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CHARACTERIZATION OF SETS OF SINGULAR ROTATIONS FOR A CLASS

OF DIFFERENTIATION BASES

G. ONIANI AND K. CHUBINIDZE

Abstract. We study the dependence of differential properties of an indefinite integral on rotations
of the coordinate system. Namely, the following problem is studied: For a summable function f

of what kind can be the set of rotations γ for which
∫
f is not differentiable with respect to the

γ-rotation of a given basis B? The result obtained in the paper implies a solution of the problem for
any homothecy invariant differentiation basis B of two-dimensional intervals which has symmetric

structure.

1. Definitions and Notation

A collection B of open bounded and non-empty subsets of Rn is called a differentiation basis (briefly:
basis) if for every x ∈ Rn there exists a sequence (Rk) of sets from B such that x ∈ Rk (k ∈ N) and
lim
k→∞

diamRk = 0.

For a basis B by B(x) (x ∈ Rn) it will be denoted the collection of all sets from B containing the
point x.

Let B be a basis. For f ∈ L(Rn) and x ∈ Rn, the upper and lower limits of the integral means
1
|R|
∫
R
f , where R is an arbitrary set from B(x) and diamR → 0, are called the upper and the lower

derivatives with respect to B of the integral of f at the point x, and are denoted by DB(
∫
f, x) and

DB(
∫
f, x), respectively. If the upper and the lower derivatives coincide, then their common value is

called the derivative of
∫
f at the point x and denoted by DB(

∫
f, x). We say that B differentiates

∫
f

(or
∫
f is differentiable with respect to B) if DB(

∫
f, x) = D B(

∫
f, x) = f(x) for almost all x ∈ Rn.

If this is true for each f in the class of functions F ⊂ L(Rn) we say that B differentiates F . By FB
denote the class of all functions f ∈ L(Rn) the integrals of which are differentiable with respect to B.
The maximal operator MB corresponding to B is defined as follows: MB(f)(x) = supR∈B(x)

1
|R|
∫
R
|f |,

where f ∈ L(Rn) and x ∈ Rn.
A basis B is called translation invariant (homothecy invariant) if for any set R from B and any

translation (homothecy) M : Rn → Rn the set M(R) also belongs to B. It is easy to check that each
homothecy invariant basis is translation invariant also. Let us call a basis B convex if each set R ∈ B
is convex.

Denote by I = I(Rn) the basis consisting of all n-dimensional intervals. Differentiation with respect
to I is called strong differentiation.

Let us call a basis B non-standard if there exists a function f ∈ L(Rn) the integral of which is not
differentiable with respect to B (i.e. if B does not differentiate L(Rn)).

The basis I is non-standard (see, e.g., [3, Ch. IV, §1]). Note that (see, [3, Appendix III]) a homothecy
invariant basis B of multi-dimensional intervals is non-standard if and only if sup{I ∈ B : lI/lI} =∞,
where lI and lI are the lengthes of the biggest and of the smallest edges of an interval I, respec-
tively. Moreover, a clear geometrical criterion for the non-standartness it is known also for translation
invariant bases of multi-dimensional intervals (see [14,16]).

By Γ(Rn) denote the collection of all rotations in Rn.
Let B be a basis in Rn and γ ∈ Γ(Rn). The γ-rotated basis B is defined as follows: B(γ) = {γ(R) :

R ∈ B}.
Denote by ρk (k = 0, 1, 2, 3) the rotation of the plane by the angle πk/2.
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Let us call a set E ⊂ Γ(R2) symmetric if for any γ ∈ E the rotations ρ1 ◦ γ, ρ2 ◦ γ and ρ3 ◦ γ also
belong to the set E.

Let us call a translation invariant basis B of two-dimensional intervals symmetric if the bases
B(ρ1), B(ρ2) and B(ρ3) are equal to B. Obviously, the basis I(R2) is symmetric.

The set of two-dimensional rotations Γ(R2) can be identified with the circumference T = {(x1, x2) ∈
R2 : x2

1 + x2
2 = 1}, if to a rotation γ we put into correspondence the point γ((1, 0)). The distance

d(γ, σ) between rotations γ, σ ∈ Γ(R2) is assumed to be equal to the length of the smallest arch of
the circumference T connecting the points γ((1, 0)) and σ((1, 0)).

A class of functions F is called invariant with respect to a class of transformations of a variable Λ
if (f ∈ F, λ ∈ Λ)⇒ f ◦ λ ∈ F.

2. Introduction

The dependence of properties of functions of several variables on rotations of the system of coor-
dinates (that is, on a transformation of the variables that is a rotation) has been studied by various
authors.

Zygmund posed the following problem (see, [3, Ch. IV, §2]): Is it possible to improve an arbitrary
function f ∈ L(R2) by means of a rotation of the coordinate system to achieve strong differentiability
of the integral of f? In [7] Marstrand gave a negative answer to this problem by constructing a
non-negative function f ∈ L(R2) such that DI

(∫
f ◦ γ, x

)
= ∞ a.e. for every γ ∈ Γ(R2). In the

works [6, 10,13] and [11] the result of Marstrand was extended to bases of quite general type.
As established by Lepsveridze [5], Oniani [8] and Stokolos [15], the property of strong differentiabil-

ity (that is, the class FI) is not invariant with respect to linear changes of variables and, in particular,
to rotations. A similar result was proved by Dragoshanskii [2] for the class of continuous functions of
two variables whose Fourier series (Fourier integral) is Pringsheim convergent almost everywhere.

In [11] non-invariance of a class FB with respect to rotations was proved for any non-standard
translation invariant basis B of multi-dimensional intervals.

Suppose B is a translation invariant basis. Then it is easy to verify that the differentiation of the
integral of a “rotated” function f ◦γ with respect to B at a point x is equivalent to the differentiation
of the integral of f with respect to the “rotated” basis B(γ−1) at the point γ−1(x). Consequently,
we can reduce the study of the behavior of functions f ◦ γ (γ ∈ Γ(Rn)) with respect to the basis B to
the study of the behavior of f with respect to the rotated bases B(γ) (γ ∈ Γ(Rn)). Below we will use
this approach.

If for a translation invariant basis B the class FB is not invariant with respect to the rotations then
there exists a function f ∈ L(Rn) having non-homogeneous behaviour with respect to rotated bases
B(γ) (γ ∈ Γ(Rn)), more exactly,

∫
f is not differentiable with respect to B(γ) for some rotations and∫

f is differentiable with respect B(γ) for some other rotations. Thus, for f some rotations γ are
“singular” and some other rotations γ are “regular”. In this connection naturally arises the problem:
Of what kind can be the sets of singular and of regular rotations for a fixed function? Note that by
duality argument we can restrict ourselves by studying sets of singular rotations.

In connection to the posed problem let us formulate rigor definition of a set of singular rotations:
Suppose B is a translation invariant basis in Rn and E ⊂ Γ(Rn). Let us call E a WB-set if there exists
a function f ∈ L(Rn) with the following two properties: 1) f /∈ FB(γ) for every γ ∈ E; 2) f ∈ FB(γ)

for every γ /∈ E.
Let us formulate also the definition of a set of “strongly” singular rotations: Suppose B is a

translation invariant basis in Rn and E ⊂ Γ(Rn). Let us call E an RB-set if there exists a function
f ∈ L(Rn) with the following two properties: 1) DB(γ)

(∫
f, x
)

=∞ a.e. for every γ ∈ E; 2) f ∈ FB(γ)

for every γ /∈ E.
Now the problem can be formulated as follows: For a given translation invariant basis B what kind

of sets are WB-sets(RB-sets)?
Note that for a standard basis B, i.e. for a basis B differentiating L(Rn), the problem is trivial.

Here note also that if a translation invariant basis B of two-dimensional intervals is symmetric then
every WB-set and every RB-set is symmetric.
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In [1] for an arbitrary translation invariant basis B in R2 it was established the following three
structural properties of sets of singular rotations: 1) Each WB-set is of type Gδσ; 2) Each RB-set is
of type Gδ; 3) At most countable union of RB-sets is a WB-set.

Sets of singular rotations for the case of strong differentiability process on the plane (i.e., for the
case B = I(R2)) was characterized by G. Karagulyan [4] proving that: 1) a set E ⊂ Γ(R2) is a
WI(R2)-set if and only if E is symmetric and of type Gδσ; 2) a set E ⊂ Γ(R2) is an RI(R2)-set if and
only if E is symmetric and of type Gδ.

Our purpose is to show that the idea in Karagulyan’s construction works for bases of two-dimensional
intervals of quite general type.

3. Result

For a translation invariant convex basisB let us define the following function σB(λ)= lim
ε→0
|{MB(χVε)

> λ}|/|Vε| (0 < λ < 1), where Vε is the ball with the centre at the origin and with the radius ε. Here
and below everywhere χE denotes the characteristic function of a set E. We call σB a spherical halo
function of B. It is easy to check that if B is homothecy invariant, then σB(λ) = |{MB(χV ) > λ}|,
where V is the unit ball.

We say that a translation invariant convex basis B has the non-regular spherical halo function if
lim
λ→0

λσB(λ) =∞.

Theorem 1. Let B be a non-standard translation invariant basis of two-dimensional intervals which
is symmetric and has the non-regular spherical halo function. Then:

• a set E ⊂ Γ(R2) is a WB-set if and only if E is symmetric and of type Gδσ;
• a set E ⊂ Γ(R2) is an RB-set if and only if E is symmetric and of type Gδ.

In [11] (see Lemma 2.4) it was shown that every non-standard homothecy invariant convex basis B
has the non-regular spherical halo function. Taking into account this fact, we obtain from Theorem 1
the following corollary.

Corollary 1. Let B be a non-standard homothecy invariant basis of two-dimensional intervals which is
symmetric. Then for WB-sets and RB-sets characterizations analogous to the ones given in Theorem 1
are true.

4. Auxiliary Propositions

By BTI and BHI we will denote the classes of all translation invariant and homothecy invariant
bases in R2, respectively. By BI it will be denoted the class of all bases consisting of two-dimensional
intervals. The lower left vertex of an interval I ⊂ R2 denote by a(I). For a set A ⊂ Rn with the
centre of symmetry at a point x and for a number α > 0 we denote by αA the dilation of A with the
coefficient α, i.e. the set αA = {x+ α(y − x) : y ∈ A}.

Let B ∈ BI. For a square interval Q and λ ∈ (0, 1) by ΩB(Q,λ) denote the collection of all intervals
I ∈ B with the properties: a(I) = a(Q), I ⊃ Q and |Q|/|I| > λ. The set EB(Q,λ) will be defined as
the union of all intervals from the collection ΩB(Q,λ). Obviously, 1

|I|
∫
I
χQ > λ for each I ∈ ΩB(Q,λ)

and EB(Q,λ) ⊂ {MB(χQ) > λ}.

Lemma 1. Let B ∈ BTI ∩ BI, Q be a square interval and 0 < λ < 1. Then |EB(Q,λ)| ≥
c(|{MB(χQ) > λ}| − 18|Q|/λ), where c is a positive absolute constant.

Proof. Without loss of generality let us assume that Q is a square interval of the type (−ε, ε)2. Let Θ
be the collection of all intervals I ∈ B such that 1

|I|
∫
I
χQ > λ. Obviously, {MB(χQ) > λ} =

⋃
I∈Θ I.

Denote by Θ0 the collection of all intervals I ∈ Θ having at least one side with the length smaller
than 2ε. It is easy to check that every I ∈ Θ0 is contained in the union of the intervals (−3ε, 3ε) ×
(−ε− 2ε/λ, ε+ 2ε/λ) and (−ε− 2ε/λ, ε+ 2ε/λ)× (−3ε, 3ε). Consequently, |

⋃
I∈Θ0

I| < 18|Q|/λ.
Let R2

k (k ∈ 1, 4) be the k-th coordinate quarter. Denote by Θk (k ∈ 1, 4) the collection of all

intervals I ∈ Θ \ Θ0 for which |I ∩ R2
k| = max{|I ∩ R2

m| : m ∈ 1, 4}. Obviously, Θ =
⋃4
k=0 Θk. The

unions
⋃
I∈Θk

I and
⋃
I∈Θm

I are symmetric with respect to Ox2 if k = 1,m = 2 or k = 3,m = 4 and
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are symmetric with respect to Ox1 if k = 2,m = 3 or k = 4,m = 1. Hence, the sets
⋃
I∈Θk

I (k ∈ 1, 4)
have one and the same measure. Consequently,∣∣∣ ⋃

I∈Θ1

I
∣∣∣ ≥ 1

4

(∣∣∣ ⋃
I∈Θ

I
∣∣∣− ∣∣∣ ⋃

I∈Θ0

I
∣∣∣) ≥ 1

4

(
|{MB(χQ) > λ}| − 18|Q|

λ

)
. (1)

For arbitrary I ∈ Θ1 let us consider the translation T for which T (I) ∈ ΩB(Q,λ). It is clear that I ⊂
2T (I). Consequently,

⋃
I∈Θ1

I ⊂
⋃
I∈ΩB(Q,λ) 2I. Therefore, by (1): |

⋃
I∈ΩB(Q,λ)

2I| ≥ 1
4 (|{MB(χQ) >

λ}| − 18|Q|/λ). On the other hand, by virtue of the inclusion
⋃
I∈ΩB(Q,λ) 2I ⊂ {MI(R2)(χA) ≥ 1/4},

where A =
⋃
I∈ΩB(Q,λ) I, and the strong maximal inequality (see, e.g., [3, Ch. II, §3]), we have:

|
⋃
I∈ΩB(Q,λ) 2I| ≤ C|

⋃
I∈ΩB(Q,λ) I|, where C is a positive absolute constant. From the last two

estimations it follows the validity of the lemma. �

Lemma 2. Let B ∈ BTI ∩BI and 0 < λ < 1. If σB(λ) > 144/λ, then for every ε > 0 there is a
square interval Q such that diamQ < ε and |EB(Q,λ)| ≥ cσB(λ)|Q|/8, where c is the constant from
Lemma 1.

Proof. Taking into account the definition of the spherical halo function σB , we can find a ball Vδ =
{x ∈ R2 : dist(x,O) < δ} such that δ < ε/4 and |{MB(χVδ) > λ}|/|Vδ| > σB(λ)/2. Let us consider the
square interval Q superscribed around Vδ, i.e. Q = (−δ, δ)2. Then diamQ < ε and |{MB(χQ) > λ}| ≥
|{MB(χVδ) > λ}| > σB(λ)|Vδ|/2 > σB(λ)|Q|/4. Now, taking into account the estimation σB(λ) >
144/λ, by virtue of Lemma 1, we write: |EB(Q,λ)| ≥ c(σB(λ)|Q|/4 − 18|Q|/λ) ≥ cσB(λ)|Q|/8. This
proves the lemma. �

Suppose, S = (0, ε) × (0, ε), 0 < α ≤ π/4 and n ∈ N. For each k ∈ 1, n let us define the points
P+
k (S, α), P−k (S, α) and the balls V +

k (S, α, n), V −k (S, α, n) as follows:

P+
k (S, α) =

( ε
2k
,
ε

2k
tan(α)

)
, P−k (S, α) =

( ε
2k
,− ε

2k
tan(α)

)
,

V +
k (S, α, n) =

{
x ∈ R2 : dist(x, P+

k (S, α)) <
ε

4n
tan(α)

}
,

V −k (S, α, n) =
{
x ∈ R2 : dist(x, P−k (S, α)) <

ε

4n
tan(α)

}
.

Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 0 < α ≤ π/4
and n ∈ N. Let ξ = ξQ,h,S,α,n be the function which is proportional to the function

∑n
k=1 χV +

k (S,α,n)−∑n
k=1 χV −k (S,α,n), and satisfies the following conditions: {ξ > 0} =

⋃n
k=1 V

+
k (S, α, n), {ξ < 0} =⋃n

k=1 V
−
k (S, α, n) and ‖ξ‖L = 2‖hχQ‖L. The function ξQ,h,S,α,n we will call (S, α, n)-oscillator corre-

sponding to the function hχQ. It is easy to see that:
1) the balls V +

k (S, α, n) are disjoint and contained in the square S;

2) the balls V −k (S, α, n) are disjoint and contained in the square S− = (0, ε)× (−ε, 0);
3)
∫
V +
k (S,α,n)

ξ = −
∫
V −k (S,α,n)

ξ = h|Q|/n for each k ∈ 1, n.

For γ ∈ Γ(R2) and ε > 0 denote V [γ, ε] = {ρ ∈ Γ(R2) : dist(ρ, γ) ≤ ε}.
For a basis B by MB denote the following type maximal operator: MB(f)(x) = supR∈B(x)

1
|R|
∫
R
f

(f ∈ L(Rn), x ∈ Rn).

Lemma 3. Let B ∈ BTI ∩ BI. Suppose Q and S are square intervals with Q ⊃ S and a(Q) =
a(S) = (0, 0), h > 1, 0 < α ≤ π/4 and n ∈ N. Then for the oscillator ξ = ξQ,h,S,α,n it is valid the
following estimation: 1

|γ(I)|
∫
γ(I)

ξ > 1 for every I ∈ ΩB(Q, 1/h) and γ ∈ V [ρ0, α/2]; consequently,

{MB(γ)(ξ) > 1} ⊃ γ(EB(Q, 1/h)) for every γ ∈ V [ρ0, α/2].

Proof. Let I ∈ ΩB(Q, 1/h) and γ ∈ V [ρ0, α/2]. Using simple geometry it is easy to see that γ(I) ⊃
{ξ > 0} and γ(I) ∩ {ξ < 0} = ∅. Consequently, taking into account the properties of the oscillator ξ,
we write: 1

|γ(I)|
∫
γ(I)

ξ = 1
|I|
∫
{ξ>0} ξ = ‖hχQ‖L/|I| = h|Q|/|I| > 1. The lemma is proved. �
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Remark 1. On the basis of Lemmas 1 and 3 the oscillator ξ = ξQ,h,S,α,n may be interpreted as the
transformation of the function hχQ that conserves values of integral means with respect to the bases
B(γ) for rotations γ belonging to the neighbourhood V [ρ0, α/2]. In particular, if it is known that the
set {MB(hχQ) > 1} has a big measure, then the sets {MB(γ)(ξ) > 1} have big measures of the same
order for every γ ∈ V [ρ0, α/2].

The following Lemma was shown in [4] (see Lemma 2) and plays an essential role in achieving
differentiation effect for desired rotations.

Lemma A. Let S be a square interval, 0 < α < π/12 and n ∈ N. Then for arbitrary rectangle R the
sides of which compose with the line Ox1 angles greater than 3α it is valid the estimation |ν+−ν−| ≤ 2,
where ν+ is a number of all points P+

k (S, α) (k ∈ 1, n) belonging to R and ν− is a number of all points

P−k (S, α) (k ∈ 1, n) belonging to R.

For a square S = (0, ε)2 by ∆(S) denote the union of the strips (−7ε, 7ε)× R and R× (−7ε, 7ε).

For a basis B let M̂B be the following type maximal operator: M̂B(f)(x) = supR∈B(x)
1
|R|
∣∣ ∫
R
f
∣∣

(f ∈ L(Rn), x ∈ Rn).
For a non-empty set E ⊂ Γ(R2) and a number ε > 0 denote V [E, ε] = {γ ∈ Γ(R2) : dist(γ,E) ≤ ε}.
Below the set of the rotations ρ0, ρ1, ρ2 and ρ3 will be denoted by Π.

Lemma 4. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
square interval S ⊂ Q with a(S) = (0, 0) and every ε > 0 there is n ∈ N such that for the oscillator

ξ = ξQ,h,S,α,n it is valid the following inclusion: {M̂I(γ)(ξ) ≥ ε} ⊂ γ(∆(S)) for every γ /∈ V [Π, 3α].

Proof. Suppose x /∈ γ(∆(S)), γ /∈ V [Π, 3α], R ∈ I(γ)(x) and R ∩ supp ξ 6= ∅. For n ∈ N denote by
N+, N−, N

∗
+, N

∗
−, N

∗∗
+ and N∗∗− the sets of indexes k ∈ 1, n satisfying conditions V +

k (S, α, n) ∩R 6= ∅,
V −k (S, α, n)∩R 6= ∅, P+

k (S, α) ∈ R, P−k (S, α) ∈ R, V +
k (S, α, n) ⊂ R and V −k (S, α, n) ⊂ R, respectively.

It is easy to see that if n is big enough, then every line l composing an angle with the axis Ox1

greater than 3α may intersect at most one among balls V +
k (S, α, n)(V −k (S, α, n)). Below we will assume

that n has the just mentioned property. Consequently, the boundary of the rectangle R may intersect
at most 4 among balls V +

k (S, α, n)(V −k (S, α, n)). Thus, there are true the following estimations:
card(N+ \N∗+) + card(N∗+ \N∗∗+ ) ≤ 4 and card(N− \N∗−) + card(N∗− \N∗∗− ) ≤ 4. Herewith, by virtue
of Lemma A: | cardN∗+ − cardN∗−| ≤ 2.

Let us estimate |
∫
R
ξ|. We have∣∣∣ ∫

R

ξ
∣∣∣ =

∣∣∣ ∑
k∈N+

∫
V +
k (S,α,n)∩R

ξ +
∑
k∈N−

∫
V −k (S,α,n)∩R

ξ
∣∣∣

≤
∣∣∣ ∑
k∈N∗+

∫
V +
k (S,α,n)∩R

ξ +
∑
k∈N∗−

∫
V −k (S,α,n)∩R

ξ
∣∣∣

+
∣∣∣ ∑
k∈N+

∫
V +
k (S,α,n)∩R

ξ −
∑
k∈N∗+

∫
V +
k (S,α,n)∩R

ξ
∣∣∣

+
∣∣∣ ∑
k∈N−

∫
V +
k (S,α,n)∩R

ξ −
∑
k∈N∗−

∫
V +
k (S,α,n)∩R

ξ
∣∣∣ = a1 + a2 + a3.

The term a1 can be estimated as follows

a1 ≤
∣∣∣ ∑
k∈N∗+

∫
V +
k (S,α,n)

ξ +
∑
k∈N∗−

∫
V −k (S,α,n)

ξ
∣∣∣

≤
∑

k∈N∗+\N∗∗+

∫
V +
k (S,α,n)

ξ +
∑

k∈N∗−\N∗∗−

∫
V −k (S,α,n)

|ξ| = a1,1 + a1,2 + a1,3.
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By virtue of equalities
∫
V +
k (S,α,n)

ξ = −
∫
V −k (S,α,n)

ξ = h|Q|/n (k ∈ 1, n), we write:

a1,1 = | cardN∗+ − cardN∗−|
h|Q|
n

,

a1,2 ≤
∑

k∈N∗+\N∗∗+

∫
V +
k (S,α,n)

ξ = card(N∗+ \N∗∗+ )
h|Q|
n

,

a1,3 ≤
∑

k∈N∗−\N∗∗−

∫
V −k (S,α,n)

|ξ| = card(N∗− \N∗∗− )
h|Q|
n

,

a2 ≤
∑

k∈N+\N∗+

∫
V +
k (S,α,n)

ξ = card(N+ \N∗+)
h|Q|
n

,

a3 ≤
∑

k∈N−\N∗−

∫
V −k (S,α,n)

|ξ| = card(N− \N∗−)
h|Q|
n

.

Consequently, ∣∣∣ ∫
R

ξ
∣∣∣ ≤ a1,1 + a1,2 + a1,3 + a2 + a3 ≤

10h|Q|
n

.

Since x /∈ γ(∆(S)), R ∈ I(γ)(x) and R ∩ supp ξ 6= ∅, it is easy to check that the side lengths of R are
not less than the length of the sides of S. Therefore, |R| ≥ |S|. Hence,

1

|R|

∣∣∣ ∫
R

ξ
∣∣∣ ≤ 10h|Q|

n|S|
.

The last estimation implies that if n is big enough, then for every γ /∈ V [Π, 3α] it is valid the needed

inclusion: {M̂I(γ)(ξ) ≥ ε} ⊂ γ(∆(S)). The lemma is proved. �

Remark 2. On the basis of Lemma 4 the oscillator ξ = ξQ,h,S,α,n may be considered as the transfor-
mation of the function hχQ that decreases values of integral means with respect to the bases I(γ) for
rotations γ not belonging to the neighbourhood V [Π, 3α].

Let us define an oscillator for more general parameters. Suppose, Q and S are square intervals with
Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 0 < α ≤ π/4, n ∈ N, γ ∈ Γ(R2) and x ∈ R2. Denote by T the
translation: T (y) = y − x. The oscillator ξQ,h,S,α,n,γ,x define as the function (ξQ,h,S,α,n ◦ γ−1) ◦ T.

For γ ∈ Γ(R2) the set of the rotations γ, ρ1 ◦ γ, ρ2 ◦ γ and ρ3 ◦ γ will be denoted by Πγ .
From Lemmas 3 and 4 we can easily obtain the following two assertions.

Lemma 5. Let B ∈ BTI∩BI. Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) =
(0, 0), h > 1, 0 < α ≤ π/4, n ∈ N, γ ∈ Γ(R2) and x ∈ R2. Then for the oscillator ξ = ξQ,h,S,α,n,γ,x it
is valid the following condition: 1

|γ∗(I)+x|
∫
γ∗(I)+x

ξ > 1 for every I ∈ ΩB(Q, 1/h) and γ∗ ∈ V [γ, α/2];

consequently, {MB(γ∗)(ξ) > 1} ⊃ γ∗(EB(Q, 1/h)) + x for every γ∗ ∈ V [γ, α/2].

Lemma 6. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
square interval S ⊂ Q with a(S) = (0, 0) and every ε > 0 there is n ∈ N such that for every γ ∈ Γ(R2)
and x ∈ R2 the oscillator ξ = ξQ,h,S,α,n,γ,x satisfies the following inclusion:

{M̂I(γ∗)(ξ) ≥ ε} ⊂ γ∗(∆(S)) + x for every γ∗ /∈ V [Πγ , 3α].

Recall that a one-dimensional interval I is called dyadic if it has the form (k/2m, (k+1)/2m), where
k,m ∈ Z. A square interval Q is called dyadic if it is a product of two dyadic intervals.

The length of the sides of a square Q denote by d(Q). If d(Q) = 1/2m, then let us call the number
m an order of a dyadic square Q.
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Suppose Q and S are square intervals with Q ⊃ S and a(Q) = a(S) = (0, 0), h > 1, 6hd(Q) ≤
1, 0 < α < π/12, n ∈ N and γ ∈ Γ(R2). For this parameters we will define the function fQ,h,S,α,n,γ
below.

Let W (Q, h) be the smallest square interval concentric with Q containing the square 6hQ and
having d(W ) of the type 1/2j (j ∈ Z). Note that by virtue of the condition 6hd(Q) ≤ 1, we have:
d(W ) ≤ 1. Let us decompose the unit square (0, 1)2 into pair-wise non-overlapping square intervals
congruent to W (Q, h) and the obtained squares denote by W1, . . . ,Wk. By x1, . . . , xk denote the
centres of W1, . . . ,Wk, respectively. The order of the dyadic squares W1, . . . ,Wk denote by m(Q, h).

The function fQ,h,S,α,n,γ define as follows: fQ,h,S,α,n,γ =
∑k
j=1 ξQ,h,S,α,n,γ,xj . It is clear that

supp fQ,h,S,α,n,γ ⊂ (0, 1)2.

Let Θ be a some collection of rectangles and ∆ be a subinterval of (0,∞). Then by Θ∆ denote the
collection of all rectangles R ∈ Θ the side lengths of which belong to the interval ∆.

Let B be a some basis consisting of rectangles and ∆ be a subinterval of (0,∞). Then by M∆
B

and M
∆

B denote the following type operators: M∆
B (f)(x) = supR∈B(x)∆

1
|R|
∫
R
|f | and M

∆

B(f)(x) =

supR∈B(x)∆

1
|R|
∫
R
f , where f ∈ L(Rn) and x ∈ Rn.

Let B ∈ BI ∩ BTI and Q be a square interval. By σB,Q denote the function defined as follows:
σB,Q(λ) = |EB(Q,λ)|/|Q| (0 < λ < 1).

By P it will be denoted the basis of all two-dimensional rectangles.

Lemma 7. Let B ∈ BTI∩BI. Suppose, Q and S are square intervals with Q ⊃ S and a(Q) = a(S) =
(0, 0), h > 1, 6hd(Q) ≤ 1, 0 < α < π/12, n ∈ N, γ ∈ Γ(R2), W = W (Q, h) and m = m(Q, h). Then
the function f = fQ,h,S,α,n,γ has the following properties:

1) ‖f‖L < 1/h;

2) for every γ∗ ∈ V [γ, α/2] there is a set A(γ∗) such that:

(a) A(γ∗) ⊂ {M [d(Q),d(W )]

B(γ∗) (f) > 1};
(b) |A(γ∗)| ≥ σB,Q(1/h)/(300h2);
(c) A(γ∗) is uniformly distributed in the dyadic squares of order m contained in (0, 1)2, i.e. if

W1, . . . ,Wk are all dyadic squares of order m contained in (0, 1)2, then the sets A(γ∗) ∩ Wk are
congruent;

(d) A(γ∗) is a union of dyadic squares of the fixed order, moreover, the order is one and the same
for every γ∗ ∈ V [γ, α/2];

3) |{M (0,d(Q))
P (f) > 0}| < 1/h2;

4) M
(d(W ),∞)
P (f)(x) < 2/h for every x ∈ R2.

Proof. Let Wj , xj and ξQ,h,S,α,n,γ,xj (j ∈ 1, k) be parameters from the definition of the function

fQ,h,S,α,n,γ . Denote ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k).

Using the inclusion 6hQ ⊂W it is easy to see that ‖f‖L =
∑k
j=1 ‖ξj‖L =

∑k
j=1 2h|Q| = 2h|Q|k =

2h |Q||W |k|W | ≤ 2h · 1
36h2 · 1 < 1/h.

Let I ∈ ΩB(Q, 1/h), j ∈ 1, k and γ∗ ∈ V [γ, α/2]. It is easy to check that the side lengthes of I
belong to the interval [d(Q), hd(Q)]. Consequently, taking into account the inclusion 6hQ ⊂ W , we
have: γ∗(I) + xj ⊂ Wj . Thus, the rectangle γ∗(I) + xj does not intersect supports of functions ξν
with ν 6= j. Therefore, by virtue of Lemma 5, 1

|γ∗(I)+xj |
∫
γ∗(I)+xj

f = 1
|γ∗(I)+xj |

∫
γ∗(I)+xj

ξj > 1. Now

taking into account estimation 6hd(Q) ≤ d(W ), we conclude that for every γ∗ ∈ V [γ, α/2],

k⋃
j=1

⋃
I∈ΩB(Q,1/h)

(γ∗(I) + xj) ⊂ {M
[d(Q),d(W )]

B(γ∗) (f) > 1}. (2)

For a set E ⊂ R2 by E(ν) (ν ∈ Z) let us denote the union of all dyadic squares of order ν contained
in E.
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Since the set EB(Q, 1/h) is open and the sets γ∗(EB(Q, 1/h)) (γ∗ ∈ V [γ, α/2]) are congruent, then
it is possible to find a number ν > m (see, e.g., [10, Lemma 7] for details) for which

|γ∗(EB(Q, 1/h))(ν)| ≥ |γ∗(EB(Q, 1/h))|/2 = |EB(Q, 1/h)|/2 (3)

for every γ∗ ∈ V [γ, α/2].
Let us define the set A(γ∗) (γ∗ ∈ V [γ, α/2]) as the union of the translations: γ∗(EB(Q, 1/h))(ν)+xj

(j ∈ 1, k). By virtue of the inclusions γ∗(I) + xj ⊂Wj we obtain:

γ∗(EB(Q, 1/h))(ν) + xj ⊂ γ∗(EB(Q, 1/h)) + xj ⊂Wj , (4)

for every γ∗ ∈ V [γ, α/2] and j ∈ 1, k.
From (3), (4) and the obvious inclusion W ⊂ 12hQ, for arbitrary γ∗ ∈ V [γ, α/2] we write

|A(γ∗)| =
k∑
j=1

|γ∗(EB(Q, 1/h))(ν) + xj | ≥ k
|EB(Q, 1/h)|

2

= k|I| |Q|
|I|
|EB(Q, 1/h)|

2|Q|
≥ 1 · 1

144h2
· σB,Q(1/h)

2
≥ σB,Q(1/h)

300h2
.

This proves the property (b) of the sets A(γ∗). The properties (a), (c) and (d) directly follow from
the definition of the sets γ∗(EB(Q, 1/h))(ν) and the relations (2) and (4).

Let x /∈
⋃k
j=1 5(γ(Q)+xj). Then it is easy to see that dist(x, supp f) ≥ 2d(Q). Therefore, for every

R ∈ P(x)(0,d(Q)) we have:
∫
R
f = 0, and consequently, M

(0,d(Q))
P (f)(x) = 0. Thus, {M (0,d(Q))

P (f) > 0}
⊂
⋃k
j=1 5(γ(Q) + xj). By virtue of the last inclusion,

|{M (0,d(Q))
P (f) > 0}| ≤ 25k|Q| = 25k|W | |Q|

|W |
< 25 · 1 · 1

36h2
<

1

h2
.

Let x ∈ R2 and R ∈ P(x)(d(W ),∞). By N denote the set of all numbers j ∈ 1, k for which Wj∩R 6= ∅.
It is easy to check that

⋃
j∈N Wj ⊂ 5R. This inclusion implies that (cardN)|I| =

∑
j∈N |Ij | ≤ 25|R|.

Thus, cardN ≤ 25|R|/|I|. Now we can write,∫
R

|f | ≤
∑
j∈N

∫
Wj

|f | =
∑
j∈N

∫
Wj

|ξj | =
∑
j∈N

2h|Q|

= (cardN)2h|Q| ≤ 50h
|R||Q|
|W |

= 50h|R| 1

36h2
<

3

2h
|R|.

The obtained estimation implies that M
(d(W ),∞)
P (f)(x) < 2/h for every x ∈ R2. The lemma is

proved. �

Lemma 8. Let Q be a square interval with a(Q) = (0, 0), h > 1 and 0 < α < π/12. Then for every
ε > 0 and k ∈ N there are a square interval S ⊂ Q with a(S) = (0, 0) and a number n ∈ N such
that for every γ ∈ Γ(R2) and x1, . . . , xk ∈ R2 the functions ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k) satisfy the
following estimation:∣∣∣{M̂I(γ∗)

( k∑
j=1

ξj

)
≥ ε
}
∩ (0, 1)2

∣∣∣ < ε for every γ∗ /∈ V [Πγ , 3α].

Proof. Let us choose a square interval S ⊂ Q with a(S) = (0, 0) so that 28
√

2 diamS < ε/k, and
using Lemma 6 let us choose a number n ∈ N so that for every γ ∈ Γ(R2) and x ∈ R2 the oscillator

ξ = ξQ,h,S,α,n,γ,x satisfies the following condition: {M̂I(γ∗)(ξ) ≥ ε/k} ⊂ γ∗(∆(S)) + x for every
γ∗ /∈ V [Πγ , 3α].

Suppose, γ ∈ Γ(R2), x1, . . . , xk ∈ R2 and ξj = ξQ,h,S,α,n,γ,xj (j ∈ 1, k). Let us consider an arbitrary

γ∗ /∈ V [Πγ , 3α]. Then taking into account the estimation M̂I(γ∗)

(∑k
j=1 ξj

)
≤
∑k
j=1 M̂I(γ∗)(ξj), we
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have {
M̂I(γ∗)

( k∑
j=1

ξj

)
≥ ε
}
⊂

k⋃
j=1

{M̂I(γ∗)(ξj) ≥ ε/k} ⊂
k⋃
j=1

(γ∗(∆(S)) + xj). (5)

Note that: 1) For any strip ∆ it is true the estimation: |∆ ∩ (0, 1)2| ≤
√

2 (width of ∆); 2)
γ∗(∆(S)) + xj (j ∈ 1, k) is a union of two strips with the widthes less than 14 diamS. Consequently,

on the basis of choosing of S, for each j we write: |(γ∗(∆(S))+xj)∩(0, 1)2| ≤ 2(
√

2 14 diamS) < ε/k.

Hence, using (5) we obtain that |{M̂I(γ∗)(
∑k
j=1 ξj) ≥ ε} ∩ (0, 1)2| < ε. The lemma is proved. �

Lemma 9. Let I ⊂ R be an open interval. For every s > 1 and ε ∈ (0, 1) there are pairwise non-
overlapping closed intervals Ik ⊂ I (k ∈ N) such that I =

⋃∞
k=1 Ik, |Ik| < ε|I| (k ∈ N), sIk ⊂ I

(k ∈ N) and
∑∞
k=1 χsIk(x) ≤ c(s) (x ∈ I), where c(s) is a constant depending only on the parameter s.

Proof. Let x0 be a midpoint of I and for a number t ∈ (0, 1) let us consider the points xm =
sup I − tm|I|/2, x−m = inf I + tm|I|/2 (m ∈ N). It is easy to check that if t is quite close to 1 then
the intervals [xm, xm+1] (m ∈ Z) generate the needed decomposition of I. �

Lemma 10. For an arbitrary non-empty symmetric set E ⊂ Γ(R2) of type Gδ there are sequences of
rotations (γk) and numbers (αk) from the interval (0, π/12) such that lim

k→∞
V [γk, αk/2] = lim

k→∞
V [Πγk ,

3αk] = E.

Proof. For an interval I ⊂ [0, 2π) denote IT = {(cos(t), sin(t)) : t ∈ I} and ΓI = {γ ∈ Γ(R2) :
γ((1, 0)) ∈ IT}.

First let us prove the following statement: For an arbitrary non-empty set W ⊂ Γ[0,π/2) of Gδ
type there are sequences of rotations (σm) and numbers (βm) from the interval (0, π/12) such that
lim
m→∞

V [σm, βm/2] = lim
m→∞

V [σm, 3βm] = W.

Without loss of generality we can assume that ρ0 /∈ W , i.e. W ⊂ Γ(0,π/2). Using identification
of Γ(0,π/2) with the interval (0, π/2) by the mapping Γ(0,π/2) 3 γ 7→ dist(γ, ρ0) ∈ (0, π/2) we can
formulate our statement in the following equivalent way: For an arbitrary non-empty set V ⊂ (0, π/2)
of Gδ type there exists a sequence of closed intervals Im ⊂ (0, π/2) such that |Im| < π/12 and
lim
m→∞

Im = lim
m→∞

(6Im) = V.

Consider a sequence of open sets Gn ⊂ (0, π/2) with G1 ⊃ G2 ⊃ · · · and
⋂∞
n=1Gn = V. Let {I(n)

p }
be the collection of open intervals decomposing Gn. For each n and p let us consider a sequence of

closed intervals (I
(n)
p,q )q∈N corresponding to the parameters s = 6, ε = 1/12 and I = I

(n)
p according

to Lemma 9. If we enumerate the intervals I
(n)
p,q by one index m ∈ N, then it is easy to see that the

obtained sequence of intervals (Im) will satisfy the needed conditions. This proves the statement.
Now let us consider an arbitrary non-empty symmetric set E ⊂ Γ(R2) of Gδ type. Let (σm) and

(βm) be sequences corresponding to the set E ∩Γ[0,π/2) according to the above proved statement. By
dxe (x ∈ R) denote the number min{n ∈ Z : x ≤ n}. Then it is easy to check that the sequences:
γk = ρ(k−1)(mod 4) ◦ σdk/4e, αk = βdk/4e (k ∈ N), will satisfy the needed conditions. �

5. Proof of Theorem 1

Let B be a basis satisfying the conditions of the theorem. In the introduction it was mentioned
that the following three statements are true: 1) Each WB-set is of type Gδσ and each RB-set is of type
Gδ; 2) Every WB-set and every RB-set is symmetric; 3) Not more than countable union of RB-sets is
a WB-set.

Taking into account three statements above it suffices to prove that an arbitrary symmetric set
E ⊂ Γ(R2) of type Gδ is an RB-set. If E is empty, then the statement is trivial. Thus let us consider
the case of a non-empty set E.

By virtue of Lemma 10 there are sequences γk ∈ Γ(R2) and αk ∈ (0, π/12) such that lim
k→∞

V [γk,

αk/2] = lim
k→∞

V [Πγk , 3αk] = E.
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Taking into account non-regularity of the spherical halo function σB and the estimation σB(1/h) ≤
Ch lnh (h ≥ 2) (which is valid by virtue of strong maximal inequality (see, e.g., [3, Ch. II, §3]) it is
not difficult to choose sequences (hj) and (ηj) with the properties: hj ≥ 2, 0 < ηj < hj , lim

j→∞
hj = ∞,

lim
j→∞

ηj =∞, σB(1/hj) > 144hj , σB(1/hj)/h
2
j < 1,

∑∞
j=1 σB(1/hj)/h

2
j =∞ and

∑∞
j=1 ηj/hj <∞.

On the basis of divergence of the series
∑
j σB(1/hj)/h

2
j we can choose numbers 1 = j0 < j1 <

j2 < · · · so that
∏jk−1
j=jk−1

(
1 − c

2400
σB(1/hj)

h2
j

)
< 1

2k
for every k ∈ N. Here c is the constant from

Lemma 1.
Denote Jk = {j ∈ N : jk−1 ≤ j ≤ jk − 1} (k ∈ N).
Using Lemmas 7 and 8 we can find sequences of square intervals (Qj) and (Sj) with a(Qj) = a(Sj) =

(0, 0) and a sequence of natural numbers (nj) for which the functions fj = fQj ,hj ,Sj ,αj ,nj ,γj , gj =
ηjfj (j ∈ N) satisfy the following conditions:

1) ‖gj‖ = ηj‖fj‖ < ηj/hj ;

2) d(W1) > d(Q1) > d(W2) > d(Q2) > · · · . Here Wj = W (Qj , hj) is a square interval from the
definition of the function fQ,h,S,α,n,γ ;

3) there are sets Aj(γ) (k ∈ N, γ ∈ V [γk, αk/2], j ∈ Jk) such that:

(a) Aj(γ) ⊂ {M [d(Qj),d(Wj)]

B(γ) (fj) > 1} = {M [d(Qj),d(Wj)]

B(γ) (gj) > ηj};
(b) |Aj(γ)| ≥ cσB(1/hj)/(2400h2

j );

(c) Aj(γ) is uniformly distributed in the dyadic squares of ordermj = m(Qj , hj) contained in (0, 1)2,
i.e. if W1, . . . ,Wν are all dyadic squares of order mj contained in (0, 1)2, then the sets Aj(γ) ∩Wi

(i ∈ 1, ν) are congruent. Here m(Qj , hj) is the number from the definition of the function fQ,h,S,α,n,γ ;
(d) Aj(γ) is an union of dyadic squares of the order m∗j > mj , where m∗j does not depend on

γ ∈ V [γk, αk/2];

4) the numbers mj and m∗j from the conditions 3)–(c) and 3)–(d) satisfy inequalities: m1 < m∗1 <
m2 < m∗2 < · · · ;

5) |{M (0,d(Qj))
P (gj) > 0}| = |{M (0,d(Qj))

P (fj) > 0}| < 1/h2
j for every j ∈ N;

6) M
(d(Wj),∞)
P (gj)(x) = ηjM

(d(Wj),∞)
P (fj)(x) < 2ηj/hj for every j ∈ N and x ∈ R2;

7) |{M̂I(γ)(fj) ≥ 1/(ηj2
j)} ∩ (0, 1)2| < 1/(ηj2

j) for every k ∈ N, γ /∈ V [Πγk , 3αk] and j ∈ Jk.

Consequently, |{M̂I(γ)(gj) ≥ 1/2j} ∩ (0, 1)2| < 1/2j for every k ∈ N, γ /∈ V [Πγk , 3αk] and j ∈ Jk.

Set g =
∑∞
j=1 gj . First note that ‖g‖L ≤

∑∞
j=1 ‖gj‖L <

∑∞
j=1 ηj/hj < ∞. Thus, g is a summable

function. Suppose γ /∈ E. Let us prove that I(γ) differentiates
∫
g. Since supp g ⊂ (0, 1)2, then I(γ)

differentiates
∫
g at every point x /∈ [0, 1]2. Further, denote

Tj = {M̂I(γ)(gj) ≥ 1/2j} ∩ (0, 1)2, T = lim
j→∞

Tj .

We have that γ /∈ lim
k→∞

V [Πγk , 3αk]. Consequently, there is k0 ∈ N for which γ /∈ V [Πγk , 3αk] for

every k ≥ k0. The last condition on the basis of the estimation 7) implies: |Tj | < 1/2j for every
j ≥ jk0 . Now taking into account that |Tj | ≤ 1 (j ∈ N) we have:

∑∞
j=1 |Tj | < ∞. Consequently,

|T | = 0. Thus, for arbitrary given point x ∈ (0, 1)2 \ T there is j∗ ∈ N for which M̂I(γ)(gj)(x) < 1/2j

for every j > j∗. Now taking into account boundedness of the functions gj we write: M̂I(γ)(g)(x) ≤∑∞
j=1 M̂I(γ)(gj)(x) ≤

∑j∗

j=1 M̂I(γ)(gj)(x) +
∑∞
j=j∗+1 1/2j < ∞. Thus, (0, 1)2 \ T ⊂ {M̂I(γ)(g) < ∞}.

Note that by virtue of the result of Besicovitch (see, e.g., [3, Ch. IV, §3]) the sets {g < DB(
∫
g, ·) <∞}

and {−∞ < DB(
∫
g, ·) < g} have zero measure. Therefore, taking into account the last inclusion, we

conclude that I(γ) differentiates
∫
g.

Suppose γ ∈ E. Then γ ∈ lim
k→∞

V [γk, αk/2]. Thus, the set N = {k ∈ N : γ ∈ V [γk, αk/2]} is

infinite. Let k ∈ N . Taking into account the properties 3)–(c), 3)–(d) and 4) it is easy to see that the
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sets Aj(γ) (j ∈ Jk) are probabilistically independent. Therefore,∣∣∣ ⋃
j∈Jk

Aj(γ)
∣∣∣ = 1−

∣∣∣ ⋂
j∈Jk

((0, 1)2 \Aj(γ))
∣∣∣ = 1−

∏
j∈Jk

(1− |Aj(γ)|).

Now using 3)–(b) and taking into account the choice of the numbers jk, we obtain: |
⋃
j∈Jk Aj(γ)| >

1− 1/2k. From this estimation we conclude: if A denotes the upper limit of the sequence of the sets⋃
j∈Jk Aj(γ) (k ∈ N), then A is of full measure in (0, 1)2, i.e. |(0, 1)2 \A| = 0.

Let F be the upper limit of the sequence of the sets {M (0,d(Qj))
P (gj) > 0} (j ∈ N). By virtue of

the property 5),
∑∞
j=1 |{M

(0,d(Qj))
P (gj) > 0}| <∞. Therefore the set F is of zero measure.

For any x ∈ A \ F let us prove the equality DB(γ)(
∫
g, x) = +∞. It will imply that the equality is

valid for almost every point from (0, 1)2.
We can find an infinite set N∗ ⊂ N , a sequence j(k) ∈ Jk (k ∈ N∗) and a number j(0) ∈ N with

the properties: i) x ∈ Aj(k)(γ) for every k ∈ N∗; ii) x /∈ {M (0,d(Qj))
P (gj) > 0} for every j > j(0). We

can assume that j(k) > j(0) (k ∈ N∗).
For every k ∈ N∗ we can find a rectangle Rk ∈ B(γ)(x)[d(Qj(k)),d(Wj(k))] for which 1

|Rk|
∫
Rk
gj(k) >

ηj(k). Let us estimate the integral means on Rk of the functions gj with j 6= j(k). Taking into account

the property 2), we have: 1
|Rk|

∫
Rk
gj = 0 if j(0) < j < j(k) and 1

|Rk|
∫
Rk
gj < ηj/hj if j > j(k).

Consequently,

1

|Rk|

∫
Rk

g =
1

|Rk|

∫
Rk

gj(k) −
j(0)∑
j=1

1

|Rk|

∫
Rk

gj −
j(k)−1∑
j=j(0)+1

1

|Rk|

∫
Rk

gj

−
∞∑

j=j(k)+1

1

|Rk|

∫
Rk

gj > ηj(k) −
j(0)∑
j=1

‖gj‖L∞ −
∞∑

j=j(k)+1

ηj
hj
.

Thus, the rectangles Rk (k ∈ N∗) satisfy conditions: Rk ∈ B(γ)(x) (k ∈ N∗), diamRk → 0
(N∗ 3 k →∞) and 1

|Rk|
∫
Rk
g → +∞ (N∗ 3 k →∞). Therefore, DB(γ)

( ∫
g, x
)

= +∞.
Summarizing above established properties of the function g we have: i) g ∈ L(R2) and

supp g ⊂ (0, 1)2; ii) DB(γ)

( ∫
g, x
)

= +∞ a.e. on (0, 1)2 for every γ ∈ E; iii) I(γ) differentiates∫
g for every γ /∈ E.
Set f(x1, x2) =

∑
i,j∈Z g(x1 + i, x2 + j)/2i+j ((x1, x2) ∈ R2). Then we can easily check that f

satisfies the conditions providing E to be an RB-set. The theorem is proved.

Remark 3. The function f constructed in the proof of Theorem 1 for any rotation γ /∈ E satisfies
stronger condition than it is required. Namely,

∫
f is differentiable with respect to the basis I(γ)

which is broader than the basis B(γ).

Remark 4. The function f constructed in the proof of Theorem 1 takes values of both signs. For
non-negative summable functions the problem of characterization of singular rotation’s sets is open
even for the case of the basis I(R2). Some partial results in this direction are obtained in [8] and [12].

Remark 5. For the multidimensional case the problem of characterization of WI(Rn)-sets and RI(Rn)-
sets is open. Note that a class of RI(Rn)-sets is found in [9].

Acknowledgement

The first author was supported by Shota Rustaveli National Science Foundation (project no. 217282).

References

1. K. A. Chubinidze, On sets of singular rotations for translation invariant bases. Trans. A. Razmadze Math. Inst.

170 (2016), no. 1, 1–6.
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