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• Main goal: developing a propositional calculus for compact
Hausdorff spaces

• De Vries duality: compact Hausdorff spaces and algebras
• Language, semantics, deductive system and steps towards a

completeness result
• Investigation of the theory of the introduced tools
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De Vries duality

deV
++
KHausjj

(B,≺) 7−→ XB

de Vries algebra space of maximal round filters of (B,≺)

X 7−→ (RO(X ),≺)

compact Hausdorff space algebra of regular open subsets of X
where U ≺ V := Cl(U) ⊆ V



Boolean algebras with a binary relation
De Vries algebras

Definition
A de Vries algebra is a pair (B,≺) where
• B is a complete Boolean algebra
• ≺ is a binary relation on B satisfying
(Q1) 0 ≺ 0 and 1 ≺ 1;
(Q2) a ≺ b, c implies a ≺ b ∧ c ;
(Q3) a, b ≺ c implies a ∨ b ≺ c ;
(Q4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(Q5) a ≺ b implies a ≤ b;
(Q6) a ≺ b implies ¬b ≺ ¬a;
(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;
(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a.



Boolean algebras with a binary relation
Compingent algebras

Definition
A compingent algebra is a pair (B,≺) where
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• ≺ is a binary relation on B satisfying
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Boolean algebras with a binary relation
Contact algebras

Definition
A contact algebra is a pair (B,≺) where
• B is a Boolean algebra
• ≺ is a binary relation on B satisfying
(Q1) 0 ≺ 0 and 1 ≺ 1;
(Q2) a ≺ b, c implies a ≺ b ∧ c ;
(Q3) a, b ≺ c implies a ∨ b ≺ c ;
(Q4) a ≤ b ≺ c ≤ d implies a ≺ d ;
(Q5) a ≺ b implies a ≤ b;
(Q6) a ≺ b implies ¬b ≺ ¬a;



Boolean algebras with a binary relation
Syntax and semantics

A binary relation ≺ on a Boolean algebra B can be replaced with
an operation  : B × B → {0, 1} ⊆ B , defined as

a b =


1 if a ≺ b

0 otherwise.

We use this operation to interpret formulas of the following
language into pairs (B,≺):

ϕ := p | > | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ
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Boolean algebras with a binary relation
Syntax and semantics

Our language has the following property:

∀ϕ ∃ϕ′ such that for any valuation v into an algebra (B,≺) :

v(ϕ′) =


1 if v(ϕ) = 1

0 if v(ϕ) 6= 1.

In our case ϕ′ := > ϕ.
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The system S

Consider the deductive system axiomatised by:
• All axioms ϕ of CPC

(A1) (⊥ ϕ) ∧ (ϕ >)

(A2) (ϕ ψ) ∧ (ϕ χ)→ (ϕ ψ ∧ χ)

(A3) (> ¬ϕ ∨ ψ) ∧ (ψ  χ)→ (ϕ χ)

(A4) (ϕ ψ)→ (ϕ→ ψ)

(A5) (ϕ ψ)→ (χ (ϕ ψ))

(A6) ¬(ϕ ψ)→ (χ ¬(ϕ ψ))

(A7) (ϕ ψ)↔ (¬ψ  ¬ϕ)

(MP)
ϕ ϕ→ ψ

ψ

(R)
ϕ

> ϕ



Completeness

Theorem
The system S is strongly sound and complete with respect to
contact algebras:

Γ ` ϕ ⇔ Γ |= ϕ.

The class of contact algebras is axiomatised by (Q1)-(Q6), which
are universal statements.

To deal with the ∀∃ statements (Q7) and (Q8) we add
non-standard rules to the system S.



Completeness

Theorem
The system S is strongly sound and complete with respect to
contact algebras:

Γ ` ϕ ⇔ Γ |= ϕ.

The class of contact algebras is axiomatised by (Q1)-(Q6), which
are universal statements.

To deal with the ∀∃ statements (Q7) and (Q8) we add
non-standard rules to the system S.



Completeness

Theorem
The system S is strongly sound and complete with respect to
contact algebras:

Γ ` ϕ ⇔ Γ |= ϕ.

The class of contact algebras is axiomatised by (Q1)-(Q6), which
are universal statements.

To deal with the ∀∃ statements (Q7) and (Q8) we add
non-standard rules to the system S.



Π2 − rules
Non-standard rules for emulating ∀∃-statements

Definition
A Π2-rule is one of the form:

(ρ)
F (ϕ̄, p̄)→ χ

G (ϕ̄)→ χ

where F ,G are formulas involving formula variables ϕ̄, χ and fresh
proposition letters p̄.

We associate such a rule (ρ) with the ∀∃-statement

Φρ := ∀x̄ , z
(
G (x̄) � z → ∃ȳ : F (x̄ , ȳ) � z

)
in the signature (∧,¬, 1, ).
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Logics for inductive classes of contact algebras
From logics to classes

Let T be the first-order theory of contact algebras.

Let {ρn}n<ω be a set of Π2 − rules.

Theorem
The system S + {ρn}n<ω is strongly sound and complete with
respect to Mod(T ∪ {Φρn}n<ω).

By this theorem, extensions of S with Π2-rules are complete with
respect to ∀∃-definable classes of contact algebras. ∀∃-definable
classes are the same as inductive classes (Chang-Łos-Suszko
theorem).
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Logics for inductive classes of contact algebras
From classes to logics

Vice versa, given a ∀∃-theory T ′ ⊇ T , we can find a logic which is
complete with respect to Mod(T ′).

We define how to translate a quantifier-free formula Φ(x̄ , ȳ) into a
formula Φ̃(x̄ , ȳ) of our language.

Proposition
Let Φ(x̄ , ȳ) be a quantifier-free formula.
The statement ∀x̄∃ȳΦ(x̄ , ȳ) is equivalent to the one associated to
the Π2-rule

(ρΦ)
Φ̃(ϕ̄, p̄)→ χ

χ



Logics for inductive classes of contact algebras
From classes to logics

Vice versa, given a ∀∃-theory T ′ ⊇ T , we can find a logic which is
complete with respect to Mod(T ′).

We define how to translate a quantifier-free formula Φ(x̄ , ȳ) into a
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Logics for inductive classes of contact algebras
Correspondence between logics and inductive classes

Let T be the first-order theory of contact algebras.

{ρn}n<ω 7−→ T ∪ {Φρn}n<ω
set of Π2-rules ∀∃-theory extending T

T ′ 7−→ {ρΦ | ∀x̄∃ȳΦ(x̄ , ȳ) ∈ T ′}
∀∃-theory extending T set of Π2-rules

Extensions of S ←→ Inductive classes of
with Π2-rules contact algebras
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The logic of compingent algebras

(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;
(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a.

(Q7) and (Q8) correspond to the following rules:

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ

(ρ8)
p ∧ (p  ϕ)→ χ

ϕ→ χ

Thus we obtain:

Corollary
S + (ρ7) + (ρ8) is strongly sound and complete with respect to
compingent algebras.



The logic of compingent algebras

(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;
(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a.

(Q7) and (Q8) correspond to the following rules:

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ

(ρ8)
p ∧ (p  ϕ)→ χ

ϕ→ χ

Thus we obtain:

Corollary
S + (ρ7) + (ρ8) is strongly sound and complete with respect to
compingent algebras.



The logic of compingent algebras

(Q7) a ≺ b implies ∃c : a ≺ c ≺ b;
(Q8) a 6= 0 implies ∃b 6= 0 : b ≺ a.

(Q7) and (Q8) correspond to the following rules:

(ρ7)
(ϕ p) ∧ (p  ψ)→ χ

(ϕ ψ)→ χ

(ρ8)
p ∧ (p  ϕ)→ χ

ϕ→ χ

Thus we obtain:

Corollary
S + (ρ7) + (ρ8) is strongly sound and complete with respect to
compingent algebras.



Admissibility of Π2-rules

Definition
A Π2-rule (ρ) is admissible in S if all the theorems of S + (ρ) are
provable in S.

Theorem (Criterion of admissibility)
A Π2-rule (ρ) is admissibile in S if and only if any contact algebra
(B,≺) is a substructure of some contact algebra (C ,≺) satisfying
Φρ.

Corollary
(ρ7) and (ρ8) are admissibile in S.
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The logic of compact Hausdorff spaces

Definition
The MacNeille completion of a compingent algebra (B,≺) is
(B,≺), where B is the MacNeille completion of B and ≺ is defined
as:

α ≺ β ⇔ there exist a, b ∈ B such that α ≤ a ≺ b ≤ β.

Lemma
Given a compingent algebra (B,≺), its MacNeille completion
(B,≺) is a de Vries algebra.

Corollary

• S + (ρ7) + (ρ8) is sound and complete with respect to de
Vries algebras.
• S + (ρ7) + (ρ8) is sound and complete with respect to

compact Hausdorff spaces.
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MacNeille canonicity and topological properties

Definition
An axiom or rule is MacNeille canonical if, whenever a compingent
algebra (B,≺) validates it, also its MacNeille completion (B,≺)
does.

Corollary
Let the axiom (A) and the Π2-rule (ρ) be MacNeille canonical.
• S + (ρ7) + (ρ8) + (A) is sound and complete with respect to

de Vries algebras validating (A).
• S + (ρ7) + (ρ8) + (ρ) is sound and complete with respect to

de Vries algebras satisfying Φρ.

MacNeille canonical axioms and rules can be used to express
topological properties.
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MacNeille canonicity and topological properties
Examples

• Connectedness:

(C) (ϕ ϕ)→ (> ϕ) ∨ (> ¬ϕ)

S + (ρ7) + (ρ8)+ (C) is the logic of connected compact
Hausdorff spaces.

• Zero-dimensionality:

(ρ9)
(ϕ p) ∧ (p  ψ) ∧ (p  p)→ χ

(ϕ ψ)→ χ

S + (ρ7) + (ρ8) + (ρ9) is the logic of Stone spaces.
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Related work

Our completeness result for Π2-rules is inspired by the work of
Balbiani, Tinchev and Vakarelov in Modal Logics for Region-based
Theories of Space (2007).

They use a first-order language without quantifiers.
In this language they provide propositional calculi related to RCC
(Region Connection Calculus).

Some of these calculi involve particular non-standard rules:

(NOR)
ϕ⇒ (aCp ∨ p∗Cb)

ϕ⇒ aCb
where p does not occurr in a, b, ϕ

(EXT)
ϕ⇒ (p = 0 ∨ aCp)

ϕ⇒ (a = 1)
where p does not occurr in a, ϕ
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Related work

Balbiani et al. consider two semantics for their language:

• Relational semantics based on Kripke frames;
• Topological semantics via algebras of regular closed subsets of

topological spaces

With respect to these semantics, the authors give completeness
results for the propositional calculi they introduced.
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