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Introduction

The predicate  Lukasiewicz (infinitely valued) 
logic QL is defined in the following standard way. 
The existential (universal) quantfier is interpreted 
as supremum (infimum) in a complete MV –alge-
bra. Then the valid formulas of predicate calculus 
are defined as all formulas having value 1 for any
assignment. 

The functional description of the predicate 
calculus is given by Rutledge. Scarpellini has 
proved that the set of valid formulas is not 
recursively enumerable.



Introduction

Let L denote the first order language based on ·, +, , , 
and   Lm denotes monadic propositional language based on 
·, +, , , , and  Form(L) and Form(Lm)  - the set of  
formulas of L and Lm,  respectively. We fix a variable x in L, 
associate with each propositional letter  p in Lm a unique 
monadic predicate  p*(x)  in L and define by induction  a 
translation  :  Form(Lm)   Form(L)  by putting:

•  (p) = p*(x)   if p is a propositional variable,
•  (  ) =  ( )  (), where   = ·, +, ,
•  () = x ().

Through this translation , we can identify the formulas of  
Lm with monadic formulas of L containing the variable x. 



Introduction

Monadic MV -algebras were introduced 
and studied by Rutledge as an algebraic model 
for the predicate calculus QL of  Lukasiewicz
infinite-valued logic, in which only a single 
individual variable occurs. 

Rutledge followed P.R. Halmos' study of 
monadic Boolean algebras.



MV-algebras

An MV-algebra is an algebra  

A = (A,  , , , 0, 1),  

where (A,  , 0) is an abelian monoid, and for 
all x,yA the following identities hold: 

x  1 = 1,  x = x, 

(x  y)  y = (x  y)  x, 

x  y = ( x   y).



Lukasiewicz Logic
MV-algebras

The unit interval of real numbers [0, 1] 
endowed with the following operations:           
x  y = min(1, x + y),   x  y = max(0, x + y  1), 
x* = 1  x, becomes an MV –algebra                
S=([0, 1], ,, *,0, 1).                     

For (0 )m   we  set 

Sm = ({0,1/m, … , m-1/m, 1},,, *,0, 1).



Lukasiewicz Logic

Lukasiewicz logic was originally defined in the 
early 20th-century by Jan Lukasiewicz as a 
three-valued logic. It was later generalized to 
n-valued (for all finite n) as well as infinitely-
many valued variants, both propositional and 
first-order.



Lukasiewicz Logic

The original system of axioms for propositional infinite-
valued Lukasiewicz logic used implication and negation 
as the primitive connectives as for classical logic:

• L1. (  (  ))
• L2. (  )  ((  )  (  ))
• L3. ((  )  )  ((  )  )
• L4. (  )  (  ).

There is only one inference rule - Modus Ponens: from  
 and (  ), infer .



Perfect MV -algebras

• Perfect MV -algebras are those MV –algebras 
generated by their infinitesimal elements or, 
equivalently, generated by their radical, where 
radical is the intersection of all maximal ideals, 
the radical of an MV-algebra, will be denoted 
by Rad(A).

• [A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically 
Equivalent to Abelian l-Groups, Studia Logica, 88(1994), 467-490.]



Perfect MV -algebras

Let we have any MV -algebra. The least integer
for which nx = 1 is called the order of x. When
such an integer exists it is denoted by ord(x)

and say that x has finite order, otherwise we say
that x has infinite order and write ord(x) = .

An MV-algebra A is called perfect if for 
every nonzero element   x  A

ord(x) =  if and only if ord(x) < .



Perfect MV -algebras do not form a variety and

contains non-simple subdirectly irreducible MV–

algebras. The variety generated by all perfect MV –

algebras is also generated by a single MV -chain,

actually the MV –algebra C, defined by Chang. The

algebra C, with generator c  C, is isomorphic to

(Z lexZ,(1, 0)), with generator (0, 1). Let MV(C) be

the variety generated by perfect algebras.



Perfect MV -algebras

Each perfect MV-algebra is associated with an abelian
ℓ-group with a strong unit. Moreover,

 the category of perfect MV–algebras is equivalent to
the category of abelian ℓ-groups.

The variety generated by all perfect MV-al-
gebras, denoted by MV(C), is also generated by
a single MV-chain, actually the MV-algebra C,
defined by Chang.
[A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically
Equivalent to Abelian l-Groups, Studia Logica, 88(1994), 467-490.]



Perfect MV -algebras

An important example of a perfect MV-algebra is
the subalgebra S of the Lindenbaum algebra L of
the first order Lukasiewicz logic generated by the
classes of formulas which are valid when
interpreted in [0, 1] but non-provable.

Hence perfect MV-algebras are directly connec-
ted with the very important phenomenon of
incompleteness in Lukasiewicz first order logic .
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Perfect MV -algebras

Rad(C2)  Rad(C2)
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Perfect MV -algebras

The MV-algebra C is the subdirectly irreducible
MV-algebra with infinitesimals. It is generated
by an atom c, which we can interpret as

a quasi false truth value.

The negation of c is 

a quasi true value. 

Now quasi truth or quasi falsehood are vague 
concepts. 



Perfect MV -algebras

About quasi truth in an MV algebra, it is reaso-
nable to accept the following propositions:

 there are quasi true values which are not 1;

 0 is not quasi true;

 if x is quasi true, then x2 is quasi true 

(where x2 denotes the MV algebraic product of x
with itself).



Perfect MV -algebras

In C, to satisfy these axioms it is enough to say 
that the quasi true values are the  

co-infinitesimals.

Notice, that there is no notion of quasi 
truth in [0, 1] satisfying the previous axioms.



Perfect MV -algebras

Let LP be the logic of perfect MV-algebras which
coincides with the set of all Lukasiewicz formulas that
are valid in all perfect MV-chains, or equivalently, that
are valid in the MV-algebra C.

Actually, LP is the logic obtained by adding to the
axioms of Lukasiewicz sentential calculus the following
axiom:

(x  x) & (x  x)  (x & x)  (x & x)

[L. P. Belluce, A. Di Nola, B. Gerla, Perfect MV -algebras and their Logic,
Applied Categorical Structures, Vol. 15, Num. 1-2 (2007), 35-151].



Perfect MV -algebras

Notice, that the Lindenbaum algebra of LP is 
an MV(C)-algebra.



Perfect MV -algebras

An MV-algebra is  MV(C)-algebra if in addition 
holds   

(2x)2 = 2x2 .

[A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically 
Equivalent to Abelian l-Groups, Studia Logica, 88(1994), 467-
490.]



Monadic MV-algebras

• An algebra   A =(A,, , *, ∃, 0, 1) (also denoted as (A,))  is 
said to be monadic MV-algebra (for short  MMV-algebra)                
[A. Di Nola, R. Grigolia, On Monadic MV-algebras, APAL, Vol. 128, Issues 1-3 (August 2004), 

pp. 125-139.]

• if (A,  , , *, 0, 1)  is an MV-algebra and in addition ∃ satisfies the 
following identities:

E1. x   ∃x,
E2. ∃(x ∨ y) = ∃x ∨ ∃y,
E3. ∃(∃x)* = (∃x)*,
E4. ∃(∃x ∃y) = ∃x ∃y,
E5. ∃(x  x) = ∃x ∃x,
E6. ∃(x  x) = ∃x ∃x.



Monadic MV-algebras

A subalgebra A0 of an MV-algebra A is said to be relatively 
complete if  for every a∈A the set {b∈A0 : a  b} has the 
least element, which is denoted by  inf {b ∈ A0  b}.
The MV-algebra A (= {a: aA}) is a relatively complete 
subalgebra of the MV-algebra (A,⊕, , *, 0, 1), and a = 
inf{b∈∃A: a  b} [R].
A subalgebra A0 of an MV-algebra A is said to be m-relati-
vely complete [A. Di Nola, R. Grigolia, On Monadic MV-algebras, APAL, Vol. 128, 

Issues 1-3 (August 2004), pp. 125-139.] , if   A0 is relatively complete and 
two additional conditions hold:

(#)    (∀a∈A)(∀x ∈A0)(v ∈A0)(x  a  a⇒v  a & v  v  x), 
(##)  (∀a∈A)(∀x ∈A0)(v ∈A0) (x  a ⊕ a ⇒ v  0 & v ⊕ v  x).



Monadic MMV(C)-algebras

m-relatively complete subalgebra of C coinci-
des with C but not its two-element Boolean 
subalgebra. In other words, (C, ) is monadic 
MV(C)-algebra if x = x.

Let we have Cn for some non-negative integer 
n. Then (Cn, ) will be MMV (C)-algebra, where   
(a1, … ,an) = max{a1, … ,an} and (a1, … ,an) = 
min{a1, … ,an}. 

In this case (Cn) = {(x, … ,x) Cn: x  C}. 
Notice, that (Cn, ) is subdirectly irreducible.



Monadic MMV(C)-algebras

Let     

AltC
m = (2x1

2  (2x1
2  2x2

2)  

 (2x1
2  2x2

2   2xm
2  2xm+1

2), 

for 0 < m.

Let Km be the subvariety of MMV(C) defined by 
the identity AltC

m = 1.



Monadic MMV(C)-algebras

Theorem 1. There is no a variety V between 
the varieties Km and Km+1 which distinct from 
Km for   0 < m. 



Monadic MMV(C)-algebras

Theorem 2. V(kKk) = MMV(C).

Theorem 3. Let us suppose that a subdirectly
irreducible algebra A  MMV(C), which is not 
monadic Boolean algebra, does not satisfy 
AltC

m = 1 for any positive integer m. Then A 
generate MMV(C).



Monadic MMV(C)-algebras

So we have:

K1  K2  …  Km  …  MMV(C)

Fig. 1



Monadic MMV(C)-algebras

Theorem 4. The identity (x)2  (x*)2 = 0 is 
satisfied in the subdirectly irreducible                 
MMV(C)-algebra (A, ) if and only if the MV -
algebra reduct of that is perfect MV-algebra.

From the variety MMV(C) we can pick out the 
subvariety MMV(C)p by the identity                        
(x)2  (x*)2 = 0 which is generated by MMV (C)-
algebras the MV-algebra reduct of which are 
perfect MV-algebras. Notice that this variety 
coincides with the variety K1.



Monadic MMV(C)-algebras

Let

n =(i=1
nt(xi)   t(xi+1))  ( i=1

n t(xn+1)   t(xi)) 

where  0 < m, t(x) = (x  x)  ( x  x).



Monadic MMV(C)-algebras

Theorem 5. The identity n =1 is true in (Ck,) 
for 1 < k  n and n =1 does not hold in (Ck,) 
for k > n.



Monadic MMV(C)-algebras

Let        Kk
n = Kk + n=1,  k  n. 

Notice that K1
1 coincides with the variety of 

monadic MV-algebras with trivial monadic 
operator x = x.

Let MB be the variety of monadic Boolean 
algebras and MBm the subvariety of MB
generated by (2m ,) where 1 m <.



Monadic MMV(C)-algebras

Theorem 6. There is no variety V between 
varieties Kk

n and Kk
n+1 which is distinct from 

Kk
n and Kk

n+1 where k  n.



Monadic MMV(C)-algebras

K1  K2  K3  …    Km  …  MMV(C)
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MB1  MB2  MB3  …      MBm …        MB



Monadic MMV(C)-algebras

If m is a positive integer, then a partition of m is a non-
increasing sequence of positive integers (k1, k2, … , kr) 
whose sum is n. Each pi is called a part of the partition.

For example, for the number 4: 1 + 1 + 1 + 1 = 2 + 1 + 1 
= 2 + 2 = 3 + 1 = 4.

Let p(m) be the set of all partitions of the number m. 
Let p(m, n) be the set of all partitions of the number m
with n parts. For example p(4, 2) = {(2, 2), (3, 1)}.

Theorem 7. The variety Kn
m is generated by the algebra

((R*(Cm1 )  …  R*(Cmn)n ), ), where m = m1 + … + mn



Monadic MMV(C)-algebras

According to the results we can define gene-
rating set of algebras for some subvarieties.

• K1 = V({(R*(C1
m), )): 1 < m  }), ... ,

• Kn = V({((R*(C1
m))n,)): 1  m }, 1 < n ,

• Kn
m = V(((R*(Cm1 )  …  R*(Cmn)n ), )),

• MBm = V((2m, )), m  ,

where R*(A) = Rad A  (RadA)*.



Monadic MMV(C)-algebras

• Theorem 8. Any proper subvarieties V1,V2 of 
the variety MMV(C) can be distinguished by 
two kind of identities AltC

m = 1  and n=1,        
1  m, n  .



Monadic MMV(C)-algebras

• Theorem 9. (Main Theorem). Let V be a proper 
subvariety of the variety MMV(C) of all MMV (C)-
algebras. Then one of the following statement 
holds:

• (i) V = MB;

• (ii) there is an integer m such that V = MBm;

• (iii) there is a positive integer m such that V = Km;

• (iv) there are positive integers h, k such that h  k 
and V = Kh

k .



Monadic MMV(C)-algebras

MB1  MB2  MB3  …      MBm …        MB

MBm = V((2m, )), m  



Monadic MMV(C)-algebras

K1  K2  K3  …    Km  …  MMV(C)

K1 = V({(R*(C1
m), )): m  })

Spec((R*(C1
m), ))



Monadic MMV(C)-algebras
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