Bisimulation games and formula depth

Valentin Shehtman
Institute for Information Transmission Problems
Higher School of Economics
Moscow State University

TOLO 5, 14 June 2016

Introduction

- Ehrenfeucht-Fraïssé games are well known in classical model theory, they are used to study elementary equivalence.
- Bisimulation games are their analogues for Kripke models and modal and intermediate logic.

Bisimulation games have been used

- for constructing bisimulations
- for study of expressive power of logical languages
- for completeness proofs in modal logic
- for proofs of local finiteness in modal and intermediate logics (and more exactly, for classifying formulas).

Modal propositional language

N-modal formulas are built from a countable set of proposition letters $\mathrm{PL}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots\right\}$ using boolean connectives
and unary modal connectives $\square_{1}, \ldots, \square_{N} ;$ as usual $\left.\diamond_{\mathrm{i}}=\neg \square_{\mathrm{i}}\right\urcorner$ If $N=1$ we denote the modalities just by \square and \diamond.

The modal depth $\mathrm{md}(\mathrm{A})$ is defined by induction:

$$
m d\left(p_{i}\right)=0, \operatorname{md}(\neg A)=m d(A),
$$

$\operatorname{md}(A \vee B)=\operatorname{md}(A \wedge B)=\max (\operatorname{md}(A), \operatorname{md}(B))$,
$m d(\square, \mathrm{~A})=\operatorname{md}(\mathrm{A})+1$

Intuitionistic propositional language

Intutionistic formulas are built from $\mathrm{PL}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots\right\}$ and the
connectives $\wedge, \vee, \rightarrow, \perp$.

$$
\neg A:=A \rightarrow \perp
$$

The implication depth di(A) is defined by induction:

$$
\begin{aligned}
& \operatorname{di}\left(p_{i}\right)=\operatorname{di}(\perp)=0, \\
& \operatorname{di}(A \vee B)=\operatorname{di}(A \wedge B)=\max (\operatorname{di}(A), \operatorname{di}(B)), \\
& \operatorname{di}(A \rightarrow B)=\max (\operatorname{di}(A), \operatorname{di}(B))+1 .
\end{aligned}
$$

Logics-1

An N-modal logic is a set of N-modal formulas L such that:

- L contains all boolean tautologies
- L is closed under Modus Ponens: if $A, A \rightarrow B \in L$, then $B \in L$.
- L is closed under Substitution:
if $A\left(p_{1}, \ldots, p_{n}\right) \in L$, then $A\left(B_{1}, \ldots, B_{n}\right)$ (for any formulas $\left.B_{1}, \ldots, B_{n}\right)$
- if $A \in L$, then $\square_{i} A \in L$
- $\square_{\mathrm{i}}(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow\left(\square_{\mathrm{i}} \mathrm{A} \rightarrow \square_{\mathrm{i}} \mathrm{B}\right) \in \mathrm{L}$

The minimal logic \mathbf{K}_{N} is the smallest such set; \mathbf{K} denotes \mathbf{K}_{1}.

Logics-2

An intermediate logic is a set of intuitionistic formulas L such that:

- L contains all intuitionstic axioms
- L is closed under Modus Ponens: if $A, A \rightarrow B \in L$, then $B \in L$.
- L is closed under Substitution:
if $A\left(p_{1}, \ldots, P_{n}\right) \in L$, then $A\left(B_{1}, \ldots, B_{n}\right)$ (for any formulas $\left.B_{1}, \ldots, B_{n}\right)$
- L is consistent

The smallest intermediate logic is intuitionistic (H), the largest is classical (CL).

Formula depth-1

L「k denotes the restriction of a logic L to formulas in variables p_{1}, \ldots, p_{k}. The sets $L\lceil k$ are called weak logics

The modal depth of a formula A in a (maybe weak) modal logic L $\operatorname{md}_{L}(A):=\min \{\operatorname{md}(B) \mid L \vdash A \leftrightarrow B\}$

The implication depth of a formula A in an intermediate logic L
$\mathrm{di}_{\mathrm{L}}(\mathrm{A}):=\min \{\mathrm{di}(\mathrm{B}) \mid \mathrm{L} \vdash \mathrm{A} \leftrightarrow \mathrm{B}\}$
The modal / implication depth of a logic L $m d(L):=\max \left\{\operatorname{md}_{\mathrm{L}}(\mathrm{A}) \mid A\right.$ is in the language of L$\}$ $\mathrm{di}(\mathrm{L}):=\max \left\{\mathrm{di}_{\mathrm{L}}(\mathrm{A}) \mid \mathrm{A}\right.$ is an intuitionistic formula $\}$

Formula depth-2

Trivial examples:
$\operatorname{di}(\mathbf{H})=\infty, \operatorname{md}(\mathbf{K})=\infty$
$\operatorname{di}(\mathbf{C L})=1$
$\operatorname{md}(\mathbf{K}+\square \perp)=\operatorname{md}(\mathbf{K}+\mathrm{p} \leftrightarrow \square \mathrm{p})=0$.
A nontrivial (well-known) example: $\operatorname{md}(\mathbf{S 5})=1$

Kripke frames and models-1

An N-modal Kripke frame is a nonempty set with N binary relations $F=\left(W, R_{1}, \ldots, R_{N}\right)$.

An intuitionistic Kripke frame is a poset $\mathrm{F}=(\mathrm{W}, \leq)$.

A valuation in F is a function $\theta: P L \rightarrow 2^{W}\left(\right.$ so $\left.\theta\left(p_{i}\right) \subseteq W\right)$.
(F, θ) is a Kripke model over F.
In intuitionistic Kripke models $\theta\left(\mathrm{p}_{\mathrm{i}}\right)$ should be $\leq-$ stable:

$$
x \in \theta\left(p_{i}\right) \& x \leq y \Rightarrow y \in \theta\left(p_{i}\right)
$$

In k-weak Kripke models only $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ are evaluated.

Kripke frames and models-2

The inductive truth definition for the modal case ($M, x \vDash A$)

- $M, x \vDash p_{i}$ iff $x \in \theta\left(p_{i}\right)$
- $M, x \vDash \square_{i} A$ iff $\forall y\left(x R_{i} y \Rightarrow M, y \vDash A\right)$
- $M, x \vDash \diamond_{i} A$ iff $\exists y\left(x R_{i} y \& M, y \vDash A\right)$

A formula A is valid in a frame F (in symbols, $F \vDash A$) if A is true at all points in every Kripke model over F.

Kripke frames and models-3

The inductive truth definition for the intuitionistic

$$
\text { case }(M, x \Vdash A)
$$

- $M, x \Vdash p_{i}$ iff $x \in \theta\left(p_{i}\right)$
- $M, x \Vdash A \vee B$ iff $(M, x \Vdash A$ or $M, x \Vdash B)$
- $M, x \Vdash A \wedge B$ iff $(M, x \Vdash A$ and $M, x \Vdash B)$
- $M, x \Vdash A \rightarrow B$ iff $\forall y \geq x(M, y \Vdash A \Rightarrow M, y \Vdash B)$

Then

- $M, x \Vdash\urcorner A$ iff $\forall y \geq x M, y \nVdash A$

A formula A is valid in a frame F (in symbols, $F \Vdash A$) if A is true at all points in every intuitionistic Kripke model over F.

Kripke frames and models-4

Canonical model theorem

For any modal or intermediate logic L (weak or not) there exists the canonical model M_{L} such that

- for any A in the language of L

$$
M_{L} \vDash(I \vdash) A \text { iff } L \vdash A
$$

- M_{L} is distinguishable :
two points x, y satisfy the same formulas iff $x=y$.

Tabularity and FMP

Kripke complete logics
$\mathbf{L}(F):=\{A \mid F \vDash A\}$ (the logic of a frame F).
$\mathbf{L}(C):=\bigcap\{\mathbf{L}(\mathrm{F}) \mid \mathrm{F} \in C\}$ (the logic of a class of frames C).

- If F is finite, $\mathbf{L}(F)$ is called tabular (or finite)
- If C consists of finite frames, $\mathbf{L}(C)$ has the finite model property (FMP). Or:
L has the FMP iff L is an intersection of tabular logics.
Proposition ('Harrop's theorem') If L is finitely axiomatizable and has the FMP, then L is decidable.

Bisimulation games-1

Origin: Colin Stirling (1995) \ll n-bisimulations by Johan Van Benthem (1989) \ll n-equivalence by Kit Fine (1974)

Def For a k-weak Kripke model $M=\left(W, R_{1}, \ldots, R_{N}, \theta\right)$ consider the 0 -equivalence relation between points

$$
x \equiv_{0} y:=\forall j \leq k\left(M, x \vDash p_{j} \Leftrightarrow M, y \vDash p_{j}\right)
$$

Given M and two points $x_{0} \equiv_{0} y_{0}$ we can play the r-round bisimulation game $B G_{r}\left(M, x_{0}, y_{0}\right)$.

Players: Spoiler (Abelard) vs Duplicator (Éloïse).
Remark More generally, bisimulation games can be defined for two Kripke models M, M^{\prime} and points $x_{0} \in M, y_{0} \in M^{\prime}$. We do not need this in our talk.

Bisimulation games-2

The initial position in $B G_{r}\left(M, x_{0}, y_{0}\right)$ is $\left(x_{0}, y_{0}\right)$.

Round ($n+1$)

- Spoiler chooses $i, x_{n+1}\left[\right.$ or $\left.y_{n+1}\right]$ such that $x_{n} R_{i} x_{n+1}\left[y_{n} R_{i} y_{n+1}\right]$
- Duplicator chooses $y_{n+1}\left[x_{n+1}\right]$ such that $y_{n} R_{i} y_{n+1}\left[x_{n} R_{i} x_{n+1}\right]$ and $\mathrm{x}_{\mathrm{n}+1} \equiv_{0} \mathrm{y}_{\mathrm{n}+1}$
- A player loses if he/she cannot move.
- Duplicator wins after r rounds.

Bisimulation games-3

Def Formula and game n-equivalence relations (on M)

- $x \equiv_{n} y$:= for any $A\left(p_{1}, \ldots, p_{k}\right)$ of modal depth $\leq n$

$$
M, x \vDash A \Leftrightarrow M, y \vDash A
$$

- $X \sim_{n} y:=$ Duplicator has a winning strategy in $B G_{n}(M, x, y)$

Main Theorem on finite bisimulation games (Stirling, 1995)

$$
\bar{\equiv}_{\mathrm{n}}=\sim_{\mathrm{n}}
$$

- The same theorem holds for the intuitionistic case.

Local tabularity-1

Def A logic L is locally tabular (or locally finite)
if for any k there are finitely many formulas in p_{1}, \ldots, p_{k} up to equivalence in L.
Equivalent definitions:

- L is locally tabular if all its weak fragments L「k are tabular.
- The variety of L-algebras is locally finite : every finitely generated L-algebra is finite
- For every finite k, the free k-generated L-algebra (the Lindenbaum algebra of $\mathrm{L}\lceil\mathrm{k}$) is finite
- Every weak canonical model $M_{L\lceil k}$ is finite.

Local tabularity-2

Finite modal (implication) depth \Rightarrow

local tabularity $\Rightarrow \mathbf{f m p}$

- The first implication is easy: there are finitely many kformulas of bounded depth up to equivalence in the basic modal or intuitionistic logic.
- The second one is well-known: a locally tabular logic is complete w.r.t. its weak canonical frames

The second implication is not revertible: plenty of examples (K, S4, H etc.)
PROBLEM. Does every locally tabular modal or intermediate logic have a finite formula depth?
The problem seems difficult. Conjecture: no.

Formula depth and games-1

In every Kripke model there is a decreasing sequence
$\equiv_{0} \supseteq \equiv_{1} \ldots$ Put $\quad \equiv_{\infty}:=\bigcap_{n} \equiv_{n}$
Lemma 1 In a weak Kripke model every relation \equiv_{n} induces a finite partition (W / \equiv_{n} is finite).

Lemma $2 x \equiv_{\infty} y$ iff for any $A\left(p_{1}, \ldots, p_{k}\right)(M, x \vDash A \Leftrightarrow M, y \vDash A)$
Lemma 3 (distingushability) In canonical models:

$$
x \equiv_{\infty} y \text { iff } x=y
$$

Stabilization lemma (modal case)
If $\equiv_{n}=\equiv_{n+1}$ in every $M_{L[k}$ (bisimulation games stabilize at round n), then $\operatorname{md}(\mathrm{L}) \leq n$.

Stabilization lemma (intuitionistic case) If $\equiv_{n}=\equiv_{n+1}$ in every $M_{L\left[k^{\prime}\right.}$ then $\operatorname{di}(\mathrm{L}) \leq n+1$.

Formula depth and games-2

Proof of modal Stabilization lemma

For every x in $M_{L\left[k^{\prime}\right.}$ put

$$
B_{x}:=\Lambda\{C \mid x \vDash C, \operatorname{md}(C) \leq n\}
$$

Then B_{x} defines x. So for any k-formula A

$$
M_{L[k} \vDash A \leftrightarrow V\left\{B_{x} \mid x \vDash A\right\},
$$

and the disjunction is actually finite.
By Canonical model theorem

$$
L \vdash A \leftrightarrow \bigvee\left\{B_{x} \mid x \vDash A\right\} . Q E D
$$

Formula depth and games-3

Stabilization lemma (intuitionistic case) If $\equiv_{n}=\equiv_{n+1}$ in every $M_{L / k^{\prime}}$, then $\operatorname{di}(L\lceil k) \leq n+1$.

Proof. Similar to the modal case, but now we need

$$
\begin{aligned}
& B_{x}:=\bigwedge\{D \mid x \Vdash D, \operatorname{di}(D) \leq n\}, \\
& C_{x}:=\bigvee\{D \mid x \nVdash D, \operatorname{di}(D) \leq n\} .
\end{aligned}
$$

Then $y \nVdash B_{x} \rightarrow C_{x}$ iff $y \leq x$. So for any k-formula A

$$
M_{L[k} \vDash A \leftrightarrow \bigwedge\left\{B_{x} \rightarrow C_{x} \mid x \nVdash A\right\} .
$$

Hence $L \vdash A \leftrightarrow \bigwedge\left\{B_{x} \rightarrow C_{x} \mid x \nVdash A\right\} . Q E D$

Formula depth and games-4

Normal forms in intuitionistic logic
The previous proof allows us to present every intuitionistic formula in the normal form, as a conjunction of
`characteristic formulas' (cf. [Ghilardi, 1992]). This is an analogue to Hintikka theorem for classical FOL.

Depth 1 Characteristic k-formulas are $B_{j} \rightarrow C_{j}$, where

$$
B_{j}:=\bigwedge\left\{p_{i} \mid i \in J\right\}, C_{j}:=\bigvee\left\{p_{i} \mid i \notin J\right\},
$$

for $J \subseteq\{1, \ldots, k\}$.
Depth $n+1$ Characteristic k-formulas are $B_{j} \rightarrow C_{j}$, where

$$
B_{j}:=\bigwedge\left\{D_{i} \mid i \in J\right\}, C_{j}:=\bigvee\left\{D_{i} \mid i \notin J\right\}
$$

wher $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{m}}$ are all characteristic formulas of depth n , $J \subseteq\{1, \ldots, m\}$.

Formula depth and games-5

Lemma on repeating positions Suppose in a Kripke model M
$x \equiv_{n} y$ and the Duplicator has a winning strategy s in
$B G_{n}(M, x, y)$ such that every play controlled by s has at least two repeating positions. Then $x \equiv_{n+1} y$.

Formula depth and games-6

tabularity \Rightarrow finite formula depth

Theorem If F is finite, then $\operatorname{md}(L(F)) \leq|F|^{2}+1$.
Proof: The Pigeonhole principle gives repeating positions.
Remark In many cases we have a better (linear) upper bound.

Examples of finite depth-1

$$
m d\left(\mathbf{K}+\square^{n} \perp\right)=\mathrm{n}-1
$$

and more generally,

$$
\operatorname{md}\left(\mathbf{K}_{\mathrm{N}}+\square^{\mathrm{n}} \perp\right)=\mathrm{n}-1
$$

where

$$
\square A:=\square_{1} A \wedge \ldots \wedge \square_{N} A
$$

The axiom $\square^{n} \perp$ forbids paths of length n in Kripke frames:
$x_{1} R x_{2} \ldots R x_{n}$, where $R=R_{1} \cup \ldots \cup R_{N}$
Proof. For the upper bound: every play of a bisimulation game contains at most ($n-1$) rounds. For the lower bound: $\operatorname{md}_{\mathrm{L}}\left(\square^{\mathrm{n}-1} \perp\right)=\mathrm{n}-1$.
An earlier result: $\mathbf{K}_{\mathrm{N}}+\square^{\mathrm{n}} \perp$ is locally tabular (Gabbay \& Sh, 1998; a routine proof by induction).

Examples of finite depth-2

md(S5) $=1$ (a well-known fact)

Proof. If Duplicator can win the 1-game, she can win the 2game

Examples of finite depth-3

$$
m d(D L)=2
$$

DL is the difference logic

$$
\mathrm{DL}=\mathrm{K}+\diamond \square \mathrm{p} \rightarrow \mathrm{p}+\diamond \diamond \mathrm{p} \rightarrow \mathrm{p} \vee \diamond \mathrm{p}
$$

- DL is complete w.r.t inequality frames $(\mathrm{W}, \neq \mathrm{w})$.
- Arbitary DL-frames are obtained from S5-frames (equivalence frames) by making some points irreflexive.
- Proof (for the lower bound):

$$
x \vDash \diamond^{2} p
$$

$$
\mathrm{X} \equiv{ }_{1} \mathrm{y}
$$

Examples of finite depth-4

For the upper bound we have to examine games in canonical models

Lemma $\operatorname{In} M_{\text {DLIK }} x \equiv_{0} y \& x R y$ implies $x \equiv_{1} y$.
Proof. Duplicator's responses for the moves of Spoiler are:
$S:(x, z)($ with $z \neq x, y) \quad D:(y, z)$
S: $(x, x) \quad D:(y, x)$
$S:(x, y) \quad D:(y, x)$
They lead to 0-equivalent points. QED

Examples of finite depth-5

Now in the general case suppose $x \equiv_{2} y$ in $M_{\text {DLIK }}$. We have to show that $\mathrm{x} \equiv_{3} \mathrm{y}$. Let us start playing a 2 -round game, so we have $\mathrm{x}^{\prime} \equiv_{1} \mathrm{y}^{\prime}$, and we have to show $\mathrm{x}^{\prime} \equiv_{2} \mathrm{y}^{\prime}$.

Examples of finite depth-6

Consider the next Spoiler's move ($\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}$).
(a) $x^{\prime \prime}=x$. The Duplicator responds with $y^{\prime \prime}=y$.
(b) $x^{\prime \prime} \neq x, x^{\prime \prime} \not \equiv_{0} x^{\prime}$. Then $x R x^{\prime \prime}$, and ($\left.x, x^{\prime \prime}\right)$ can be regarded as the first move in the 2 -round game. For the response ($y, y^{\prime \prime}$) we have $y^{\prime} R y^{\prime \prime}$ (since $y^{\prime} \neq y^{\prime \prime}$, otherwise $x^{\prime \prime} \equiv{ }_{0} x^{\prime}$) and $x^{\prime \prime} \equiv{ }_{1} y^{\prime \prime}$.

Examples of finite depth-7

(c) $x^{\prime \prime} \neq x, x^{\prime \prime} \equiv{ }_{0} x^{\prime}$. There is a response ($y^{\prime}, y^{\prime \prime}$), with $x^{\prime \prime} \equiv_{0} y^{\prime \prime}$.

So $y^{\prime \prime} \equiv{ }_{0} y^{\prime}$ by the transitivity of $\equiv{ }_{0}$ 。
Now by Lemma $x^{\prime \prime} \equiv_{1} x^{\prime}$ and $y^{\prime \prime} \equiv_{1} y^{\prime}$; thus $x^{\prime \prime} \equiv{ }_{1} y^{\prime \prime}$ by the transitivity of \equiv_{1}. QED.

Examples of finite depth-8

$$
\mathrm{di}\left(\mathrm{H}+\mathrm{ibd}_{\mathrm{n}}\right) \leq 2 \mathrm{n}-1
$$

In posets $\mathrm{ibd}_{\mathrm{n}}$ forbids chains of length $n+1: x_{1}<x_{2} \ldots<x_{n+1}$.

$$
\begin{gathered}
i b d_{1}=p_{1} \vee \neg p_{1}, \\
i b d_{n+1}=p_{n+1} \vee\left(p_{n+1} \rightarrow i b d_{n}\right) .
\end{gathered}
$$

Def Intermediate logics of finite transitive depth:
extensions of $\mathrm{H}+\mathrm{ibd} \mathrm{n}_{\mathrm{n}}$ are of depth $\leq \mathrm{n}-1$ (or of height $\leq \mathrm{n}$).
Theorem (Kuznetsov - Komori) These logics are locally tabular.
Proof of the upper bound: by induction we show that $x \equiv{ }_{k} y$ implies $x \equiv{ }_{k+1} y$ whenever depth $(x)+$ depth $(y) \leq k$.
So the bisimulation game stabilizes at $2 \mathrm{n}-2$.

Examples of finite depth-9

$$
\begin{aligned}
\operatorname{md}\left(\mathbf{G r z}+b d_{n}\right) & \leq 2 n-2, \\
m d\left(G r z 3+b d_{n}\right) & =n-1
\end{aligned}
$$

Grz is the logic of finite partial orders,
Grz3 is the logic of finite chains.
In transitive Kripke frames bd_{n} forbids chains of
clusters of length $n+1: x_{1} R x_{2} \ldots R x_{n+1}$, where
$\urcorner x_{i} R x_{i+1}$ for each i.

$$
\begin{gathered}
b d_{n}=7 \diamond\left(Q_{1} \wedge \diamond\left(Q_{2} \wedge \ldots \wedge \diamond Q_{n+1}\right)\right), \\
Q_{i}=p_{i} \wedge \wedge\left\{7 \diamond p_{j} \mid 1 \leq j<i\right\} .
\end{gathered}
$$

Grz3 + bd $_{\mathrm{n}}=\mathbf{L}(\mathrm{n}$-element chain)

Examples of finite depth-10

$\operatorname{di}(L C)=2$, where $\mathbf{L C}=H+(p \rightarrow q) \vee(q \rightarrow p)$ is the intermediate logic of arbitrary chains.
Proof. $x \equiv_{1} y$ implies $x \equiv_{2} y$, since $x^{\prime} \equiv_{0} y^{\prime}$ implies $x^{\prime} \equiv_{1} y^{\prime}$: we can ignore the first move. If the 1-round game response for ($x, x^{\prime \prime}$) is ($y, y^{\prime \prime}$) with $y^{\prime \prime}<y$, then $x^{\prime \prime} \equiv_{0} y^{\prime \prime}$, and $y^{\prime \prime} \equiv_{0} y^{\prime}$ as the model in intuitionistic. So (y^{\prime}, y^{\prime}) can be the response for

Examples of finite depth-11

Here $x \equiv 1 y$, but $x \not \equiv 2 y$: Duplicator wins after 1 round. Spoiler wins after 2 rounds.
A distinguishing formula is $\square \diamond$ p. So it has depth 2 in $\mathbf{G r z}+\mathrm{bd}_{2}$
But note that $m d\left(\mathbf{G r z 3}+\mathrm{bd}_{2}\right)=1$ and
$\mathbf{G r z 3}+\mathrm{bd}_{2} \vdash \square \diamond \mathrm{p} \leftrightarrow(\square \mathrm{p} \vee(7 \mathrm{p} \wedge \diamond \mathrm{p}))$.

Examples of finite depth-12

$d i\left(\mathbf{L C}+\mathrm{ibd}_{2}\right)=\operatorname{di}(\mathbf{L C})=2$, while $\mathrm{di}\left(\mathbf{H}+\mathrm{ibd}_{2}\right)=3:$

As in the modal case, $\mathrm{X} \equiv 1 \mathrm{y}$, but $\mathrm{x} \not \equiv 2 \mathrm{y}$:
x $\nless า า p, y \Vdash า p$
Note that $\operatorname{di}(7 \mathrm{p} \rightarrow \mathrm{p})=3$ in $\mathbf{H}+\mathrm{ibd}_{2}$
But di $(7 \rightarrow p \rightarrow p)=1$ in LC+ibd 2 : it is equivalent to ($p \vee \neg p$).

Examples of finite depth-13

$$
m d\left(K 4+b d_{n}\right) \leq 4 n-3
$$

Theorem (Segerberg 1971;Maksimova 1975) For L \supseteq K4
L is locally tabular iff L is of finite transitive depth.
Def L is of finite transitive depth if $L \vdash b d_{n}$ for some n.
Corollary For extensions of K4 local tabularity is equivalent to finite modal depth.

PROBLEM (Chagrov) Find a description of local tabularity for extensions of \mathbf{K}.

Examples of finite depth-14

If $m d(L)=m$, then $m d\left(\left[K+\square^{n} \perp, L\right]\right) \leq(m+1) n-1$
Def. The commutative join (commutator)
$\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]:=\mathrm{L}_{1} * \mathrm{~L}_{2}$ (the fusion) +
$\square_{\mathrm{j}} \square_{\mathrm{i}} \mathrm{p} \leftrightarrow \square_{\mathrm{i}} \square_{\mathrm{j}} \mathrm{p}$ (commutation axioms)
$\diamond_{\mathrm{j}} \square_{\mathrm{i}} \mathrm{p} \rightarrow \square_{\mathrm{j}} \diamond_{\mathrm{i}} \mathrm{p}$ (Church-Rosser axioms)

Tabularity criterion-1

Theorem (Chagrov 1994)
L is tabular iff $L \vdash \alpha_{n} \wedge A l t_{n}$ for some n.
The formulas α_{n}, Alt ${ }_{n}$ correspond to universal conditions on frames:

- α_{n} forbids simple paths of length n :
$x_{1} R x_{2} \ldots R x_{n}$, where all the x_{i} are different.
- Alt forbids n-branching: $x R x_{1}, \ldots, x R x_{n}$, where all the x_{i} are different.

Tabularity criterion-2

$$
\begin{gathered}
\alpha_{n}=7 \diamond\left(P_{1} \wedge \diamond\left(P_{2} \wedge \ldots \diamond\left(P_{n-1} \wedge \diamond P_{n}\right) \ldots\right)\right) \\
\text { Alt } t_{n}=7\left(\diamond P_{1} \wedge \diamond P_{2} \wedge \ldots \wedge \diamond P_{n}\right),
\end{gathered}
$$

where

$$
P_{i}=7 p_{i} \wedge \wedge\left\{p_{j} \mid 1 \leq j \leq n, j \neq i\right\}
$$

Theorems on local tabularity-1

1. Every logic $\mathbf{K}_{\mathrm{N}}+\alpha_{\mathrm{n}}$ (Chagrov's formula) is locally tabular.
(This theorem was conjectured in 1994 by Chagrov.)
The proof does not give the FMD. To reach a repeating position, Duplicator should keep track of all possible returns.
So she plays her own stronger game:
at the position (x, y) at every stage not only
$x \equiv 0$ y, but for any $m<n, i \leq N$
there is a return m steps back from x along R_{i} iff
there is a return m steps back from y along R_{i}.
This is actually a bisimulation game in another model.
As it stabilizes at n, we obtain the local tabularity.

Theorems on local tabularity-2

2. The logics $\left[\mathbf{K}_{\mathrm{N}}+\alpha_{n}, \mathbf{K}_{\mathrm{N}}+\square^{n} \perp\right],\left[\mathbf{K}_{\mathrm{N}}+\alpha_{n}, \mathbf{S} 5\right]$ are locally tabular.

Remark. In general products and commutative joins do not preserve local tabularity, a counterexample is $[\mathbf{S 5}, \mathbf{S 5}]=\mathbf{S 5}{ }^{2}$ (Tarski).
Theorem [N.Bezhanishvili, 2002] S5 ${ }^{2}$ is pre-locally tabular. Probably, there exists a game-theoretic proof.

THANK
 YOU!

References-1

P. Blackburn, M. De Rijke, Y. Venema. Modal Logic. Cambridge University Press, 2001.
A. Chagrov, M. Zakharyaschev. Modal Logic. Oxford University Press, 1996.
K. Segerberg. An Essay in Classical Modal Logic. Uppsala, 1971.
D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Manydimensional Modal Logics: Theory and Applications. Elsevier, 2003.
D. Gabbay, V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, v. 6, pp. 73-146, 1998.
V. Shehtman. Filtration via bisimulation. In: Advances in Modal Logic, Volume 5. King's College Publications, 2005, pp. 289-308

References-2

V. Shehtman. Canonical filtrations and local tabularity.

In: Advances in Modal Logic, v.10, 498-512. College
Publications, 2014
N. Bezhanisvili. Varieties of two-dimensional cylindric algebras.

Algebra Universalis, v. 48 (2002), 11-42.
K. Fine. Logics containing K4, part 1. Journal of Symbolic Logic, 1974, v.1.
G. Bezhanishvili. Locally finite varieties. Algebra Universalis, v. 46(2001), 531-548.
G. Bezhanishvili, R. Grigolia. Locally tabular extensions of MIPC. Advances in Modal Logic 1998, 101-120.

Logics

- $\mathbf{K}=\mathbf{L}$ (all frames)
- K4 $:=\mathbf{K}+\diamond \diamond p \rightarrow \diamond p=\mathbf{L}$ (all transitive frames)
- S4 $:=\mathbf{K} 4+p \rightarrow \diamond p=\mathbf{L}($ all transitive reflexive frames $)$
= L(all partial orders)
- Grz := S4 + $7(\mathrm{p} \wedge \square(p \rightarrow \diamond(\urcorner \mathrm{p} \wedge \diamond \mathrm{p})))$
= L(all finite partial orders)
- Grz3 := Grz $+\diamond p \wedge \diamond q \rightarrow \diamond(\mathrm{p} \wedge \diamond \mathrm{q}) \vee \diamond(\mathrm{q} \wedge \diamond \mathrm{p})$
= L(all finite chains)
- S5 := S4 + $\diamond \square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}($ all equivalence frames $)$
$=\mathbf{L}$ (all universal frames [clusters])
All these logics have the FMP, so they are decidable.

