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INTRODUCTION

In the literature, several ways of representing abelian `-groups by means of
topological spaces can be found.

In 1971, K. Keimel showed that every abelian `-group can be represented as a
group of sections of a sheaf of ‘local’ `-groups. The base space for Keimel’s
sheaf representation is the so-called spectrum of the `-group.

Other classical representations use, respectively, the minimal spectrum and the
Stone space of the Boolean algebra of polars.
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INTRODUCTION

The topological space of (right-)orders on a group G appeared for the first time
in 2004, in a work by A. Sikora.

In his original paper, some of the results about this topological space were
applied to obtain consequences in algebraic topology and commutative algebra.

The last years have seen an explosion of the study of the interaction between the
theory of orderable groups and topology (e.g., A. Clay, C. Rivas, D. Rolfsen).
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INTRODUCTION

We are concerned with studying the relation between these two approaches.

MAIN QUESTION.
Given an orderable abelian group G, can we find an abelian `-group HG that can
be represented via the topological space of orders on G?
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ABELIAN LATTICE-ORDERED GROUPS

An abelian `-group is an algebra (H , ∧, ∨, +, −, 0), where (H , +, −, 0) is an
abelian group and (H , ∧, ∨) a lattice whose corresponding lattice-order is
translation-invariant.

The class of abelian `-groups is a representable variety of `-groups, meaning
that subdirectly irreducible members are chains.
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PRIME IDEALS

The variety of abelian `-groups is ideal-determined: congruences are in
one-to-one correspondence with convex `-subgroups (ideals).

Congruences whose quotient is totally ordered correspond to prime ideals
(we consider prime ideals to be proper).

The spectrum SpecH of an abelian `-group H is the collection of its prime
ideals. The set of prime ideals forms a root system under inclusion.

Every prime ideal contains a minimal prime ideal, and we denote the minimal
layer as MinH .
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ORDERS ON ABELIAN GROUPS

An abelian group G is orderable if its elements can be (totally) ordered via a
translation-invariant relation. We call such relation an order on G.

An abelian group is orderable if, and only if, it is torsion-free.

Given an order ≤ on G, the set of its non-negative elements C ⊆ G is a
submonoid of G with the properties C ∪−C = G and C ∩−C = {0}, and we call
such submonoid a (total) cone for G.
Conversely, every cone C is the positive cone of some order ≤C on G, defined
via: a ≤C b if, and only if, b − a ∈ C.

We identify an order ≤ on G with its cone C, and hence see the set O (G) of all
possible orders on G as a set of subsets of G.

We write GC to denote the abelian group G totally ordered by the cone C.
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FREE ABELIAN `-GROUPS

Problem. Given a torsion-free abelian group G, we would like to establish a
relation between O (G) and SpecH , for some abelian `-group H .
Where should we look for H?

For a torsion-free abelian group G, there exists an abelian `-group F(G) and a
group homomorphism ηG : G→ F(G) characterised by the following universal
property: For each group homomorphism p : G→H , with H an abelian
`-group, there is exactly one `-homomorphism h : F(G)→H such that the
following diagram

G F(G)

H

p

ηG

!h

commutes. We call F(G) the free abelian `-group over G.

Note: The map ηG is injective, every ηG(a) is incomparable with 0 in F(G), and
ηG[G] � G generates F(G). Every x ∈ F(G) is x =

∧
I
∨
Ji aij , for finitely many aij ∈ G.
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WEINBERG’S CONSTRUCTION

Problem. Given a torsion-free abelian group G, we would like to establish a
relation between O (G) and SpecH , for some abelian `-group H .
Why F(G)?

THEOREM (WEINBERG, 1963)
Given a torsion-free abelian group G, the free abelian `-group F(G) over G is
isomorphic to the `-subgroup of the direct product `-group∏

C ∈O (G)
GC

generated by the set {(a,a, . . . , a, . . .) | a ∈ G}.
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THE MINIMAL LAYER

Problem. Given a torsion-free abelian group G, we would like to establish a
relation between O (G) and MinF(G).

Given a cone C for G, consider the following diagram:

G F(G)

GC

1G
hC

If we denote by hC the unique `-homomorphism from F(G) onto the totally
ordered group GC , the kernel kerhC is a prime ideal. The idea is to make hC as
injective as possible on G, and hence, look for the ‘smallest possible’ prime
ideals.
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ZOOMING OUT

If the set of orders of a torsion-free abelian group G corresponds to the minimal
spectrum of the free abelian `-group F(G) over G, is there a topological space
arising from G that corresponds to SpecF(G)?
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PRE-ORDERS ON ABELIAN GROUPS

A (total) pre-order on a torsion-free abelian group G is a translation-invariant
pre-order on G.

Given a pre-order � on G, we call the set C = {a ∈ G | 0 � a} a (total) pre-cone,
and it is again a submonoid of G with the property C ∪−C = G.

The subgroup C ∩−C is trivial if, and only if, C is a cone.

It corresponds to the congruence ≡C , and, if we write GC to denote the abelian
group G totally pre-ordered by the pre-cone C, the quotient GC / ≡C is a totally
ordered abelian group.
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THE MINIMAL LAYER

The set P (G) of pre-cones for a torsion-free abelian group G forms a root
system ordered by inclusion.

It is immediate that cones are minimal in P (G). Moreover:

LEMMA

Every pre-cone for a torsion-free abelian group G extends a cone for G.

MAIN IDEA.
The subgroup C ∩−C is itself torsion-free abelian and hence, orderable.
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THE ORDER-ISOMORPHISM

Given a pre-cone C for G, we consider the following diagram:

G F(G)

GC GC / ≡C

1G hC
πC

But then, if hC is the unique `-homomorphism from F(G) onto GC / ≡C :

THEOREM

The map P (G)
KG−−−−→ SpecF(G) defined by

KG(C) := kerhC

is an order-isomorphism that restricts to a bijection O (G)→MinF(G).
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THE ORDER-ISOMORPHISM

MAIN IDEA. The crucial steps of the proof rely on the following facts:

I The behaviour of an element a ∈ G in a given pre-order C can be
‘recognized’ in F(G) by the behaviour of the elements hC(a∧ 0) and
hC(a∨ 0) in GC .
E.g., to prove injectivity: observe that if two pre-cones C,D ∈P (G) are
different, there is an element a ∈ C that is certainly strictly negative in the
pre-order induced by D. Therefore, kerhC , kerhD , since (a∧ 0) will be
contained in kerhC but not in kerhD .

I Every 0 ≤ x ∈ F(G) lies in the sublattice generated by {a∨ 0 | a ∈ G}.
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WEINBERG’S CONSTRUCTION

COROLLARY (WEINBERG, 1963)
Given a torsion-free abelian group G, the free abelian `-group F(G) over G is
isomorphic to the `-subgroup of the direct product `-group∏

C ∈O (G)
GC

generated by the set {(a,a, . . . , a, . . .) | a ∈ G}.



INTRODUCTION ORDER-ISOMORPHIC ROOT SYSTEMS HOMEOMORPHIC TOPOLOGICAL SPACES FURTHER WORK

THE SPECTRAL SPACE

For an abelian `-group H , we consider SpecH endowed with the ‘hull-kernel’
(or Zariski) topology, with basic open sets:

S(x) = {p ∈ SpecH | x < p},

for x ∈H . The restriction of these sets to MinH form a basis for the subspace
topology on MinH :

Sm(x) = {m ∈MinH | x <m}.

The resulting space MinH is a Hausdorff zero-dimensional space, not
necessarily compact. The closed basis given by the sets

Vm(x) = {m ∈MinH | x ∈m}

forms a distributive lattice under ∩ and ∪.
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THE SPACE OF PRE-ORDERS

We consider the topology on P (G) with subbasis given by the following sets,
for a ∈ G:

Pa = {C ∈P (G) | a ∈ C and a < −C}.

The subset O (G) with the subspace topology amounts to Sikora’s topological
space of orderings (2004), and is therefore compact and totally disconnected.
The following subsets

Ca = {C ∈ O (G) | a ∈ C}

form a subbasis of clopens for O (G) with the subspace topology.
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MAIN RESULT

Given a torsion-free abelian group G:

THEOREM

The space P (G) is homeomorphic to SpecF(G) via a map that restricts to a
homeomorphism between O (G) and MinF(G).

MAIN IDEA. An element a ∈ G is strictly positive in C if, and only if, hC(a∨ 0)
is strictly positive in GC .
Now, since a∨ 0 ≥ 0 in F(G) and hC is order-preserving, hC(a∨ 0) is strictly
positive exactly when a∨ 0 < kerhC . Therefore,

KG[Pa] = S(a∨ 0).
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SOME CONSEQUENCES

Given a torsion-free abelian group G:

COROLLARY

MinF(G) is compact.

THEOREM (BALL, MARRA, MCNEILL, AND PEDRINI, 2018)
For an abelian `-group H , the following are equivalent:

1. MinH is compact.

2. ({Vm(x)}x∈H ,∩,∪) is a Boolean algebra.

COROLLARY

({Vm(x)}x∈F(G),∩,∪) is a Boolean algebra, and the space O (G) is its dual Stone
space.
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POSSIBILITIES FOR FURTHER WORK

I Study connections and possible applications arising from this geometric
perspective naturally suggested by Baker-Beynon duality.

I Try to answer similar questions in more general cases, e.g.,
Adam Clay. Free lattice-ordered groups and the space of left orderings.
Monatshefte für Mathematik, 167.3–4 (2012): 417–430.
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THE NON-COMMUTATIVE CASE
AN INTERMEDIATE STEP

Given an orderable group G, it is possible to define a topological space of orders
on G (Sikora, 2004).

Question. Can we find an `-group HG that can be represented via the
topological space of orders on G?

I Conrad’s ‘Free Lattice-Ordered Groups’ (1969) suggests that we should
consider the free representable `-group over G.

I In a representable `-group, there are enough minimal prime ideals.

Conjecture. Given an orderable group G, the free representable `-group F(G)
over G can be represented via O (G).
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THE NON-COMMUTATIVE CASE

Given a right-orderable group G, it is possible to define a topological space of
right orders on G (Sikora, 2004).

Question. Can we find an `-group HG that can be represented via the
topological space of right orders on G?

I Conrad’s results (1969) on free `-groups suggest that we should consider
the free `-group over G.
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THE NON-COMMUTATIVE CASE

Problem(s). A right-ordered group is not an `-group.

G F(G)

?

Conrad’s construction of the free `-group over a right-orderable group uses
right-ordered copies (G,≤) of G indirectly, by using the `-groups Aut(G,≤).

G F(G)

(G,≤) Aut(G,≤)

!h

Which congruences of F(G) correspond to kerh?
Is it possible given Aut(G,≤) to ‘canonically recover’ the right order ≤ on G?
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