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ON (CO)HOMOLOGICAL PROPERTIES OF REMAINDERS OF STONE-ČECH

COMPACTIFICATIONS

V. BALADZE

Abstract. In the paper are defined the Čech border homology and cohomology groups of closed

pairs of normal spaces and showed that they give intrinsic characterizations of Čech (co)homology

groups based on finite open coverings, cohomological coefficients of cyclicity, small and large coho-
mological dimensions of remainders of Stone-Čech compactifications of metrizable spaces.

Introduction

The investigation and discussion presented in this paper are centered around the following problem:
Find necessary and sufficient conditions under which a space of given class has a compactification

whose remainder has the given topological property (cf. [35], Problem I, p. 332, and Problem II, p.
334).

This problem for different topological invariants and properties was studied by several authors
(see [1–3,5–8,11–14,19–25,27,30–36]).

The present paper is motivated by this general problem. Specifically, we study this problem for
the properties: Čech (co)homology groups based on finite open covers, cohomological coefficients of
cyclicity and cohomological dimensions of remainders of Stone-Čech compactifications of metrizable
spaces are given groups and given numbers, respectively.

In the paper we define the Čech type covariant and contravariant functors which coefficients in an
abelian group G,

Ȟ∞n (−,−;G) : N 2
p → A b

and

Ĥn
∞(−,−;G) : N 2

p → A b,

from the category N 2
p of closed pairs of normal spaces and proper maps to the category A b of abelian

groups and homomorphisms. The construction of these functors is based on all border open covers of
pairs (X,A) ∈ ob(N 2

p ) (see Definition 1.1 and Definition 1.2).

One of our main results of the paper is the following theorem (see Theorem 2.1). Let M 2
p be the

category of closed pairs of metrizable spaces and proper maps. For each closed pair (X,A) ∈ ob(M 2
p ),

one has

Ȟf
n(βX \X,βA \A;G) = Ȟ∞n (X,A;G)

and

Ĥn
f (βX \X,βA \A;G) = Ĥn

∞(X,A;G),

where Ȟf
n(βX \X,βA\A;G) and Ĥn

f (βX \X,βA\A;G) are Čech homology and cohomology groups

based on all finite open covers of (βX \X,βA \A), respectively (see [17, Ch. IX, p. 237]).
We also investigate the border cohomological coefficient of cyclicity η∞G , border small and large co-

homological dimensions df∞(X;G) and Df
∞(X;G) and prove the following relations (see Theorem 2.3,
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Theorem 3.2 and Theorem 3.6):

η∞G (X,A) = ηG(βX \X,βA \A),

df∞(X;G) = df (βX \X;G),

Df
∞(X;G) = Df (βX \X;G),

where ηG(βX\X,βA\A), df (βX\X;G) andDf (βX\X;G) are well known cohomological coefficient of
cyclicity [10,29], small cohomological dimension and large cohomological dimension [28] of remainders
(βX \X,βA \A) and βX \X, respectively.

Without any further reference we will use definitions and results from the monographs General
Topology [18], Algebraic Topology [17] and Dimension Theory [28].

1. On Čech Border (Co)homology Groups

In this section we give an outline of a generalization of Čech homology theory by replacing the set
of all finite open coverings in the definition of Čech (co)homology group (Ĥn

f (X,A;G)) Ȟf
n(X,A;G)

(see [17, Ch. IX, p. 237]) by a set of all finite open families with compact enclosures. For this aim
we give the following definitions.

An indexed family of subsets of set X is a function α from an indexed set Vα to the set 2X of
subsets of X. The image α(v) of index v ∈ Vα is denoted by αv. Thus the indexed family α is the
family α = {αv}v∈Vα . If |Vα| < ℵ0, then we say that α family is a finite family.

Let V
′

α be a subset of set Vα. A family {αv}v∈V ′α is called a subfamily of family {αv}v∈Vα .

By α = {αv}v∈(Vα,V
′
α) we denote the family consisting of family {αv}v∈Vα and its subfamily

{αv}v∈V ′α .

Definition 1.1. (see [33]). A finite family α = {αv}v∈Vα of open subsets of normal space X is called
a border cover of X if its enclosure Kα = X \

⋃
v∈Vα

αv is a compact subset of X.

Definition 1.2. (cf. [33]). A finite open family α = {αv}v∈(Vα,V Aα ) is called a border cover of closed

pair (X,A) ∈ N 2 if there exists a compact subset Kα of X such that X \ Kα =
⋃

v∈Vα
αv and

A \Kα ⊆
⋃

v∈V Aα
αv.

The set of all border covers of (X,A) is denoted by cov∞(X,A). Let KA
α = Kα ∩ A. Then the

family {αv ∩A}v∈V Aα is a border cover of subspace A.

Definition 1.3. Let α, β ∈ cov∞(X,A) be two border covers of (X,A) with indexing pairs (Vα, V
A
α )

and (Vβ , V
A
β ), respectively. We say that the border cover β is a refinement of border cover α if there

exists a refinement projection function p : (Vβ , V
A
β ) → (Vα, V

A
α ) such that for each index v ∈ Vβ

(v ∈ V Aβ ) βv ⊂ αp(v).

It is clear that cov∞(X,A) becomes a directed set with the relation α ≤ β whenever β is a refinement
of α.

Note that for each α ∈ cov∞(X,A), α ≤ α, and if for each α, β, γ ∈ cov∞(X,A), α ≤ β and β ≤ γ,
then α ≤ γ.

Let α, β ∈ cov∞(X,A) be two border covers with indexing pairs (Vα, V
A
α ) and (Vβ , V

A
β ), respectively.

Consider a family γ = {γv}v∈(Vγ ,V Aγ ), where Vγ = Vα × Vβ and V Aγ = V Aα × V Aβ . Let v = (v1, v2),

where v1 ∈ Vα, v2 ∈ Vβ . Assume that γv = αv1 ∩ βv2 . The family γ = {γv}v∈(Vγ ,V Aγ ) is a border cover

of (X,A) and γ ≥ α, β.
For each border cover α ∈ cov∞(X,A) with indexing pair (Vα, V

A
α ), by (Xα, Aα) denote the nerve

α, where Aα is the subcomplex of simplexes s of complex Xα with vertices of V Aα such that Carα(s)∩
A 6= ∅, where Carα(s) is the carrier of simplex s (see [17, pp. 234]). The pair (Xα, Aα) is a simplicial
pair. Moreover, any two refinement projection functions p, q : β → α induce contiguous simplicial
maps of simplicial pairs pβα, q

β
α : (Xβ , Aβ)→ (Xα, Aα) (see [17, pp. 234–235]).



ON (CO)HOMOLOGICAL PROPERTIES OF REMAINDERS OF STONE-ČECH COMPACTIFICATIONS 3

Using the construction of formal homology theory of simplicial complexes [17, Ch. VI] we can define
the unique homomorphisms

pβα∗ : Hn(Xβ , Aβ : G)→ Hn(Xα, Aα;G)

and

pβ∗α : Hn(Xα, Aα : G)→ Hn(Xβ , Aβ ;G),

where G is any abelian coefficient group.
Note that pαα∗ = 1Hn(Xα,Aα:G) and pα∗α = 1Hn(Xα,Aα:G). If γ ≥ β ≥ α than

pγα∗ = pβα∗ · p
γ
β∗

and

pγ∗α = pγ∗β · p
β∗
α .

Thus, the families

{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}
and

{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}
form inverse and direct systems of groups.

The inverse and direct limit groups of above defined inverse and direct systems are denoted by
symbols

Ȟ∞n (X,A;G) = lim
←−
{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}

and

Ĥn
∞(X,A;G) = lim

−→
{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}

and called n-dimensional Čech border homology group and n-dimensional Čech border cohomology
group of pair (X,A) with coefficients in abelian group G, respectively.

For a pair (X,A) ∈ ob(N 2
p ) and a proper map f : (X,A)→ (Y,B) of pairs, the induced homomor-

phisms

f∞∗ : Ȟ∞n (X,A;G)→ Ȟ∞n (Y,B;G)

and

f∗∞ : Ĥn
∞(X,A;G)→ Ĥn

∞(Y,B;G),

and the boundary and coboundary homomorphisms

∂∞n : Ȟ∞n (X,A;G)→ Ȟ∞n−1(A;G)

and

δn∞ : Ĥn−1
∞ (A;G)→ Ĥn

∞(X,A;G)

are defined. For details of these definitions, see Eilenberg and Steenrod [17].
We have the following theorems.

Theorem 1.4. There exist the covariant and contravariant functors

Ȟ∞∗ (−,−;G) : N 2
p → A b

and

Ĥ∗∞(−,−;G) : N 2
p → A b

given by formulas

Ȟ∞∗ (−,−;G)(X,A) = Ȟ∞∗ (X,A;G), (X,A) ∈ ob(N 2
p )

Ȟ∞∗ (−,−;G)(f) = f∞∗ , f ∈ MorN 2
p

((X,A), (Y,B))

and

Ĥ∗∞(−,−;G)(X,A) = Ĥ∗∞(X,A;G), (X,A) ∈ ob(N 2
p )

Ĥ∗∞(−,−;G)(f) = f∗∞, f ∈ MorN 2
p

((X,A), (Y,B)).
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Theorem 1.5. Let f : (X,A)→ (Y,B) be a proper map. Then hold the following equalities

(f|A)∞∗ · ∂∞n = ∂∞n · f∞∗
and

δn−1
∞ · (f|A)∗∞ = f∗∞ · δn−1

∞ .

Theorem 1.6. Let (X,A) ∈ ob(N 2
p ) and let i : A → X and j : X → (X,A) be the inclusion maps.

Then the Čech border cohomology sequence

· · · // Ȟn−1
∞ (A;G)

δn−1
∞ // Ȟn

∞(X,A;G)
j∗∞ // Ȟn

∞(X;G)
i∗∞ // Ȟn

∞(A;G) // · · ·

is exact while the Čech border homology sequence

· · · Ĥ∞n−1(A;G)oo Ĥ∞n (X,A;G)
∂∞noo Ĥ∞n (X;G)

j∞∗oo Ĥ∞n (A;G)
i∞∗oo · · ·oo

is partially exact.

Theorem 1.7. Let (X,A) ∈ ob(N 2
p ) and G be an abelian group. If U is open in X and Ū ⊂ intA,

then the inclusion map i : (X \ U,A \ U)→ (X,A) induces isomorphisms

i∞∗ : Ȟ∞n (X \ U,A \ U)→ Ȟ∞n (X,A;G)

and

j∗∞ : Ĥn
∞(X,A;G)→ Ĥn

∞(X \ U,A \ U)

Theorem 1.8. If X is a compact space, then for each n 6= 0,

Ȟ∞n (X;G) = 0 = Ȟn
∞(X;G)

and

Ĥ∞0 (X;G) = G = Ĥ0
∞(X;G).

Theorem 1.9. Let (X,A,B) be a triple of normal space X and its closed subsets A and B with
B ⊂ A. Then the Čech border homology sequence

· · · Ȟ∞n−1(A,B;G)oo Ȟ∞n (X,A;G)
∂̄∞noo Ȟ∞n (X,B;G)

j̄∞∗oo Ȟ∞n (A,B;G)
ī∞∗oo · · ·oo

and the Čech border cohomology sequence

· · · // Ĥn−1
∞ (A,B;G)

δ̄n∞ // Ĥn
∞(X,A;G)

j̄∗∞ // Ĥn
∞(X,B;G)

ī∗∞ // Ĥn
∞(A,B;G) // · · ·

are partially exact and exact, respectively. Here ∂̄∞n = j
′∞
n−1 ·∂∞n , δ̄n∞ = δn∞ ·j

′n−1
∞ and j

′∞
n−1, j

′n−1
∞ , j̄∗∞,

j̄∞∗ , and ī∗∞, ī∞∗ are the homomorphisms induced by the inclusion maps j
′

: A→ (A,B), ī : (A,B)→
(X,B), j̄ : (X,B)→ (X,A).

The proofs of formulated theorems are similar to the proofs of corresponding theorems of Eilenberg
and Steenrod (see [17], Ch. IX, Theorem 3.4, Theorem 4.3, Theorem 4.4, Theorem 5.1, Theorem 6.1,
Theorem 7.6) and hence they will be omitted.

2. On Čech (Co)homology Groups and Coefficients of Cyclicity of Remainders of
Stone-Čech Compactifications

Now we are mainly interested in the following problem: how to characterize the Čech homology
and cohomology groups, and coefficients of cyclicity of remainders of Stone-Čech compactifications of
metrizable spaces.

Our main result about the connection between Čech (co)homology groups of remainders and Čech
border (co)homology groups of spaces is the following theorem:
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Theorem 2.1. Let (X,A) ∈ ob(M 2
p ) and let (βX, βA) be the pair of Stone-Čech compactifications of

X and A. Then
Ȟf
n(βX \X,βA \A;G) = Ȟ∞n (X,A;G)

and
Ĥn
f (βX \X,βA \A;G) = Ĥn

∞(X,A;G).

Proof. Let α = {αv}v∈(Vα,V
βA\A
α )

and α
′

= {α′w}w∈(W
α
′ ,W

βA\A
α
′ )

be the closed covers of pairs

(βX\X,βA\A) and α ≥ α′ . By Lemma 4 of [33] there exist open swellings β1 = {β1
v}v∈(Vα,V

βA\A
α )

and

β
′

= {β′w}w∈(W
α
′ ,W

βA\A
α
′ )

of α and α
′

in βX, respectively. Assume that αv ⊆ α
′

wk
, k = 1, 2, . . . ,mv.

Let

βv = β1
v ∩

( mv⋂
k=1

β
′

wk

)
, v ∈ Vα.

Note that αv ⊂ βv ⊂ β1
v for each v ∈ Vα. It is clear that β = {βv}v∈(Vα,V Aα ) is a swelling of

α = {αv}v∈(Vα,V
βA\A
α )

and β ≥ β′ .
The swelling in βX of closed cover α of (βX \X,βA \ A) is denoted by s(α). Let S be the set of

all swellings of such kind.
Now define an order ≥′ in S. By definition,

s(α
′
) ≥

′
s(α)⇔ s(α

′
) ≥ s(α) ∧ α

′
≥ α.

It is clear that S is directed by ≥′ . Let ((βX \X)s(α), (βA \A)s(α)) be the nerve of s(α) ∈ S and

ps(α)s(α′ ) be the projection simplicial map induced by the refinement α
′ ≥ α. Consider an inverse

system

{Hn((βX \X)s(α), (βA \A)s(α);G), p
s(α
′
)

s(α)∗, S}
and a direct system

{Hn((βX \X)s(α), (βA \A)s(α);G), p
s(α
′
)∗

s(α) , S}.
Let ϕ : S → covcl

f (βX \ X, βA \ A) be the function in the set of closed finite covers of pair
(βX \X,βA \A) given by formula

ϕ(s(α)) = α, s(α) ∈ S.
Note that ϕ is an increasing function and

ϕ(S) = covcl
f (βX \X, βA \A).

For each index s(α) ∈ S, we have

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn((βX \X)α, (βA \A)α;G)

and
Hn((βX \X)s(α), (βA \A)s(α);G) = Hn((βX \X)α, (βA \A)α;G).

It is known that for normal spaces the Čech (co)homology groups based on finite open covers and
on finite closed covers are isomorphic. By Theorems 3.14 and 4.13 of [17, Ch. VIII] we have

Ȟf
n(βX \X,βA \A;G) ≈ lim

←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (2.1)

and

Ĥn
f (βX \X,βA \A;G) ≈ lim

−→
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}. (2.2)

For each swelling s(α) = {s(α)v}v∈(Vα,V
βA\A
α )

∈ S, the family

s(α) ∧X = {s(α)v ∩X}v∈(Vα,V
βA\A
α )

is a border cover of (X,A).
Let ψ : S → cov∞(X,A) be the function defined by formula

ψ(s(α)) = s(α) ∧X, s(α) ∈ S.
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The function ψ increases and ψ(S) is a cofinal subset of cov∞(X,A). Note that the correspondence

((βX \X)s(α), (βA \A)s(α))→ (Xs(α)∧X , As(α)∧X) : s(α)v → s(α)v ∩X, v ∈ Vα
induces an isomorphism of pairs of simplicial complexes. Thus, for each s(α) ∈ S, we have the
isomorphisms

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G)

and

Hn((βX \X)s(α), (βA \A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G).

By Theorems 3.15 and 4.13 of [17, Ch.VIII], we have

Ȟ∞n (X,A;G) = lim
←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (2.3)

and

Ĥn
∞(X,A;G) = lim

−→
{Hn((βX\X,βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}. (2.4)

From (2.1), (2.2), (2.3) and (2.4) it follows that

Ȟ∞n (X,A;G) = Ȟf
n(βX \X,βA \A;G)

and

Ĥn
∞(X,A;G) = Ĥn

f (βX \X,βA \A;G). �

The cohomological coefficient of cyclicity ηG(X,A) of pair (X,A) was defined and investigated by
S. Novak [29] and M. F. Bokstein [10].

Now give the following definition and result.

Definition 2.2. Let G be an abelian group and n nonnegative integer. A border cohomological
coefficient of cyclicity of pair (X,A) ∈ ob(M 2

p ) with respect to G denoted by η∞G (X,A) is n, if

Ĥm
∞(X,A;G) = 0 for all m > n and Ĥn

∞(X,A;G) 6= 0.

Finally, η∞G (X,A) = +∞ if for every m there is n ≥ m with Ĥn
∞(X,A;G) 6= 0.

Theorem 2.3. For each pair (X,A) ∈ ob(M 2
p ),

η∞G (X,A) = ηG(βX \X,βA \A).

Proof. This is an immediate consequence of Theorem 2.1. Indeed, let ηG(βX \X,βA \A) = n. Then

for each m > n, Ĥm
f (βX \X,βA \A;G) = 0 and Ĥn

f (βX \X,βA \A;G) 6= 0. From the isomorphism

Ĥk
f (βX \X,βA \A;G) = Ĥk

f (X,A;G)

it follows that Ĥm
∞(X,A;G) = 0 for each m > n, and Ĥn

∞(X,A;G) 6= 0. Thus, η∞G (X,A) = n =
ηG(βX \X,βA \A). �

3. On Cohomological Dimensions of Remainders of Stone-Čech Compactifications

The theory of cohomological dimension has become an important branch of dimension theory since
A. Dranishnikov solved P. S. Alexandrov’s problem [16] and he and other authors developed the theory
of extension dimension.

Our next aim is to study some questions of theory of cohomological dimension. In particular, we in
this section give a description of cohomological dimension of remainder of Stone-Čech compactification
of metrizable space.

Following Y. Kodama (see the appendix of [28]) and T. Miyata [26] we give the following definition.

Definition 3.1. The border small cohomological dimension df∞(X;G) of normal space X with respect
to group G is defined to be the smallest integer n such that, whenever m ≥ n and A is closed in X, the
homomorphism i∗A,∞ : Ĥm

∞(X;G)→ Ĥm
∞(A;G) induced by the inclusion i : A→ X is an epimorphism.

The border small cohomological dimension of X with coefficient group G is a function df∞ : N →
N ∪ {0,+∞} : X → n, where df∞(X;G) = n and N is the set of all positive integers.
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Theorem 3.2. Let X be a metrizable space. Then the following equality

df∞(X;G) = df (βX \X;G)

holds, where df (βX \X;G) is the small cohomological dimension of βX \X (see [28], p. 199).

Proof. Let A be a closed subset of X. Assume that df (βX \ X;G) = n. Then for each m ≥ n

the homomorphism i∗βX\X,∞ : Ĥm
f (βX \ X;G) → Ĥm

f (βA \ A;G) is an epimorphim. Consider the

following commutative diagram

Ĥm
∞(X;G)

i∗A,∞
��

≈ Ĥm
f (βX \X;G)

i∗βA\A

��
Ĥm
∞(A;G) ≈ Ĥm

f (βA \A;G)

(3.1)

It is clear that the homomorphim

i∗A,∞ : Ĥm
f (X;G)→ Ĥm

f (A;G)

also is an epimorphim for each m ≥ n. Thus,

df∞(X;G) ≤ n = df (βX \X;G). (3.2)

Let df∞(X;G) = n. To see the reverse inequality, let B be a closed subset of βX \X and let m ≥ n.
Consider an open in βX \X neighbourhood U of B. There exists an open neighbourhood V of B

in βX \X such that V̄ βX\X ⊂ U . By Lemma 5 of [33] we can find an open set W in βX such that
W ∩ (βX \X) = V and W̄ βX ∩ (βX \X) ⊆ U . Let A = W̄ βX ∩X. It is clear that βA = ĀβX .

We have

W̄ βX = W ∩XβX ⊂ W̄ βX ∩X
βX
⊂ W̄ βX

βX
= W̄ βX .

Consequently, βA = W̄ βX ∩X
βX

= W̄ βX . This shows that

B ⊂ βA ∩ (βX \X) ⊂ U.
Hence, we have

B ⊂ βA \A ⊂ U.
Thus, for each closed set B of βX \ X and its open neighbourhood U in βX \ X there exists a

closed subset A in X such that B ⊂ βA \A ⊂ U .
Let a ∈ Hn

f (B;G). There is a closed finite cover α of B such that an element aα ∈ Hm(N(α);G)
represents the element a.

Using Lemma 4 of [33] we can find the swellings α̃ and ˜̃α of α in B and βX \X, respectively, such

that ˜̃α|B = α̃. Let U be the union of elements of ˜̃α. There is a closed set A of X with B ⊂ βA\A ⊂ U .

The nerves N(α), N(α̃) and N( ˜̃α|βA\A) are isomorphic. We can assume that

Hn(N(α);G) = Hn(N(α̃);G) = Hn(N( ˜̃α|βA\A);G).

Hence, the element aα also belongs to the group Hn(N( ˜̃α|βA\A);G). Consequently, it represents some

element b of Ĥn(βA \A;G).

The inclusion iA : A→ X induces an epimorphism i∗A,∞ : Ĥm
∞(X;G)→ Ĥm(A;G). From diagram

(3.1) it follows that the homomorphism i∗βA\A : Ĥm(βX \X;G)→ Ĥm(βA\A;G) is an epimorphism.

Consequently, there is an element c ∈ Ĥm(βX \X;G) such that i∗βA\A(c) = b. The homomorphism

j∗B : Ĥm(βA \ A;G) → Ȟm(B;G) induced by the inclusion jB : B → βA \ A satisfies the condition
j∗B(b) = a. From equality iβA\A · jB = iB it follows that i∗B(c) = a.

Thus the inclusion iB : B → βX\X also induces an epimorphism i∗B : Ȟm(βX\X;G)→ Ȟm(B;G).
Hence, we obtaine

df (βX \X;G) ≤ n = df∞(X;G). (3.3)

From the inequalities (3.2) and (3.3) it follows that

df∞(X;G) = df (βX \X;G). �
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Theorem 3.3. Let A be a closed subspace of a normal space X. Then

df∞(A;G) ≤ df∞(X;G).

Proof. Let B be an arbitrary closed subset of A and jB : B → A, iA : A → X and kB : B → X
be the inclusion maps. Note that kB = iA · jB . The induced homomorphisms k∗B,∞ : Ĥn

∞(X;G) →
Ĥn
∞(B;G), i∗A,∞ : Ĥn

∞(X;G) → Ĥn
∞(A;G) and j∗B,∞ : Ĥn

∞(A;G) → Ĥn
∞(B;G) satisfy the equality

k∗B,∞ = j∗B,∞ · i∗A,∞.

Let n = d∞f (X;G). For each m ≥ n, the homomorphisms k∗B,∞ : Ĥm
∞(X;G) → Ĥm

∞(B;G) and

i∗A,∞ : Ĥm
∞(X;G) → Ĥm

∞(A;G) are epimorphisms. Hence, the homomorphism j∗B,∞ : Ĥm
∞(A;G) →

Ĥm
∞(B;G) is also an ephimorphism for each m ≥ n. Thus, d∞f (A;G) ≤ n = d∞f (X;G). �

Corollary 3.4. For each closed subspace A of a metrizable space X,

df∞(A;G) ≤ df (βX \X;G).

Definition 3.5. The border large cohomological dimension Df
∞(X;G) of normal space X with respect

to group G is defined to be the largest integer n such that Ĥn
∞(X,A;G) 6= 0 for some closed set A

of X.
The border large cohomological dimension of X with coefficient group G is a function Df

∞ : N →
N ∪ {0,+∞} : X → n, where Df

∞(X;G) = n and N is the set of all positive integers.

Theorem 3.6. For each metrizable space X, one has

Df
∞(X;G) = Df (βX \X;G),

where Df (βX \X;G) is the large cohomological dimension of βX \X (see [28], p. 199).

Proof. Let Df (βX \X;G) = n. Consider an arbitrary closed subspace A of X. The remainder βA\A
is a closed subset of βX \X. By the assumption, we have Ĥm(βX \X,βA\A;G) = 0 for each m > n.

Theorem 2.1 implies that Ĥm
∞(X,A;G) = 0 for each m > n and A ⊂ X. Thus,

Df
∞(X;G) ≤ n = Df (βX \X;G). (3.4)

Let Df
∞(X;G) = n. Assume that Df (βX \X;G) = n1 > n. Then there is a closed set B in βX \X

such that Ĥn1(βX \X,B;G) 6= 0. Using Lemma 4 of [33] and the proof of Theorem 3.2 we can show

that there is a closed set A of X such that B ⊂ βA\A, and Ĥn1(βX \X,βA\A;G) 6= 0. By Theorem

2.1 Ĥn1
∞ (X,A;G) 6= 0. But it is not possible because D∞f (X;G) = n. Therefore, n1 ≤ n. Thus,

Df (βX \X;G) ≤ n = Df
∞(X;G). (3.5)

The inequalities (3.4) and (3.5) imply

Df
∞(X;G) = Df (βX \X;G). �

Theorem 3.7. If A is a closed subset of normal space X, then

Df
∞(A;G) ≤ Df

∞(X;G).

Proof. By Theorem 1.9, for each closed set B of A, there is the exact Čech border cohomological
sequence

· · · // Ĥm−1
∞ (A;G)

δ̄m∞ // Ĥm
∞(X,A;G)

j̄∗∞ // Ĥm
∞(X,B;G)

ī∗∞ // Ĥm
∞(A,B;G) // · · ·

It is clear that, if m > Df
∞(X;G), then Ĥm

∞(X,A;G) = Ĥm
∞(X,B;G) = 0. Consequently,

Ĥm
∞(A,B;G) = 0. Thus, we have

Df
∞(A;G) ≤ Df

∞(X;G). �

Corollary 3.8. For each closed subspace A of metrizable space X, one has

Df
∞(A;G) ≤ Df (βX \X;G).
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Theorem 3.9. If X is a normal space then

df∞(X;G) ≤ Df
∞(X;G).

Proof. Let A be a closed subset of normal space X. Consider the exact Čech border cohomological
sequence of pair (X,A)

· · · // Ĥm−1
∞ (A,B;G)

δm∞ // Ĥm
∞(X,A;G)

j∗∞ // Ĥm
∞(X;G)

i∗∞ // Ĥm
∞(A;G) // · · ·

Let m > Df
∞(X;G). Note that j∗∞ : Ĥm−1

∞ (X;G)→ Ĥm−1
∞ (A;G) is an epimorphism. Hence,

df∞(X;G) ≤ Df
∞(X;G). �

Corollary 3.10. For each metrizable space X, one has

df (βX \X;G) ≤ Df
∞(X;G)

and
df∞(X;G) ≤ Df (βX \X;G).

Remark 3.11. The results of this paper also hold for spaces satisfying the compact axiom of count-
ability. Recall that a space X satisfies the compact axiom of countability if for each compact subset
B ⊂ X there exists a compact subset B

′ ⊂ X such that B ⊂ B
′

and B
′

has a countable or finite
fundamental systems of neighbourhoods (see Definition 4 of [33], p.143). A space X is complete in
the sense of Čech if and only if it is Gδ type set in some compact extension. Each locally metrizable
spaces, complete in the seance of Čech spaces [15] and locally compact spaces satisfy the compact
axiom of countability.
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