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Introduction

● Ehrenfeucht-Fraïssé games are well known in classical model 
theory, they are used to study elementary equivalence. 

● Bisimulation games are their analogues for Kripke models 
and  modal and intermediate logic.

Bisimulation games have been used
● for constructing bisimulations
● for study of expressive power of logical languages
● for completeness proofs in modal logic
● for proofs of local finiteness in modal and intermediate logics 

(and more exactly, for classifying formulas).

 



  

Modal propositional language

N-modal formulas are built from a countable set of 

proposition letters PL={p
1
,p

2
,...} using boolean connectives 

and unary modal connectives   ⃞ 
1 
,...,   ⃞ 

N 
;as usual ◇

i 
= ⅂   ⃞ 

i
⅂ 

If N=1 we denote the modalities just by   ⃞  and ◇.

The modal depth md(A) is defined by induction: 

md(p
i
)=0, md(⅂ A)=md(A), 

md(A∨B)= md(A∧B) = max(md(A),md(B)),

md(  ⃞ 
i
A)=md(A)+1

  



  

Intuitionistic propositional language
Intutionistic formulas are built from PL={p

1
,p

2
,...} and the 

connectives ∧,∨,→, ⊥. 

⅂ A := A →⊥

The implication depth di(A) is defined by induction:

di(p
i
) = di(⊥) = 0, 

di(A∨B)= di(A∧B) = max(di(A),di(B)),

di(A→B)=max(di(A),di(B))+1.

  



  

Logics-1
An N-modal logic is a set of N-modal formulas L such that:

● L contains all boolean tautologies

● L is closed under Modus Ponens: if A, A→B ∈L, then B∈L.

● L is closed under Substitution: 

if A(p
1
,...,p

n
)∈L, then A(B

1
,...,B

n
) (for any formulas B

1
,...,B

n
)

● if A∈L, then   ⃞ 
i
A∈L

●   ⃞ 
i
(A→B) → (   ⃞ 

i
A →   ⃞ 

i
B)∈L

The minimal logic K
N
 is the smallest such set; K denotes K

1
. 



  

Logics-2
An  intermediate logic is a set of intuitionistic formulas L 

such that:

● L contains all intuitionstic axioms

● L is closed under Modus Ponens: if A, A→B ∈L, then B∈L.

● L is closed under Substitution: 

if A(p
1
,...,p

n
)∈L, then A(B

1
,...,B

n
) (for any formulas B

1
,...,B

n
)

● L is consistent

The smallest intermediate logic is intuitionistic (H), the 

largest is classical (CL).



  

L⌈k denotes the restriction of a logic L to formulas in 
variables p

1
,...,p

k
. The sets L⌈k are called weak logics

The modal depth of a formula A  in a (maybe weak)  modal 

logic L

md
L
(A):= min{md(B)|L ⊢ A ↔ B}

The implication  depth of a formula A  in an intermediate 

logic L

di
L
(A):= min{di(B)|L ⊢ A↔B}

The modal / implication depth of a logic L

md(L):= max{md
L
(A)| A is in the language of L}

di(L):= max{di
L
(A)| A is an intuitionistic formula}

 

Formula depth-1



  

Formula depth-2

Trivial examples:

di(H) = ∞, md(K)= ∞

di(CL) = 1 

md(K+□⊥) = md(K+ p↔ □p)= 0.

A nontrivial (well-known) example:

md(S5) = 1



  

Kripke frames and models-1

An N-modal Kripke frame  is a nonempty set with N binary 

relations F = (W,R
1
,...,R

N
). 

An intuitionistic  Kripke frame  is a poset F = (W,≤).

A valuation in F  is a function θ:PL → 2W (so θ(p
i
) ⊆ W). 

(F,θ) is a Kripke model over F.

In intuitionistic Kripke models θ(p
i
) should be ≤-stable:

x∈θ(p
i
) & x≤y ⇒ y∈θ(p

i
)

In k-weak Kripke models only p
1
,...,p

k 
are evaluated.



  

Kripke frames and models-2

 The inductive truth definition for the modal case (M,x ⊨ А) 

● M,x ⊨ p
i 
iff x∈θ(p

i
)

● M,x ⊨   ⃞ 
i
 А 

 
iff  ∀y(xR

i
y ⇒ M,y ⊨ А)

● M,x ⊨  ◇
i
А 

 
iff  ∃y(xR

i
y & M,y ⊨ А)

A formula A is valid in a frame F (in symbols, F ⊨ A) if A is 

true at all points in every Kripke model over F.



  

Kripke frames and models-3

The inductive truth definition for the intuitionistic 

case  (M,x ⊩ А) 
● M,x ⊩ p

i 
iff x∈θ(p

i
)

● M,x ⊩ А∨B
  
iff  (M,x ⊩ А or M,x ⊩ B)

● M,x ⊩ А∧B
  
iff  (M,x ⊩ А and M,x ⊩ B) 

● M,x ⊩  А → B 
 
iff  ∀y ≥ x (M,y ⊩ A ⇒ M,y ⊩ B)

Then

● M,x ⊩  ⅂А 
 
iff   ∀y ≥ x M,y ⊮ А

A formula A is valid in a frame F (in symbols, F ⊩ A) if A is 

true at all points in every intuitionistic Kripke model over F.



  

Kripke frames and models-4

Canonical model theorem 

For any modal or intermediate logic L (weak or not) there 

exists the canonical model M
L
 such that 

● for any A in the language of L

M
L
 ⊨ (⊩)  A iff L ⊢ A

● M
L
  is distinguishable :   

two points x,y satisfy the same formulas iff x=y.



  

Tabularity and FMP

Kripke complete logics

L(F) := { A | F ⊨ A} (the logic of a frame  F).

L(C ) := ∩{L(F)|F∈C } (the logic of a class of frames C ).
● If F is finite, L(F) is called  tabular (or finite)

●  If C  consists of finite frames, L(C ) has the finite model 

property (FMP). Or:  

L has the FMP iff L is an intersection of tabular logics.

Proposition ('Harrop's theorem') If L is finitely axiomatizable 

and has the FMP, then L is decidable.  

  



  

Bisimulation games-1

Origin: Colin Stirling (1995) << 
n-bisimulations by Johan Van Benthem (1989) << 
n-equivalence by Kit Fine (1974)

Def   For a k-weak Kripke model M=(W,R
1
,...,R

N
,θ)

consider the 0-equivalence relation between points

x
 
≡

0 y := ∀j ≤ k (M,x ⊨ p
j
 ⇔ M,y ⊨p

j
)

Given M and two points x
0 

≡
0 y0 

we can play the r-round  
bisimulation game BG

r
(M,x

0
,y

0
).

Players: Spoiler (Abelard) vs Duplicator (Éloïse). 

Remark More generally, bisimulation games can be defined 
for two Kripke models M,M' and points x

0
∈M, y

0
∈M'. We do 

not need this in our talk.



  

Bisimulation games-2

 The initial position  in BG
r
(M,x

0
,y

0
) is (x

0
,y

0
).

y

'

RiRi

n+1n+1

n
nx y

x

Round (n+1) 
● Spoiler  chooses i, xn+1 [or yn+1] such that xn Rixn+1 [ynR iyn+1]
● Duplicator chooses yn+1 [xn+1] such that yn Riyn+1 [xn Rixn+1]  

and xn+1 ≡0 yn+1

● A player loses if he/she cannot move.
● Duplicator wins after r rounds. 



  

Bisimulation games-3 

Def Formula and game n-equivalence relations (on M)

● x ≡
n y := for any A(p

1
,...,p

k
) of modal depth ≤ n

  M,x ⊨ A ⇔ M,y ⊨A
● x ∼

n y := Duplicator has a winning strategy in BG
n
(M,x,y)

Main Theorem on finite bisimulation games (Stirling, 1995) 

 
≡

n = 
∼

n 

● The same theorem holds for the intuitionistic case.



  

Local tabularity-1

Def A logic L is locally tabular (or locally finite)  

if for any k there are finitely many formulas in p
1
,...,p

k 
up to 

equivalence in L.

Equivalent definitions:

● L is locally tabular if all its weak fragments L⌈k are tabular.

● The variety of L-algebras is locally finite : every finitely 

generated L-algebra is finite
● For every finite k, the free k-generated L-algebra (the 

Lindenbaum algebra of L⌈k)  is finite

● Every weak canonical model ML⌈k is finite.



  

Local tabularity-2

Finite modal (implication) depth  ⇒ 

local tabularity ⇒ fmp

● The first implication is easy: there are finitely many k-

formulas of bounded depth up to equivalence in the 

basic modal or intuitionistic logic.
● The second one is well-known: a locally tabular logic is 

complete w.r.t. its weak canonical frames 

The second implication is not revertible: plenty of examples (K, S4, H 
etc.)

PROBLEM. Does every locally tabular modal or intermediate logic 

have a finite formula depth?

The problem seems difficult. Conjecture: no. 



  

Formula depth and games-1

In every Kripke model there is a decreasing sequence 

≡
0 ⊇ ≡

1
...  Put ≡

∞
:= ⋂

n
≡

n

Lemma 1 In a weak Kripke model every relation ≡
n 
induces a 

finite partition (W/≡
n 
is finite). 

Lemma 2  x ≡
∞
 y iff for any A(p

1
,...,p

k
) (M,x ⊨ A ⇔ M,y ⊨A)

Lemma 3  (distingushability) In canonical models: 

x ≡
∞
 y iff x=y.

Stabilization lemma (modal case) 

If  ≡
n = ≡

n+1
  in every M

L⌈k (bisimulation games stabilize at 

round n), then md(L) ≤ n.

Stabilization lemma (intuitionistic case) If  ≡
n = ≡

n+1
  in every 

M
L⌈k, then di(L) ≤ n+1.



  

Formula depth and games-2

Proof of modal Stabilization lemma

For every x in M
L⌈k, put 

B
x
:= ⋀ {C | x ⊨ C, md(C)≤ n}

Then B
x
 defines x. So for any k-formula A 

M
L⌈k

⊨ A ↔ ⋁{B
x
 | x ⊨ A},

and the disjunction is actually finite.

By Canonical model theorem

L ⊢ A ↔ ⋁{B
x
 | x ⊨ A}. QED



  

Formula depth and games-3

Stabilization lemma (intuitionistic case) If ≡
n = ≡

n+1
  in every 

M
L⌈k, then di(L⌈k )≤n+1.

Proof. Similar to the modal case, but now we need 

B
x
:= ⋀ {D | x ⊩ D, di(D)≤ n }, 

C
x
:= ⋁ {D | x ⊮ D, di(D)≤ n }.

Then y⊮ B
x
→C

x
 iff y≤x. So for any k-formula A 

M
L⌈k

⊨ A ↔ ⋀{B
x
→C

x
 | x ⊮  A}.

 Hence L ⊢A ↔ ⋀{B
x
→C

x
 | x ⊮  A} . QED



  

Formula depth and games-4

Normal forms in intuitionistic logic

The previous proof allows us to present every intuitionistic 
formula in the normal form, as a conjunction of 
`characteristic formulas' (cf. [Ghilardi, 1992]). This is an 
analogue to Hintikka theorem for classical FOL. 

Depth 1 Characteristic k-formulas are B
J
→C

J 
, where 

B
J
:= ⋀ {p

i
 | i ∈ J }, C

J
:= ⋁ {p

i
 | i ∉ J },

for J ⊆{1,...,k}.
Depth n+1 Characteristic k-formulas are B

J
→C

J 
, where 

B
J
:= ⋀ {D

i
 | i ∈ J }, C

J
:= ⋁ {D

i
 | i ∉ J },

wher D
1
,...,D

m
 are all characteristic formulas of depth n, 

J ⊆{1,...,m}.



  

Formula depth and games-5

Lemma on repeating positions Suppose in a Kripke model M  

x ≡n y and the Duplicator has a winning strategy s in 
BGn(M,x,y) such that every play controlled by s has at least two 
repeating positions. Then x ≡n+1 y.

x = x0 y = y0

xm ym



  

tabularity ⇒ finite formula depth

Theorem  If F is finite, then md(L(F)) ≤ |F|2+1.

Proof: The Pigeonhole principle gives repeating positions.

Remark In many cases we have a better (linear) upper 

bound. 

Formula depth and games-6



  

Examples of finite depth-1

md(K + □n⊥) = n-1

and more generally,

md(K
N
 + □n⊥) = n-1

where
□ A := □

1
A ∧... ∧ □

N
A.

The axiom □n⊥  forbids paths of length n in Kripke frames:

x1Rx2...Rxn , where R = R
1
 ∪...∪ R

N
Proof. For the upper bound: every play of a bisimulation 
game  contains at most (n-1) rounds. For the lower bound:
md

L
(□n-1⊥)= n-1.

An earlier result: K
N
 + □n⊥ is locally tabular (Gabbay & Sh, 

1998; a routine proof by induction).

 



  

Examples of finite depth-2

md(S5) = 1 (a well-known fact)

Proof. If Duplicator can win the 1-game, she can win the 2-
game

x0 x1

x2

y1

y2

y0



  

Examples of finite depth-3
md(DL) = 2

DL is the difference logic

DL = K +  ◇  ⃞ p → p + ◇◇p → p∨◇p

● DL is complete w.r.t inequality frames (W, ≠W).

● Arbitary DL-frames are obtained from S5-frames (equivalence 

frames) by making some points irreflexive.

● Proof (for the lower bound):

 
X ⊨ ◇2p 

y ⊭◇2p 

x ≡
1 y  

z ⊨ p

t ⊨ p



  

Examples of finite depth-4

For the upper bound we have to examine games in canonical 
models

Lemma In M
DL⌈k  

 x ≡
0 y & xRy implies x ≡

1 y.

Proof. Duplicator's responses for the moves of Spoiler are:

S: (x,z) (with z ≠ x,y)   D: (y,z)

S: (x,x)    D: (y,x)

S: (x,y)    D: (y,x)

 They lead to 0-equivalent points. QED
  



  

Examples of finite depth-5

Now in the general case suppose 
 
 x ≡

2 y  in M
DL⌈k 

. We 

have to show that x ≡
3 y.  Let us start playing a 2-round game, 

so we have x' ≡
1
  y', and we have to show x' ≡

2
  y'.

x

x'

x''

y'

y

x'' y''



  

Examples of finite depth-6

Consider the next Spoiler's move (x',x'').

(a) x'' = x. The Duplicator responds with y''=y.

(b) x'' ≠ x, x'' ≢
0
 x'. Then xRx'', and (x,x'') can be regarded as the frst 

move in the 2-round game. For the response (y,y'') we have y'Ry'' 

(since y' ≠  y'', otherwise  x'' ≡
0
 x') and x'' ≡

1 
y''. 

x

x'

x''

y'

y

x'' y''



  

Examples of finite depth-7

(c) x'' ≠ x, x''  ≡
0
 x'. There is a response (y',y''), with x'' ≡

0 
y''. 

So y''  ≡
0
 y' by the transitivity  of  ≡

0
 .

Now by Lemma x'' ≡
1
 x' and y''  ≡

1
 y'; thus  

x''  ≡
1
 y'' by the transitivity  of  ≡

1
 . QED.

x

x'

x''

y'

y

x'' y''



  

Examples of finite depth-8

di(H+ibdn) ≤ 2n-1

 In posets ibdn forbids chains  of length n+1 : x1<x2...<xn+1. 
ibd1 =p1∨ ⅂p1,

ibdn+1 =pn+1 ∨ (pn+1 →  ibdn).
Def  Intermediate logics of finite transitive depth: 
extensions of H+ibdn are of depth ≤ n-1 (or of height ≤ n).
Theorem (Kuznetsov – Komori) These logics are locally 
tabular.
Proof of the upper bound: by induction we show that
x ≡

k
y implies x≡

k+1
y whenever depth(x)+depth(y) ≤ k. 

So the bisimulation game stabilizes at 2n-2.



  

Examples of finite depth-9

md(Grz+bdn) ≤ 2n-2, 

md(Grz3+bdn) = n-1

 

Grz  is the logic of finite partial orders,

Grz3  is the logic of finite chains.

In transitive Kripke frames bdn forbids chains of 

clusters  of length n+1 : x1Rx2...Rxn+1, where 

⅂ xiRxi+1 for each i.

bdn =⅂◇(Q1∧◇(Q2∧...∧◇Qn+1)),

Qi =pi ∧⋀{⅂◇pj | 1≤j<i}.

Grz3 + bdn = L(n-element chain)



  

Examples of finite depth-10
di(LC) = 2, where LC = H+ (p →  q) ∨ (q →  p)  is the 
intermediate logic of arbitrary chains. 
Proof. x ≡

1 y implies x ≡
2 y, since x' ≡

0
y' implies x' ≡

1 y': we 

can ignore the first move. If the 1-round game response for 
(x,x'') is (y,y'') with y''<y, then x''≡

0
y'', and y''≡

0
y' as the 

model in intuitionistic. So (y',y') can be the response for 
(x',x'').

x

x'

x''

y'

y

x'' y''



  

Examples of finite depth-11

md(Grz+bd2) =2

0
0

1
1

y
0x

(0,1 show the truth values of p)

Here  x ≡1 y , but  x ≢2 y: Duplicator wins after 1 round. 
Spoiler wins after 2 rounds.

A distinguishing formula is    ⃞ ◇p. So it has depth 2 
in Grz+bd2   
But note that md(Grz3+bd2) = 1 and  

Grz3+bd2  ⊢   ⃞ ◇p  ↔  (  ⃞ p ∨ (⅂p∧◇p)).



  

Examples of finite depth-12

di(LC+ibd2) = di(LC)= 2, while  di(H+ibd2) =3:

0
0

1
1

y
0x

As in the modal case,  x ≡1 y , but  x ≢2 y:

x ⊮⅂⅂p, y ⊩ ⅂⅂p   

Note that di(⅂⅂p → p)=3  in H+ibd2

But di(⅂⅂p → p)=1  in LC+ibd2 : it is 
equivalent to (p ∨ ⅂p). 



  

Examples of finite depth-13

md(K4+bdn) ≤ 4n - 3

Theorem (Segerberg 1971;Maksimova 1975) For L ⊇ K4 

L is locally tabular iff L is of finite transitive depth.

Def  L is of finite transitive depth if L ⊦ bdn   for some n.

Corollary For extensions of K4 local tabularity is equivalent 
to finite modal depth. 

PROBLEM (Chagrov) Find a description of local tabularity for 
extensions of K. 



  

Examples of finite depth-14

If md(L) = m, then md([K+□n⊥,L]) ≤ (m+1)n-1

Def. The commutative join (commutator) 

       [L
1
,L

2 
] :=  L

1*L
2 
(the fusion) +L

2
]:=L

1*L
2 
+

       ⬛
j 
  ⃞ 

i
p ↔   ⃞ 

i
⬛

j
p (commutation axioms)

      ◆
j 
  ⃞ 

i 
p → ⬛

j
◇

i 
p (Church-Rosser axioms)

 



  

Tabularity criterion-1

Theorem (Chagrov 1994)

L is tabular iff L ⊦ αn ∧ Altn   for some n.

The formulas αn , Altn correspond to universal conditions on 
frames: 

● αn forbids simple paths of length n:

x1Rx2...Rxn, where all the xi are different.

● Altn forbids n-branching: xRx1,..., xRxn, , where all the xi are 
different.



  

Tabularity criterion-2

αn =⅂◇(P1∧◇(P2∧...◇(Pn-1∧◇Pn)...)),

Altn=⅂(◇P1∧◇P2∧...∧◇Pn),

where

Pi =⅂pi ∧⋀{pj | 1≤j≤n, j≠i}.



  

Theorems on local tabularity-1

1. Every logic K
N 
+ αn  (Chagrov's formula) is locally tabular.

(This theorem was conjectured in 1994 by Chagrov.) 
The proof does not give the FMD. To reach a repeating 
position, Duplicator should keep track of all possible returns.
So she plays her own stronger game:
at the position (x,y) at every stage not only

x ≡0 y, but for any m<n, i ≤ N 

there is a return m steps back from x along Ri iff

there is a return m steps back from y along Ri .

This is actually a bisimulation game in another model.
As it stabilizes at n, we obtain the local tabularity.



  

Theorems on local tabularity-2

2. The logics [K
N 
+ αn ,KN' 

+ □n⊥], [K
N 
+ αn ,S5] are locally 

tabular. 

Remark. In general products and commutative joins do not 
preserve local tabularity, a counterexample is [S5,S5] = S52 
(Tarski).
Theorem [N.Bezhanishvili, 2002] S52 is pre-locally tabular.
Probably, there exists a game-theoretic proof. 



  

THANK     YOU!
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Logics
● K = L(all frames) 
● K4 := K + ◇◇p → ◇p = L(all transitive frames)
● S4 := K4 + p → ◇p   = L(all transitive reflexive frames) 

 = L(all partial orders)

● Grz := S4 + ⅂(p∧  ⃞ (p → ◇(⅂ p∧◇p)))
  

  = L(all finite partial orders)

● Grz3 := Grz +   ◇p∧◇q → ◇(p∧◇q)∨◇(q∧◇p)

 = L(all finite chains) 
 

● S5 := S4 +  ◇  ⃞ p → p  = L(all equivalence frames) 

 = L(all universal frames [clusters])

All these logics have the FMP, so they are decidable.
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