alpha, n)$ as follows:

$$P_k^+(S,\alpha) = \left(\frac{\varepsilon}{2^k}, \frac{\varepsilon}{2^k}\tan(\alpha)\right), \quad P_k^-(S,\alpha) = \left(\frac{\varepsilon}{2^k}, -\frac{\varepsilon}{2^k}\tan(\alpha)\right)$$
$$V_k^+(S,\alpha,n) = \left\{x \in \mathbb{R}^2 : \operatorname{dist}(x, P_k^+(S,\alpha)) < \frac{\varepsilon}{4^n}\tan(\alpha)\right\},$$
$$V_k^-(S,\alpha,n) = \left\{x \in \mathbb{R}^2 : \operatorname{dist}(x, P_k^-(S,\alpha)) < \frac{\varepsilon}{4^n}\tan(\alpha)\right\}.$$

Suppose, Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 0 < \alpha \le \pi/4$ and $n \in \mathbb{N}$. Let $\xi = \xi_{Q,h,S,\alpha,n}$ be the function which is proportional to the function $\sum_{k=1}^{n} \chi_{V_k^+(S,\alpha,n)} - \sum_{k=1}^{n} \chi_{V_k^-(S,\alpha,n)}$, and satisfies the following conditions: $\{\xi > 0\} = \bigcup_{k=1}^{n} V_k^+(S,\alpha,n), \{\xi < 0\} = \bigcup_{k=1}^{n} V_k^-(S,\alpha,n)$ and $\|\xi\|_L = 2\|h\chi_Q\|_L$. The function $\xi_{Q,h,S,\alpha,n}$ we will call (S,α,n) -oscillator corresponding to the function $h\chi_Q$. It is easy to see that:

- 1) the balls $V_k^+(S, \alpha, n)$ are disjoint and contained in the square S;
- 2) the balls $V_k^-(S, \alpha, n)$ are disjoint and contained in the square $S^- = (0, \varepsilon) \times (-\varepsilon, 0);$
- 3) $\int_{V_{k}^{+}(S,\alpha,n)} \xi = -\int_{V_{k}^{-}(S,\alpha,n)} \xi = h|Q|/n$ for each $k \in \overline{1,n}$.

For $\gamma \in \Gamma(\mathbb{R}^2)$ and $\varepsilon > 0$ denote $V[\gamma, \varepsilon] = \{\rho \in \Gamma(\mathbb{R}^2) : \operatorname{dist}(\rho, \gamma) \le \varepsilon\}.$

For a basis B by \overline{M}_B denote the following type maximal operator: $\overline{M}_B(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} \int_R f(f)(x) = \int_R f(f)(x) df$

Lemma 3. Let $B \in \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{I}}$. Suppose Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 0 < \alpha \leq \pi/4$ and $n \in \mathbb{N}$. Then for the oscillator $\xi = \xi_{Q,h,S,\alpha,n}$ it is valid the following estimation: $\frac{1}{|\gamma(I)|} \int_{\gamma(I)} \xi > 1$ for every $I \in \Omega_B(Q, 1/h)$ and $\gamma \in V[\rho_0, \alpha/2]$; consequently, $\{\overline{M}_{B(\gamma)}(\xi) > 1\} \supset \gamma(E_B(Q, 1/h))$ for every $\gamma \in V[\rho_0, \alpha/2]$.

Proof. Let $I \in \Omega_B(Q, 1/h)$ and $\gamma \in V[\rho_0, \alpha/2]$. Using simple geometry it is easy to see that $\gamma(I) \supset \{\xi > 0\}$ and $\gamma(I) \cap \{\xi < 0\} = \emptyset$. Consequently, taking into account the properties of the oscillator ξ , we write: $\frac{1}{|\gamma(I)|} \int_{\gamma(I)} \xi = \frac{1}{|I|} \int_{\{\xi > 0\}} \xi = ||h\chi_Q||_L / |I| = h|Q| / |I| > 1$. The lemma is proved. \Box

Remark 1. On the basis of Lemmas 1 and 3 the oscillator $\xi = \xi_{Q,h,S,\alpha,n}$ may be interpreted as the transformation of the function $h\chi_Q$ that conserves values of integral means with respect to the bases $B(\gamma)$ for rotations γ belonging to the neighbourhood $V[\rho_0, \alpha/2]$. In particular, if it is known that the set $\{M_B(h\chi_Q) > 1\}$ has a big measure, then the sets $\{\overline{M}_{B(\gamma)}(\xi) > 1\}$ have big measures of the same order for every $\gamma \in V[\rho_0, \alpha/2]$.

The following Lemma was shown in [4] (see Lemma 2) and plays an essential role in achieving differentiation effect for desired rotations.

Lemma A. Let S be a square interval, $0 < \alpha < \pi/12$ and $n \in \mathbb{N}$. Then for arbitrary rectangle R the sides of which compose with the line Ox_1 angles greater than 3α it is valid the estimation $|\nu_+ - \nu_-| \leq 2$, where ν_+ is a number of all points $P_k^+(S, \alpha)$ $(k \in \overline{1, n})$ belonging to R and ν_- is a number of all points $P_k^-(S, \alpha)$ $(k \in \overline{1, n})$ belonging to R.

For a square $S = (0, \varepsilon)^2$ by $\Delta(S)$ denote the union of the strips $(-7\varepsilon, 7\varepsilon) \times \mathbb{R}$ and $\mathbb{R} \times (-7\varepsilon, 7\varepsilon)$. For a basis B let \widehat{M}_B be the following type maximal operator: $\widehat{M}_B(f)(x) = \sup_{R \in B(x)} \frac{1}{|R|} |\int_R f|$ $(f \in L(\mathbb{R}^n), x \in \mathbb{R}^n)$.

For a non-empty set $E \subset \Gamma(\mathbb{R}^2)$ and a number $\varepsilon > 0$ denote $V[E, \varepsilon] = \{\gamma \in \Gamma(\mathbb{R}^2) : \operatorname{dist}(\gamma, E) \le \varepsilon\}$. Below the set of the rotations ρ_0, ρ_1, ρ_2 and ρ_3 will be denoted by Π .

Lemma 4. Let Q be a square interval with a(Q) = (0,0), h > 1 and $0 < \alpha < \pi/12$. Then for every square interval $S \subset Q$ with a(S) = (0,0) and every $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that for the oscillator $\xi = \xi_{Q,h,S,\alpha,n}$ it is valid the following inclusion: $\{\widehat{M}_{\mathbf{I}(\gamma)}(\xi) \ge \varepsilon\} \subset \gamma(\Delta(S))$ for every $\gamma \notin V[\Pi, 3\alpha]$.

Proof. Suppose $x \notin \gamma(\Delta(S)), \gamma \notin V[\Pi, 3\alpha], R \in \mathbf{I}(\gamma)(x)$ and $R \cap \operatorname{supp} \xi \neq \emptyset$. For $n \in \mathbb{N}$ denote by $N_+, N_-, N_+^*, N_-^*, N_+^{**}$ and N_-^{**} the sets of indexes $k \in \overline{1, n}$ satisfying conditions $V_k^+(S, \alpha, n) \cap R \neq \emptyset$, $V_k^-(S, \alpha, n) \cap R \neq \emptyset, P_k^+(S, \alpha) \in R, P_k^-(S, \alpha) \in R, V_k^+(S, \alpha, n) \subset R$ and $V_k^-(S, \alpha, n) \subset R$, respectively.

It is easy to see that if n is big enough, then every line l composing an angle with the axis Ox_1 greater than 3α may intersect at most one among balls $V_k^+(S, \alpha, n)(V_k^-(S, \alpha, n))$. Below we will assume that n has the just mentioned property. Consequently, the boundary of the rectangle R may intersect at most 4 among balls $V_k^+(S, \alpha, n)(V_k^-(S, \alpha, n))$. Thus, there are true the following estimations: $\operatorname{card}(N_+ \setminus N_+^*) + \operatorname{card}(N_+^* \setminus N_+^*) \leq 4$ and $\operatorname{card}(N_- \setminus N_-^*) + \operatorname{card}(N_-^* \setminus N_-^*) \leq 4$. Herewith, by virtue of Lemma A: $|\operatorname{card} N_+^* - \operatorname{card} N_-^*| \leq 2$.

Let us estimate $|\int_R \xi|$. We have

$$\begin{split} \left| \int_{R} \xi \right| &= \Big| \sum_{k \in N_{+}} \int_{V_{k}^{+}(S,\alpha,n) \cap R} \xi + \sum_{k \in N_{-}} \int_{V_{k}^{-}(S,\alpha,n) \cap R} \xi \Big| \\ &\leq \Big| \sum_{k \in N_{+}^{*}V_{k}^{+}(S,\alpha,n) \cap R} \int_{k \in N_{-}^{*}V_{k}^{-}(S,\alpha,n) \cap R} \xi \Big| \\ &+ \Big| \sum_{k \in N_{+}} \int_{V_{k}^{+}(S,\alpha,n) \cap R} \xi - \sum_{k \in N_{+}^{*}V_{k}^{+}(S,\alpha,n) \cap R} \int_{k \in N_{+}^{*}V_{k}^{+}(S,\alpha,n) \cap R} \xi \Big| \\ &+ \Big| \sum_{k \in N_{-}} \int_{V_{k}^{+}(S,\alpha,n) \cap R} \xi - \sum_{k \in N_{-}^{*}V_{k}^{+}(S,\alpha,n) \cap R} \xi \Big| = a_{1} + a_{2} + a_{3} \end{split}$$

The term a_1 can be estimated as follows

$$a_{1} \leq \Big| \sum_{k \in N_{+}^{*} V_{k}^{+}(S,\alpha,n)} \int_{k \in N_{-}^{*} V_{k}^{-}(S,\alpha,n)} \xi + \sum_{k \in N_{-}^{*} V_{k}^{-}(S,\alpha,n)} \int_{k \in N_{+}^{*} \setminus N_{+}^{**} V_{k}^{+}(S,\alpha,n)} \xi + \sum_{k \in N_{-}^{*} \setminus N_{-}^{**} V_{k}^{-}(S,\alpha,n)} \int_{k \in N_{+}^{*} \setminus N_{+}^{**} V_{k}^{+}(S,\alpha,n)} |\xi| = a_{1,1} + a_{1,2} + a_{1,3}.$$

By virtue of equalities $\int_{V_k^+(S,\alpha,n)} \xi = -\int_{V_k^-(S,\alpha,n)} \xi = h|Q|/n \ (k \in \overline{1,n})$, we write:

$$a_{1,1} = |\operatorname{card} N_{+}^{*} - \operatorname{card} N_{-}^{*}|\frac{h|Q|}{n},$$

$$a_{1,2} \leq \sum_{k \in N_{+}^{*} \setminus N_{+}^{**} V_{k}^{+}(S,\alpha,n)} \int_{\xi} |\xi| = \operatorname{card}(N_{+}^{*} \setminus N_{+}^{**})\frac{h|Q|}{n},$$

$$a_{1,3} \leq \sum_{k \in N_{-}^{*} \setminus N_{-}^{**} V_{k}^{-}(S,\alpha,n)} \int_{\xi} |\xi| = \operatorname{card}(N_{-}^{*} \setminus N_{-}^{**})\frac{h|Q|}{n},$$

$$a_{2} \leq \sum_{k \in N_{+} \setminus N_{+}^{*} V_{k}^{+}(S,\alpha,n)} \int_{\xi} |\xi| = \operatorname{card}(N_{+} \setminus N_{+}^{*})\frac{h|Q|}{n},$$

$$a_{3} \leq \sum_{k \in N_{-} \setminus N_{-}^{*} V_{k}^{-}(S,\alpha,n)} \int_{\xi} |\xi| = \operatorname{card}(N_{-} \setminus N_{-}^{*})\frac{h|Q|}{n}.$$

Consequently,

$$\left| \int_{R} \xi \right| \le a_{1,1} + a_{1,2} + a_{1,3} + a_2 + a_3 \le \frac{10h|Q|}{n}$$

Since $x \notin \gamma(\Delta(S)), R \in \mathbf{I}(\gamma)(x)$ and $R \cap \operatorname{supp} \xi \neq \emptyset$, it is easy to check that the side lengths of R are not less than the length of the sides of S. Therefore, $|R| \geq |S|$. Hence,

$$\frac{1}{|R|} \Big| \int\limits_R \xi \Big| \le \frac{10h|Q|}{n|S|}.$$

The last estimation implies that if n is big enough, then for every $\gamma \notin V[\Pi, 3\alpha]$ it is valid the needed inclusion: $\{\widehat{M}_{\mathbf{I}(\gamma)}(\xi) \geq \varepsilon\} \subset \gamma(\Delta(S))$. The lemma is proved. \Box

Remark 2. On the basis of Lemma 4 the oscillator $\xi = \xi_{Q,h,S,\alpha,n}$ may be considered as the transformation of the function $h\chi_Q$ that decreases values of integral means with respect to the bases $\mathbf{I}(\gamma)$ for rotations γ not belonging to the neighbourhood $V[\Pi, 3\alpha]$.

Let us define an oscillator for more general parameters. Suppose, Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 0 < \alpha \le \pi/4, n \in \mathbb{N}, \gamma \in \Gamma(\mathbb{R}^2)$ and $x \in \mathbb{R}^2$. Denote by T the translation: T(y) = y - x. The oscillator $\xi_{Q,h,S,\alpha,n,\gamma,x}$ define as the function $(\xi_{Q,h,S,\alpha,n} \circ \gamma^{-1}) \circ T$.

For $\gamma \in \Gamma(\mathbb{R}^2)$ the set of the rotations $\gamma, \rho_1 \circ \gamma, \rho_2 \circ \gamma$ and $\rho_3 \circ \gamma$ will be denoted by Π_{γ} .

From Lemmas 3 and 4 we can easily obtain the following two assertions.

Lemma 5. Let $B \in \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{I}}$. Suppose, Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 0 < \alpha \leq \pi/4, n \in \mathbb{N}, \gamma \in \Gamma(\mathbb{R}^2)$ and $x \in \mathbb{R}^2$. Then for the oscillator $\xi = \xi_{Q,h,S,\alpha,n,\gamma,x}$ it is valid the following condition: $\frac{1}{|\gamma^*(I)+x|} \int_{\gamma^*(I)+x} \xi > 1$ for every $I \in \Omega_B(Q, 1/h)$ and $\gamma^* \in V[\gamma, \alpha/2]$; consequently, $\{\overline{M}_{B(\gamma^*)}(\xi) > 1\} \supset \gamma^*(E_B(Q, 1/h)) + x$ for every $\gamma^* \in V[\gamma, \alpha/2]$.

Lemma 6. Let Q be a square interval with a(Q) = (0,0), h > 1 and $0 < \alpha < \pi/12$. Then for every square interval $S \subset Q$ with a(S) = (0,0) and every $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that for every $\gamma \in \Gamma(\mathbb{R}^2)$ and $x \in \mathbb{R}^2$ the oscillator $\xi = \xi_{Q,h,S,\alpha,n,\gamma,x}$ satisfies the following inclusion:

$$\{\widehat{M}_{\mathbf{I}(\gamma^*)}(\xi) \ge \varepsilon\} \subset \gamma^*(\Delta(S)) + x \quad for \ every \quad \gamma^* \notin V[\Pi_{\gamma}, 3\alpha].$$

Recall that a one-dimensional interval I is called *dyadic* if it has the form $(k/2^m, (k+1)/2^m)$, where $k, m \in \mathbb{Z}$. A square interval Q is called *dyadic* if it is a product of two dyadic intervals.

The length of the sides of a square Q denote by d(Q). If $d(Q) = 1/2^m$, then let us call the number m an order of a dyadic square Q.

Suppose Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 6hd(Q) \le 1, 0 < \alpha < \pi/12, n \in \mathbb{N}$ and $\gamma \in \Gamma(\mathbb{R}^2)$. For this parameters we will define the function $f_{Q,h,S,\alpha,n,\gamma}$ below.

Let W(Q,h) be the smallest square interval concentric with Q containing the square 6hQ and having d(W) of the type $1/2^j$ $(j \in \mathbb{Z})$. Note that by virtue of the condition $6hd(Q) \leq 1$, we have: $d(W) \leq 1$. Let us decompose the unit square $(0,1)^2$ into pair-wise non-overlapping square intervals congruent to W(Q,h) and the obtained squares denote by W_1, \ldots, W_k . By x_1, \ldots, x_k denote the centres of W_1, \ldots, W_k , respectively. The order of the dyadic squares W_1, \ldots, W_k denote by m(Q, h).

The function $f_{Q,h,S,\alpha,n,\gamma}$ define as follows: $f_{Q,h,S,\alpha,n,\gamma} = \sum_{j=1}^{k} \xi_{Q,h,S,\alpha,n,\gamma,x_j}$. It is clear that $\sup f_{Q,h,S,\alpha,n,\gamma} \subset (0,1)^2$.

Let Θ be a some collection of rectangles and Δ be a subinterval of $(0, \infty)$. Then by Θ_{Δ} denote the collection of all rectangles $R \in \Theta$ the side lengths of which belong to the interval Δ .

Let *B* be a some basis consisting of rectangles and Δ be a subinterval of $(0, \infty)$. Then by M_B^{Δ} and \overline{M}_B^{Δ} denote the following type operators: $M_B^{\Delta}(f)(x) = \sup_{R \in B(x)_{\Delta}} \frac{1}{|R|} \int_R |f|$ and $\overline{M}_B^{\Delta}(f)(x) = \sup_{R \in B(x)_{\Delta}} \frac{1}{|R|} \int_R f$, where $f \in L(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$.

Let $B \in \mathfrak{B}_{\mathrm{I}} \cap \mathfrak{B}_{\mathrm{TI}}$ and Q be a square interval. By $\sigma_{B,Q}$ denote the function defined as follows: $\sigma_{B,Q}(\lambda) = |E_B(Q,\lambda)|/|Q| \quad (0 < \lambda < 1).$

By \mathbf{P} it will be denoted the basis of all two-dimensional rectangles.

Lemma 7. Let $B \in \mathfrak{B}_{\mathrm{TI}} \cap \mathfrak{B}_{\mathrm{I}}$. Suppose, Q and S are square intervals with $Q \supset S$ and $a(Q) = a(S) = (0,0), h > 1, 6hd(Q) \leq 1, 0 < \alpha < \pi/12, n \in \mathbb{N}, \gamma \in \Gamma(\mathbb{R}^2), W = W(Q,h)$ and m = m(Q,h). Then the function $f = f_{Q,h,S,\alpha,n,\gamma}$ has the following properties:

- 1) $||f||_L < 1/h;$
- 2) for every $\gamma^* \in V[\gamma, \alpha/2]$ there is a set $A(\gamma^*)$ such that:
- (a) $A(\gamma^*) \subset \{\overline{M}_{B(\gamma^*)}^{[d(Q),d(W)]}(f) > 1\};$
- (b) $|A(\gamma^*)| \ge \sigma_{B,Q}(1/h)/(300h^2);$

(c) $A(\gamma^*)$ is uniformly distributed in the dyadic squares of order *m* contained in $(0,1)^2$, i.e. if W_1, \ldots, W_k are all dyadic squares of order *m* contained in $(0,1)^2$, then the sets $A(\gamma^*) \cap W_k$ are congruent;

(d) $A(\gamma^*)$ is a union of dyadic squares of the fixed order, moreover, the order is one and the same for every $\gamma^* \in V[\gamma, \alpha/2]$;

- 3) $|\{M_{\mathbf{p}}^{(0,d(Q))}(f) > 0\}| < 1/h^2;$
- 4) $M_{\mathbf{p}}^{(d(W),\infty)}(f)(x) < 2/h$ for every $x \in \mathbb{R}^2$.

Proof. Let W_j, x_j and $\xi_{Q,h,S,\alpha,n,\gamma,x_j}$ $(j \in \overline{1,k})$ be parameters from the definition of the function $f_{Q,h,S,\alpha,n,\gamma}$. Denote $\xi_j = \xi_{Q,h,S,\alpha,n,\gamma,x_j}$ $(j \in \overline{1,k})$.

Using the inclusion $6hQ \subset W$ it is easy to see that $||f||_L = \sum_{j=1}^k ||\xi_j||_L = \sum_{j=1}^k 2h|Q| = 2h|Q|k = 2h \frac{|Q|}{|W|}k|W| \le 2h \cdot \frac{1}{36h^2} \cdot 1 < 1/h.$

Let $I \in \Omega_B(Q, 1/h), j \in \overline{1, k}$ and $\gamma^* \in V[\gamma, \alpha/2]$. It is easy to check that the side lengthes of I belong to the interval [d(Q), hd(Q)]. Consequently, taking into account the inclusion $6hQ \subset W$, we have: $\gamma^*(I) + x_j \subset W_j$. Thus, the rectangle $\gamma^*(I) + x_j$ does not intersect supports of functions ξ_{ν} with $\nu \neq j$. Therefore, by virtue of Lemma 5, $\frac{1}{|\gamma^*(I)+x_j|} \int_{\gamma^*(I)+x_j} f = \frac{1}{|\gamma^*(I)+x_j|} \int_{\gamma^*(I)+x_j} \xi_j > 1$. Now taking into account estimation $6hd(Q) \leq d(W)$, we conclude that for every $\gamma^* \in V[\gamma, \alpha/2]$,

$$\bigcup_{j=1}^{\kappa} \bigcup_{I \in \Omega_B(Q, 1/h)} (\gamma^*(I) + x_j) \subset \{ \overline{M}_{B(\gamma^*)}^{[d(Q), d(W)]}(f) > 1 \}.$$
(2)

For a set $E \subset \mathbb{R}^2$ by $E(\nu)$ ($\nu \in \mathbb{Z}$) let us denote the union of all dyadic squares of order ν contained in E. Since the set $E_B(Q, 1/h)$ is open and the sets $\gamma^*(E_B(Q, 1/h))$ ($\gamma^* \in V[\gamma, \alpha/2]$) are congruent, then it is possible to find a number $\nu > m$ (see, e.g., [10, Lemma 7] for details) for which

$$\gamma^*(E_B(Q, 1/h))(\nu)| \ge |\gamma^*(E_B(Q, 1/h))|/2 = |E_B(Q, 1/h)|/2$$
(3)

for every $\gamma^* \in V[\gamma, \alpha/2]$.

Let us define the set $A(\gamma^*)$ $(\gamma^* \in V[\gamma, \alpha/2])$ as the union of the translations: $\gamma^*(E_B(Q, 1/h))(\nu) + x_j$ $(j \in \overline{1, k})$. By virtue of the inclusions $\gamma^*(I) + x_j \subset W_j$ we obtain:

$$\gamma^*(E_B(Q,1/h))(\nu) + x_j \subset \gamma^*(E_B(Q,1/h)) + x_j \subset W_j, \tag{4}$$

for every $\gamma^* \in V[\gamma, \alpha/2]$ and $j \in \overline{1, k}$.

From (3), (4) and the obvious inclusion $W \subset 12hQ$, for arbitrary $\gamma^* \in V[\gamma, \alpha/2]$ we write

$$|A(\gamma^*)| = \sum_{j=1}^k |\gamma^*(E_B(Q, 1/h))(\nu) + x_j| \ge k \frac{|E_B(Q, 1/h)|}{2}$$
$$= k|I| \frac{|Q|}{|I|} \frac{|E_B(Q, 1/h)|}{2|Q|} \ge 1 \cdot \frac{1}{144h^2} \cdot \frac{\sigma_{B,Q}(1/h)}{2} \ge \frac{\sigma_{B,Q}(1/h)}{300h^2}.$$

This proves the property (b) of the sets $A(\gamma^*)$. The properties (a), (c) and (d) directly follow from the definition of the sets $\gamma^*(E_B(Q, 1/h))(\nu)$ and the relations (2) and (4).

Let $x \notin \bigcup_{j=1}^{k} 5(\gamma(Q) + x_j)$. Then it is easy to see that $\operatorname{dist}(x, \operatorname{supp} f) \ge 2d(Q)$. Therefore, for every $R \in \mathbf{P}(x)_{(0,d(Q))}$ we have: $\int_{R} f = 0$, and consequently, $M_{\mathbf{P}}^{(0,d(Q))}(f)(x) = 0$. Thus, $\{M_{\mathbf{P}}^{(0,d(Q))}(f) > 0\} \subset \bigcup_{j=1}^{k} 5(\gamma(Q) + x_j)$. By virtue of the last inclusion,

$$|\{M_{\mathbf{P}}^{(0,d(Q))}(f) > 0\}| \le 25k|Q| = 25k|W|\frac{|Q|}{|W|} < 25 \cdot 1 \cdot \frac{1}{36h^2} < \frac{1}{h^2}.$$

Let $x \in \mathbb{R}^2$ and $R \in \mathbf{P}(x)_{(d(W),\infty)}$. By N denote the set of all numbers $j \in \overline{1,k}$ for which $W_j \cap R \neq \emptyset$. It is easy to check that $\bigcup_{j \in N} W_j \subset 5R$. This inclusion implies that $(\operatorname{card} N)|I| = \sum_{j \in N} |I_j| \leq 25|R|$. Thus, $\operatorname{card} N \leq 25|R|/|I|$. Now we can write,

$$\int_{R} |f| \le \sum_{j \in N} \int_{W_j} |f| = \sum_{j \in N} \int_{W_j} |\xi_j| = \sum_{j \in N} 2h|Q|$$
$$= (\operatorname{card} N)2h|Q| \le 50h \frac{|R||Q|}{|W|} = 50h|R| \frac{1}{36h^2} < \frac{3}{2h}|R|.$$

The obtained estimation implies that $M_{\mathbf{p}}^{(d(W),\infty)}(f)(x) < 2/h$ for every $x \in \mathbb{R}^2$. The lemma is proved.

Lemma 8. Let Q be a square interval with a(Q) = (0,0), h > 1 and $0 < \alpha < \pi/12$. Then for every $\varepsilon > 0$ and $k \in \mathbb{N}$ there are a square interval $S \subset Q$ with a(S) = (0,0) and a number $n \in \mathbb{N}$ such that for every $\gamma \in \Gamma(\mathbb{R}^2)$ and $x_1, \ldots, x_k \in \mathbb{R}^2$ the functions $\xi_j = \xi_{Q,h,S,\alpha,n,\gamma,x_j}$ $(j \in \overline{1,k})$ satisfy the following estimation:

$$\left|\left\{\widehat{M}_{\mathbf{I}(\gamma^*)}\Big(\sum_{j=1}^k \xi_j\Big) \geq \varepsilon\right\} \cap (0,1)^2\right| < \varepsilon \quad for \ every \quad \gamma^* \notin V[\Pi_{\gamma},3\alpha]$$

Proof. Let us choose a square interval $S \subset Q$ with a(S) = (0,0) so that $28\sqrt{2} \operatorname{diam} S < \varepsilon/k$, and using Lemma 6 let us choose a number $n \in \mathbb{N}$ so that for every $\gamma \in \Gamma(\mathbb{R}^2)$ and $x \in \mathbb{R}^2$ the oscillator $\xi = \xi_{Q,h,S,\alpha,n,\gamma,x}$ satisfies the following condition: $\{\widehat{M}_{\mathbf{I}(\gamma^*)}(\xi) \geq \varepsilon/k\} \subset \gamma^*(\Delta(S)) + x$ for every $\gamma^* \notin V[\Pi_{\gamma}, 3\alpha]$.

Suppose, $\gamma \in \Gamma(\mathbb{R}^2)$, $x_1, \ldots, x_k \in \mathbb{R}^2$ and $\xi_j = \xi_{Q,h,S,\alpha,n,\gamma,x_j}$ $(j \in \overline{1,k})$. Let us consider an arbitrary $\gamma^* \notin V[\Pi_{\gamma}, 3\alpha]$. Then taking into account the estimation $\widehat{M}_{\mathbf{I}(\gamma^*)}\left(\sum_{j=1}^k \xi_j\right) \leq \sum_{j=1}^k \widehat{M}_{\mathbf{I}(\gamma^*)}(\xi_j)$, we

have

$$\left\{\widehat{M}_{\mathbf{I}(\gamma^*)}\left(\sum_{j=1}^k \xi_j\right) \ge \varepsilon\right\} \subset \bigcup_{j=1}^k \{\widehat{M}_{\mathbf{I}(\gamma^*)}(\xi_j) \ge \varepsilon/k\} \subset \bigcup_{j=1}^k (\gamma^*(\Delta(S)) + x_j).$$
(5)

Note that: 1) For any strip Δ it is true the estimation: $|\Delta \cap (0,1)^2| \leq \sqrt{2}$ (width of Δ); 2) $\gamma^*(\Delta(S)) + x_j$ $(j \in \overline{1,k})$ is a union of two strips with the widthes less than 14 diam S. Consequently, on the basis of choosing of S, for each j we write: $|(\gamma^*(\Delta(S)) + x_j) \cap (0,1)^2| \leq 2(\sqrt{2} \ 14 \ \text{diam} \ S) < \varepsilon/k$. Hence, using (5) we obtain that $|\{\widehat{M}_{\mathbf{I}(\gamma^*)}(\sum_{j=1}^k \xi_j) \geq \varepsilon\} \cap (0,1)^2| < \varepsilon$. The lemma is proved.

Lemma 9. Let $I \subset \mathbb{R}$ be an open interval. For every s > 1 and $\varepsilon \in (0,1)$ there are pairwise nonoverlapping closed intervals $I_k \subset I$ $(k \in \mathbb{N})$ such that $I = \bigcup_{k=1}^{\infty} I_k$, $|I_k| < \varepsilon |I|$ $(k \in \mathbb{N})$, $sI_k \subset I$ $(k \in \mathbb{N})$ and $\sum_{k=1}^{\infty} \chi_{sI_k}(x) \leq c(s)$ $(x \in I)$, where c(s) is a constant depending only on the parameter s.

Proof. Let x_0 be a midpoint of I and for a number $t \in (0, 1)$ let us consider the points $x_m = \sup I - t^m |I|/2$, $x_{-m} = \inf I + t^m |I|/2$ $(m \in \mathbb{N})$. It is easy to check that if t is quite close to 1 then the intervals $[x_m, x_{m+1}]$ $(m \in \mathbb{Z})$ generate the needed decomposition of I.

Lemma 10. For an arbitrary non-empty symmetric set $E \subset \Gamma(\mathbb{R}^2)$ of type G_{δ} there are sequences of rotations (γ_k) and numbers (α_k) from the interval $(0, \pi/12)$ such that $\lim_{k \to \infty} V[\gamma_k, \alpha_k/2] = \lim_{k \to \infty} V[\Pi_{\gamma_k}, 3\alpha_k] = E$.

Proof. For an interval $I \subset [0, 2\pi)$ denote $I_{\mathbb{T}} = \{(\cos(t), \sin(t)) : t \in I\}$ and $\Gamma_I = \{\gamma \in \Gamma(\mathbb{R}^2) : \gamma((1,0)) \in I_{\mathbb{T}}\}.$

First let us prove the following statement: For an arbitrary non-empty set $W \subset \Gamma_{[0,\pi/2)}$ of G_{δ} type there are sequences of rotations (σ_m) and numbers (β_m) from the interval $(0,\pi/12)$ such that $\lim_{m\to\infty} V[\sigma_m,\beta_m/2] = \lim_{m\to\infty} V[\sigma_m,3\beta_m] = W.$

Without loss of generality we can assume that $\rho_0 \notin W$, i.e. $W \subset \Gamma_{(0,\pi/2)}$. Using identification of $\Gamma_{(0,\pi/2)}$ with the interval $(0,\pi/2)$ by the mapping $\Gamma_{(0,\pi/2)} \ni \gamma \mapsto \operatorname{dist}(\gamma,\rho_0) \in (0,\pi/2)$ we can formulate our statement in the following equivalent way: For an arbitrary non-empty set $V \subset (0,\pi/2)$ of G_{δ} type there exists a sequence of closed intervals $I_m \subset (0,\pi/2)$ such that $|I_m| < \pi/12$ and $\overline{\lim_{m \to \infty}} I_m = \overline{\lim_{m \to \infty}} (6I_m) = V.$

Consider a sequence of open sets $G_n \subset (0, \pi/2)$ with $G_1 \supset G_2 \supset \cdots$ and $\bigcap_{n=1}^{\infty} G_n = V$. Let $\{I_p^{(n)}\}$ be the collection of open intervals decomposing G_n . For each n and p let us consider a sequence of closed intervals $(I_{p,q}^{(n)})_{q \in \mathbb{N}}$ corresponding to the parameters $s = 6, \varepsilon = 1/12$ and $I = I_p^{(n)}$ according to Lemma 9. If we enumerate the intervals $I_{p,q}^{(n)}$ by one index $m \in \mathbb{N}$, then it is easy to see that the obtained sequence of intervals (I_m) will satisfy the needed conditions. This proves the statement.

Now let us consider an arbitrary non-empty symmetric set $E \subset \Gamma(\mathbb{R}^2)$ of G_{δ} type. Let (σ_m) and (β_m) be sequences corresponding to the set $E \cap \Gamma_{[0,\pi/2)}$ according to the above proved statement. By $\lceil x \rceil$ ($x \in \mathbb{R}$) denote the number min $\{n \in \mathbb{Z} : x \leq n\}$. Then it is easy to check that the sequences: $\gamma_k = \rho_{(k-1)(\text{mod } 4)} \circ \sigma_{\lceil k/4 \rceil}, \ \alpha_k = \beta_{\lceil k/4 \rceil}$ ($k \in \mathbb{N}$), will satisfy the needed conditions.

5. Proof of Theorem 1

Let *B* be a basis satisfying the conditions of the theorem. In the introduction it was mentioned that the following three statements are true: 1) Each W_B -set is of type $G_{\delta\sigma}$ and each R_B -set is of type G_{δ} ; 2) Every W_B -set and every R_B -set is symmetric; 3) Not more than countable union of R_B -sets is a W_B -set.

Taking into account three statements above it suffices to prove that an arbitrary symmetric set $E \subset \Gamma(\mathbb{R}^2)$ of type G_{δ} is an R_B -set. If E is empty, then the statement is trivial. Thus let us consider the case of a non-empty set E.

By virtue of Lemma 10 there are sequences $\gamma_k \in \Gamma(\mathbb{R}^2)$ and $\alpha_k \in (0, \pi/12)$ such that $\varlimsup_{k \to \infty} V[\gamma_k, \alpha_k/2] = \varlimsup_{k \to \infty} V[\Pi_{\gamma_k}, 3\alpha_k] = E.$

Taking into account non-regularity of the spherical halo function σ_B and the estimation $\sigma_B(1/h) \leq 1$ $Ch \ln h \ (h \ge 2)$ (which is valid by virtue of strong maximal inequality (see, e.g., [3, Ch. II, §3]) it is not difficult to choose sequences (h_j) and (η_j) with the properties: $h_j \ge 2, 0 < \eta_j < h_j, \lim_{j \to \infty} h_j = \infty$, $\lim_{j \to \infty} \eta_j = \infty, \ \sigma_B(1/h_j) > 144h_j, \ \ \sigma_B(1/h_j)/h_j^2 < 1, \ \sum_{j=1}^{\infty} \sigma_B(1/h_j)/h_j^2 = \infty \ \text{and} \ \sum_{j=1}^{\infty} \eta_j/h_j < \infty.$

On the basis of divergence of the series $\sum_{j} \sigma_B(1/h_j)/h_j^2$ we can choose numbers $1 = j_0 < j_1 < j_$ $j_2 < \cdots$ so that $\prod_{j=j_{k-1}}^{j_k-1} \left(1 - \frac{c}{2400} \frac{\sigma_B(1/h_j)}{h_j^2}\right) < \frac{1}{2^k}$ for every $k \in \mathbb{N}$. Here c is the constant from Lemma 1.

Denote $J_k = \{j \in \mathbb{N} : j_{k-1} \le j \le j_k - 1\} \quad (k \in \mathbb{N}).$

Using Lemmas 7 and 8 we can find sequences of square intervals (Q_j) and (S_j) with $a(Q_j) = a(S_j) =$ (0,0) and a sequence of natural numbers (n_j) for which the functions $f_j = f_{Q_j,h_j,S_j,\alpha_j,n_j,\gamma_j}$, $g_j =$ $\eta_j f_j \ (j \in \mathbb{N})$ satisfy the following conditions:

1)
$$||g_j|| = \eta_j ||f_j|| < \eta_j / h_j;$$

2) $d(W_1) > d(Q_1) > d(W_2) > d(Q_2) > \cdots$. Here $W_j = W(Q_j, h_j)$ is a square interval from the definition of the function $f_{Q,h,S,\alpha,n,\gamma}$

3) there are sets $A_j(\gamma)$ $(k \in \mathbb{N}, \gamma \in V[\gamma_k, \alpha_k/2], j \in J_k)$ such that:

(a)
$$A_j(\gamma) \subset \{\overline{M}_{B(\gamma)}^{[d(Q_j),d(W_j)]}(f_j) > 1\} = \{\overline{M}_{B(\gamma)}^{[d(Q_j),d(W_j)]}(g_j) > \eta_j\}$$

(b) $|A_j(\gamma)| \ge c\sigma_B(1/h_j)/(2400h_j^2)$:

 $|A_j(\gamma)| \ge co_B(1/n_j)/(2400n_j);$

(c) $A_j(\gamma)$ is uniformly distributed in the dyadic squares of order $m_j = m(Q_j, h_j)$ contained in $(0, 1)^2$, i.e. if W_1, \ldots, W_{ν} are all dyadic squares of order m_i contained in $(0,1)^2$, then the sets $A_i(\gamma) \cap W_i$ $(i \in \overline{1,\nu})$ are congruent. Here $m(Q_j, h_j)$ is the number from the definition of the function $f_{Q,h,S,\alpha,n,\gamma}$;

(d) $A_j(\gamma)$ is an union of dyadic squares of the order $m_j^* > m_j$, where m_j^* does not depend on $\gamma \in V[\gamma_k, \alpha_k/2];$

4) the numbers m_i and m_i^* from the conditions 3)–(c) and 3)–(d) satisfy inequalities: $m_1 < m_1^* < m$ $m_2 < m_2^* < \cdots;$

- 5) $|\{M_{\mathbf{P}}^{(0,d(Q_j))}(g_j) > 0\}| = |\{M_{\mathbf{P}}^{(0,d(Q_j))}(f_j) > 0\}| < 1/h_j^2 \text{ for every } j \in \mathbb{N};$ 6) $M_{\mathbf{P}}^{(d(W_j),\infty)}(g_j)(x) = \eta_j M_{\mathbf{P}}^{(d(W_j),\infty)}(f_j)(x) < 2\eta_j/h_j \text{ for every } j \in \mathbb{N} \text{ and } x \in \mathbb{R}^2;$

 $7) |\{\widehat{M}_{\mathbf{I}(\gamma)}(f_j)| \ge 1/(\eta_j 2^j)\} \cap (0,1)^2| < 1/(\eta_j 2^j) \text{ for every } k \in \mathbb{N}, \gamma \notin V[\Pi_{\gamma_k}, 3\alpha_k] \text{ and } j \in J_k.$ Consequently, $|\{\widehat{M}_{\mathbf{I}(\gamma)}(g_j) \ge 1/2^j\} \cap (0,1)^2| < 1/2^j$ for every $k \in \mathbb{N}, \gamma \notin V[\prod_{\gamma_k}, 3\alpha_k]$ and $j \in J_k$.

Set $g = \sum_{j=1}^{\infty} g_j$. First note that $\|g\|_L \leq \sum_{j=1}^{\infty} \|g_j\|_L < \sum_{j=1}^{\infty} \eta_j/h_j < \infty$. Thus, g is a summable function. Suppose $\gamma \notin E$. Let us prove that $\mathbf{I}(\gamma)$ differentiates $\int g$. Since $\sup p g \subset (0,1)^2$, then $\mathbf{I}(\gamma)$ differentiates $\int g$ at every point $x \notin [0,1]^2$. Further, denote

$$T_j = \{\widehat{M}_{\mathbf{I}(\gamma)}(g_j) \ge 1/2^j\} \cap (0,1)^2, \quad T = \lim_{j \to \infty} T_j.$$

We have that $\gamma \notin \lim_{k \to \infty} V[\Pi_{\gamma_k}, 3\alpha_k]$. Consequently, there is $k_0 \in \mathbb{N}$ for which $\gamma \notin V[\Pi_{\gamma_k}, 3\alpha_k]$ for every $k \ge k_0$. The last condition on the basis of the estimation 7) implies: $|T_j| < 1/2^j$ for every $j \ge j_{k_0}$. Now taking into account that $|T_j| \le 1$ $(j \in \mathbb{N})$ we have: $\sum_{j=1}^{\infty} |T_j| < \infty$. Consequently, |T| = 0. Thus, for arbitrary given point $x \in (0,1)^2 \setminus T$ there is $j^* \in \mathbb{N}$ for which $\widehat{M}_{\mathbf{I}(\gamma)}(g_j)(x) < 1/2^j$ for every $j > j^*$. Now taking into account boundedness of the functions g_j we write: $\widehat{M}_{\mathbf{I}(\gamma)}(g)(x) \leq 1$ $\sum_{j=1}^{\infty} \widehat{M}_{\mathbf{I}(\gamma)}(g_j)(x) \le \sum_{j=1}^{j^*} \widehat{M}_{\mathbf{I}(\gamma)}(g_j)(x) + \sum_{j=j^*+1}^{\infty} 1/2^j < \infty. \text{ Thus, } (0,1)^2 \setminus T \subset \{\widehat{M}_{\mathbf{I}(\gamma)}(g) < \infty\}.$ Note that by virtue of the result of Besicovitch (see, e.g., [3, Ch. IV, §3]) the sets $\{g < \overline{D}_B(fg, \cdot) < \infty\}$ and $\{-\infty < \underline{D}_B(\int g, \cdot) < g\}$ have zero measure. Therefore, taking into account the last inclusion, we conclude that $\mathbf{I}(\gamma)$ differentiates $\int g$.

Suppose $\gamma \in E$. Then $\gamma \in \lim_{k \to \infty} V[\gamma_k, \alpha_k/2]$. Thus, the set $N = \{k \in \mathbb{N} : \gamma \in V[\gamma_k, \alpha_k/2]\}$ is infinite. Let $k \in N$. Taking into account the properties 3)–(c), 3)–(d) and 4) it is easy to see that the

sets $A_j(\gamma)$ $(j \in J_k)$ are probabilistically independent. Therefore,

$$\Big|\bigcup_{j\in J_k} A_j(\gamma)\Big| = 1 - \Big|\bigcap_{j\in J_k} ((0,1)^2 \setminus A_j(\gamma))\Big| = 1 - \prod_{j\in J_k} (1 - |A_j(\gamma)|).$$

Now using 3)–(b) and taking into account the choice of the numbers j_k , we obtain: $|\bigcup_{j \in J_k} A_j(\gamma)| > 1 - 1/2^k$. From this estimation we conclude: if A denotes the upper limit of the sequence of the sets $\bigcup_{j \in J_k} A_j(\gamma)$ ($k \in N$), then A is of full measure in $(0, 1)^2$, i.e. $|(0, 1)^2 \setminus A| = 0$.

Let F be the upper limit of the sequence of the sets $\{M_{\mathbf{P}}^{(0,d(Q_j))}(g_j) > 0\}$ $(j \in \mathbb{N})$. By virtue of the property 5), $\sum_{j=1}^{\infty} |\{M_{\mathbf{P}}^{(0,d(Q_j))}(g_j) > 0\}| < \infty$. Therefore the set F is of zero measure.

For any $x \in A \setminus F$ let us prove the equality $\overline{D}_{B(\gamma)}(\int g, x) = +\infty$. It will imply that the equality is valid for almost every point from $(0, 1)^2$.

We can find an infinite set $N^* \subset N$, a sequence $j(k) \in J_k$ $(k \in N^*)$ and a number $j(0) \in \mathbb{N}$ with the properties: i) $x \in A_{j(k)}(\gamma)$ for every $k \in N^*$; ii) $x \notin \{M_{\mathbf{P}}^{(0,d(Q_j))}(g_j) > 0\}$ for every j > j(0). We can assume that j(k) > j(0) $(k \in N^*)$.

For every $k \in N^*$ we can find a rectangle $R_k \in B(\gamma)(x)_{[d(Q_{j(k)}),d(W_{j(k)})]}$ for which $\frac{1}{|R_k|} \int_{R_k} g_{j(k)} > \eta_{j(k)}$. Let us estimate the integral means on R_k of the functions g_j with $j \neq j(k)$. Taking into account the property 2), we have: $\frac{1}{|R_k|} \int_{R_k} g_j = 0$ if j(0) < j < j(k) and $\frac{1}{|R_k|} \int_{R_k} g_j < \eta_j/h_j$ if j > j(k). Consequently,

$$\frac{1}{|R_k|} \int_{R_k} g = \frac{1}{|R_k|} \int_{R_k} g_{j(k)} - \sum_{j=1}^{j(0)} \frac{1}{|R_k|} \int_{R_k} g_j - \sum_{j=j(0)+1}^{j(k)-1} \frac{1}{|R_k|} \int_{R_k} g_j - \sum_{j=j(k)+1}^{j(0)} \frac{1}{|R_k|} \int_{R_k} g_j - \sum_{j=j(k)+1}^{\infty} \frac{1}{|R_k|} \int_{R_k} g_j > \eta_{j(k)} - \sum_{j=1}^{j(0)} \|g_j\|_{L^{\infty}} - \sum_{j=j(k)+1}^{\infty} \frac{\eta_j}{h_j}.$$

Thus, the rectangles R_k $(k \in N^*)$ satisfy conditions: $R_k \in B(\gamma)(x)$ $(k \in N^*)$, diam $R_k \to 0$ $(N^* \ni k \to \infty)$ and $\frac{1}{|R_k|} \int_{R_k} g \to +\infty$ $(N^* \ni k \to \infty)$. Therefore, $\overline{D}_{B(\gamma)}(\int g, x) = +\infty$.

Summarizing above established properties of the function g we have: i) $g \in L(\mathbb{R}^2)$ and supp $g \subset (0,1)^2$; ii) $\overline{D}_{B(\gamma)}(\int g, x) = +\infty$ a.e. on $(0,1)^2$ for every $\gamma \in E$; iii) $\mathbf{I}(\gamma)$ differentiates $\int g$ for every $\gamma \notin E$.

Set $f(x_1, x_2) = \sum_{i,j \in \mathbb{Z}} g(x_1 + i, x_2 + j)/2^{i+j}$ $((x_1, x_2) \in \mathbb{R}^2)$. Then we can easily check that f satisfies the conditions providing E to be an R_B -set. The theorem is proved.

Remark 3. The function f constructed in the proof of Theorem 1 for any rotation $\gamma \notin E$ satisfies stronger condition than it is required. Namely, $\int f$ is differentiable with respect to the basis $\mathbf{I}(\gamma)$ which is broader than the basis $B(\gamma)$.

Remark 4. The function f constructed in the proof of Theorem 1 takes values of both signs. For non-negative summable functions the problem of characterization of singular rotation's sets is open even for the case of the basis $I(\mathbb{R}^2)$. Some partial results in this direction are obtained in [8] and [12].

Remark 5. For the multidimensional case the problem of characterization of $W_{\mathbf{I}(\mathbb{R}^n)}$ -sets and $R_{\mathbf{I}(\mathbb{R}^n)}$ -sets is open. Note that a class of $R_{\mathbf{I}(\mathbb{R}^n)}$ -sets is found in [9].

Acknowledgement

The first author was supported by Shota Rustaveli National Science Foundation (project no. 217282).

References

- 1. K. A. Chubinidze, On sets of singular rotations for translation invariant bases. Trans. A. Razmadze Math. Inst. **170** (2016), no. 1, 1–6.
- O. S. Dragoshanskiĭ, On the convergence of double Fourier series and Fourier integrals of functions on T² and ℝ² under rotations of the coordinate system. (Russian) translated from Mat. Sb. 191 (2000), no. 11, 3–20 Sb. Math. 191 (2000), no. 11-12, 1587–1606.

- 3. M. de Guzmán, Differentiation of Integrals in \mathbb{R}^n . With appendices by Antonio Cordoba, and Robert Fefferman, and two by Roberto Moriyón. Lecture Notes in Mathematics, vol. 481. Springer-Verlag, Berlin-New York, 1975.
- G. A. Karagulyan, A complete characterization of *R*-sets in the theory of differentiation of integrals. *Studia Math.* 181 (2007), no. 1, 17–32.
- 5. G. L. Lepsveridze, On strong differentiability of integrals along different directions. *Georgian Math. J.* 2 (1995), no. 6, 613–630.
- 6. B. López Melero, A negative result in differentiation theory. Studia Math. 72 (1982), no. 2, 173–182.
- J. Marstrand, A counter-example in the theory of strong differentiation. Bull. London Math. Soc. 9 (1977), no. 2, 209–211.
- 8. G. G. Oniani, On the differentiability of integrals with respect to the bases $B_2(\theta)$. East J. Approx. 3 (3) (1997), 275–301. East J. Approx. 7 (2001), no. 3, 371–373.
- G. Oniani, On the strong differentiation of multiple integrals along different frames. *Georgian Math. J.* 12 (2005), no. 2, 349–368.
- G. G. Oniani, A resonance theorem for a collection of translation invariant differentiation bases. Proc. A. Razmadze Math. Inst. 168 (2015), 99–116.
- G. G. Oniani, K. A. Chubinidze, Rotation of coordinate system and differentiation of integrals with respect to translation invariant bases. (Russian) translated from Mat. Sb. 208 (2017), no. 4, 51–72 Sb. Math. 208 (2017), no. 3-4, 510–530.
- 12. G. Oniani, K. A. Chubinidze, On sets of singular rotations for translation invariant bases formed of intervals. *Georgian Math. J. (to appear).*
- 13. A. M. Stokolos, An inequality for equimeasurable rearrangements and its application in the theory of differentiation of integrals. Anal. Math. 9 (1983), no. 2, 133–146.
- 14. A. M. Stokolos, On the differentiation of integrals of functions from $L\varphi(L)$. Studia Math. 88 (1988), no. 2, 103–120.
- A. M. Stokolos, On a problem of A. Zygmund. (Russian) translated from Mat. Zametki 64 (1998), no. 5, 749–762 Math. Notes 64 (1998), no. 5-6, 646–657.
- 16. A. M. Stokolos, Zygmund's program: some partial solutions. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1439–1453.

(Received 07.09.2018)

Department of Mathematics, Akaki Tsereteli State University, 59, Tamar Mepe Str., Kutaisi 4600, Georgia

E-mail address: oniani@atsu.edu.ge

 $E\text{-}mail \ address: \texttt{kaxachubi}\texttt{@gmail.com}$