Logics for Compact Hausdorff Spaces via de Vries Duality

Thomas Santoli

ILLC, Universiteit van Amsterdam

June 16, 2016

• Main goal: developing a propositional calculus for compact Hausdorff spaces

◆□ > < 個 > < E > < E > E 9 < 0</p>

• Main goal: developing a propositional calculus for compact Hausdorff spaces

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• De Vries duality: compact Hausdorff spaces and algebras

- Main goal: developing a propositional calculus for compact Hausdorff spaces
- De Vries duality: compact Hausdorff spaces and algebras
- Language, semantics, deductive system and steps towards a completeness result

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Main goal: developing a propositional calculus for compact Hausdorff spaces
- De Vries duality: compact Hausdorff spaces and algebras
- Language, semantics, deductive system and steps towards a completeness result

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Investigation of the theory of the introduced tools

De Vries duality

$$(B,\prec)\longmapsto X_B$$

de Vries algebra space of maximal round filters of (B, \prec)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

$$X \longmapsto (RO(X), \prec)$$

compact Hausdorff space algebra of regular open subsets of X where $U \prec V := \mathbf{Cl}(U) \subseteq V$

Boolean algebras with a binary relation De Vries algebras

Definition

A de Vries algebra is a pair (B, \prec) where

- *B* is a complete Boolean algebra
- \prec is a binary relation on *B* satisfying

(Q1)
$$0 \prec 0$$
 and $1 \prec 1$;
(Q2) $a \prec b, c$ implies $a \prec b \land c$;
(Q3) $a, b \prec c$ implies $a \lor b \prec c$;
(Q4) $a \leq b \prec c \leq d$ implies $a \prec d$;
(Q5) $a \prec b$ implies $a \leq b$;
(Q6) $a \prec b$ implies $\neg b \prec \neg a$;
(Q7) $a \prec b$ implies $\exists c : a \prec c \prec b$;
(Q8) $a \neq 0$ implies $\exists b \neq 0 : b \prec a$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Boolean algebras with a binary relation Compingent algebras

Definition

A compingent algebra is a pair (B, \prec) where

- *B* is a Boolean algebra
- \prec is a binary relation on *B* satisfying

(Q1)
$$0 \prec 0$$
 and $1 \prec 1$;
(Q2) $a \prec b, c$ implies $a \prec b \land c$;
(Q3) $a, b \prec c$ implies $a \lor b \prec c$;
(Q4) $a \leq b \prec c \leq d$ implies $a \prec d$;
(Q5) $a \prec b$ implies $a \leq b$;
(Q6) $a \prec b$ implies $\neg b \prec \neg a$;
(Q7) $a \prec b$ implies $\exists c : a \prec c \prec b$;
(Q8) $a \neq 0$ implies $\exists b \neq 0 : b \prec a$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Boolean algebras with a binary relation Contact algebras

Definition

A contact algebra is a pair (B, \prec) where

- *B* is a Boolean algebra
- \prec is a binary relation on *B* satisfying

(Q1)
$$0 \prec 0$$
 and $1 \prec 1$;
(Q2) $a \prec b, c$ implies $a \prec b \land c$;
(Q3) $a, b \prec c$ implies $a \lor b \prec c$;
(Q4) $a \leq b \prec c \leq d$ implies $a \prec d$;
(Q5) $a \prec b$ implies $a \leq b$;
(Q6) $a \prec b$ implies $\neg b \prec \neg a$;

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A binary relation \prec on a Boolean algebra *B* can be replaced with an operation $\rightsquigarrow: B \times B \rightarrow \{0, 1\} \subseteq B$, defined as

$$a \rightsquigarrow b = egin{cases} 1 & ext{if } a \prec b \ 0 & ext{otherwise.} \end{cases}$$

A binary relation \prec on a Boolean algebra *B* can be replaced with an operation $\rightsquigarrow: B \times B \rightarrow \{0, 1\} \subseteq B$, defined as

$$a \rightsquigarrow b = egin{cases} 1 & ext{if } a \prec b \ 0 & ext{otherwise.} \end{cases}$$

We use this operation to interpret formulas of the following language into pairs (B, \prec) :

$$\varphi \ := \ \pmb{p} \ | \ \top \ | \ \varphi \land \varphi \ | \ \neg \varphi \ | \ \varphi \leadsto \varphi$$

Our language has the following property:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Our language has the following property:

 $\forall \varphi \exists \varphi' \text{ such that for any valuation } v \text{ into an algebra } (B, \prec) :$

$$egin{array}{rl} v(arphi') &=& egin{pmatrix} 1 & ext{if } v(arphi) = 1 \ 0 & ext{if } v(arphi)
eq 1. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our language has the following property:

 $\forall \varphi \exists \varphi' \text{ such that for any valuation } v \text{ into an algebra } (B, \prec)$:

$$egin{array}{rl} v(arphi') &=& egin{pmatrix} 1 & ext{if } v(arphi) = 1 \ & \ 0 & ext{if } v(arphi)
eq 1. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In our case $\varphi' := \top \rightsquigarrow \varphi$.

The system ${\mathcal S}$

Consider the deductive system axiomatised by:

- All axioms φ of \mathbf{CPC}

(A1)
$$(\bot \rightsquigarrow \varphi) \land (\varphi \rightsquigarrow \top)$$

(A2) $(\varphi \rightsquigarrow \psi) \land (\varphi \rightsquigarrow \chi) \rightarrow (\varphi \rightsquigarrow \psi \land \chi)$
(A3) $(\top \rightsquigarrow \neg \varphi \lor \psi) \land (\psi \rightsquigarrow \chi) \rightarrow (\varphi \rightsquigarrow \chi)$
(A4) $(\varphi \rightsquigarrow \psi) \rightarrow (\varphi \rightarrow \psi)$
(A5) $(\varphi \rightsquigarrow \psi) \rightarrow (\chi \rightsquigarrow (\varphi \rightsquigarrow \psi))$
(A6) $\neg (\varphi \rightsquigarrow \psi) \rightarrow (\chi \rightsquigarrow \neg (\varphi \rightsquigarrow \psi))$
(A7) $(\varphi \rightsquigarrow \psi) \leftrightarrow (\neg \psi \rightsquigarrow \neg \varphi)$
(MP) $\frac{\varphi}{\top} \frac{\varphi}{\psi}$
(R) $\frac{\varphi}{\top} \frac{\varphi}{\neg} \varphi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Completeness

Theorem

The system ${\mathcal S}$ is strongly sound and complete with respect to contact algebras:

 $\Gamma \vdash \varphi \quad \Leftrightarrow \quad \Gamma \models \varphi.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Completeness

Theorem

The system ${\mathcal S}$ is strongly sound and complete with respect to contact algebras:

$$\Gamma \vdash \varphi \quad \Leftrightarrow \quad \Gamma \models \varphi.$$

The class of contact algebras is axiomatised by (Q1)-(Q6), which are universal statements.

Completeness

Theorem

The system S is strongly sound and complete with respect to contact algebras:

$$\Gamma \vdash \varphi \quad \Leftrightarrow \quad \Gamma \models \varphi.$$

The class of contact algebras is axiomatised by (Q1)-(Q6), which are universal statements.

To deal with the $\forall \exists$ statements (Q7) and (Q8) we add non-standard rules to the system S.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$\Pi_2 - rules$

Non-standard rules for emulating $\forall \exists$ -statements

$\Pi_2 - rules$

Non-standard rules for emulating $\forall \exists$ -statements

Definition A Π_2 -rule is one of the form:

$$(\rho) \quad \frac{F(\bar{\varphi}, \bar{p}) \to \chi}{G(\bar{\varphi}) \to \chi}$$

where F, G are formulas involving formula variables $\overline{\varphi}, \chi$ and fresh proposition letters \overline{p} .

$\Pi_2 - rules$

Non-standard rules for emulating $\forall \exists$ -statements

Definition A Π_2 -rule is one of the form:

$$(\rho) \quad \frac{F(\bar{\varphi},\bar{p}) \to \chi}{G(\bar{\varphi}) \to \chi}$$

where F, G are formulas involving formula variables $\bar{\varphi}, \chi$ and fresh proposition letters \bar{p} .

We associate such a rule (ρ) with the $\forall \exists$ -statement

$$\Phi_{\rho} := \forall \bar{x}, z \ \left(G(\bar{x}) \nleq z \ \xrightarrow{} \exists \bar{y} : F(\bar{x}, \bar{y}) \nleq z \right)$$

ション ふゆ く 山 マ チャット しょうくしゃ

in the signature $(\land, \neg, 1, \rightsquigarrow)$.

Logics for inductive classes of contact algebras From logics to classes

Let T be the first-order theory of contact algebras.

Logics for inductive classes of contact algebras From logics to classes

Let T be the first-order theory of contact algebras.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $\{\rho_n\}_{n<\omega}$ be a set of Π_2 – *rules*.

Logics for inductive classes of contact algebras From logics to classes

Let T be the first-order theory of contact algebras.

Let $\{\rho_n\}_{n<\omega}$ be a set of Π_2 – *rules*.

Theorem

The system $S + \{\rho_n\}_{n < \omega}$ is strongly sound and complete with respect to $Mod(T \cup \{\Phi_{\rho_n}\}_{n < \omega})$.

Logics for inductive classes of contact algebras From logics to classes

Let T be the first-order theory of contact algebras.

Let $\{\rho_n\}_{n<\omega}$ be a set of Π_2 – *rules*.

Theorem

The system $S + \{\rho_n\}_{n < \omega}$ is strongly sound and complete with respect to $Mod(T \cup \{\Phi_{\rho_n}\}_{n < \omega})$.

By this theorem, extensions of S with Π_2 -rules are complete with respect to $\forall \exists$ -definable classes of contact algebras. $\forall \exists$ -definable classes are the same as inductive classes (Chang-Łos-Suszko theorem).

Logics for inductive classes of contact algebras From classes to logics

Vice versa, given a $\forall \exists$ -theory $T' \supseteq T$, we can find a logic which is complete with respect to Mod(T').

Logics for inductive classes of contact algebras From classes to logics

Vice versa, given a $\forall \exists$ -theory $T' \supseteq T$, we can find a logic which is complete with respect to Mod(T').

We define how to translate a quantifier-free formula $\Phi(\bar{x}, \bar{y})$ into a formula $\tilde{\Phi}(\bar{x}, \bar{y})$ of our language.

ション ふゆ アメリア メリア しょうくの

Logics for inductive classes of contact algebras From classes to logics

Vice versa, given a $\forall \exists$ -theory $T' \supseteq T$, we can find a logic which is complete with respect to Mod(T').

We define how to translate a quantifier-free formula $\Phi(\bar{x}, \bar{y})$ into a formula $\tilde{\Phi}(\bar{x}, \bar{y})$ of our language.

Proposition

Let $\Phi(\bar{x}, \bar{y})$ be a quantifier-free formula. The statement $\forall \bar{x} \exists \bar{y} \Phi(\bar{x}, \bar{y})$ is equivalent to the one associated to the Π_2 -rule

$$(\rho_{\Phi}) \quad \frac{\tilde{\Phi}(\bar{\varphi}, \bar{p}) \to \chi}{\chi}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Logics for inductive classes of contact algebras Correspondence between logics and inductive classes

Let T be the first-order theory of contact algebras.

Logics for inductive classes of contact algebras Correspondence between logics and inductive classes

Let T be the first-order theory of contact algebras.

$$\{\rho_n\}_{n<\omega}\longmapsto \mathcal{T}\cup\{\Phi_{\rho_n}\}_{n<\omega}$$

set of Π_2 -rules $\forall\exists$ -theory extending \mathcal{T}

$$T' \longmapsto \{ \rho_{\Phi} \mid \forall \bar{x} \exists \bar{y} \Phi(\bar{x}, \bar{y}) \in T' \}$$

 $\forall \exists$ -theory extending T set of Π_2 -rules

Logics for inductive classes of contact algebras Correspondence between logics and inductive classes

Let T be the first-order theory of contact algebras.

$$\{\rho_n\}_{n<\omega} \longmapsto T \cup \{\Phi_{\rho_n}\}_{n<\omega}$$

set of Π_2 -rules $\forall \exists$ -theory extending T
$$T' \longmapsto \{\rho_{\Phi} \mid \forall \bar{x} \exists \bar{y} \Phi(\bar{x}, \bar{y}) \in T'\}$$
 $\forall \exists$ -theory extending T set of Π_2 -rules

 $\begin{array}{rcl} \mbox{Extensions of } \mathcal{S} & \longleftrightarrow & \mbox{Inductive classes of} \\ \mbox{with } \Pi_2\mbox{-rules} & \mbox{contact algebras} \end{array}$

The logic of compingent algebras

(Q7) $a \prec b$ implies $\exists c : a \prec c \prec b$; (Q8) $a \neq 0$ implies $\exists b \neq 0 : b \prec a$.

The logic of compingent algebras

(Q7)
$$a \prec b$$
 implies $\exists c : a \prec c \prec b$;
(Q8) $a \neq 0$ implies $\exists b \neq 0 : b \prec a$.

(Q7) and (Q8) correspond to the following rules:

$$(\rho7) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi}$$
$$(\rho8) \quad \frac{p \land (p \rightsquigarrow \varphi) \to \chi}{\varphi \to \chi}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The logic of compingent algebras

(Q7)
$$a \prec b$$
 implies $\exists c : a \prec c \prec b$;
(Q8) $a \neq 0$ implies $\exists b \neq 0 : b \prec a$.

(Q7) and (Q8) correspond to the following rules:

$$(\rho7) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi}$$
$$(\rho8) \quad \frac{p \land (p \rightsquigarrow \varphi) \to \chi}{\varphi \to \chi}$$

Thus we obtain:

Corollary

 $S + (\rho 7) + (\rho 8)$ is strongly sound and complete with respect to compingent algebras.

Admissibility of Π_2 -rules

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Admissibility of Π_2 -rules

Definition

A Π_2 -rule (ρ) is admissible in S if all the theorems of $S + (\rho)$ are provable in S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Admissibility of Π_2 -rules

Definition

A Π_2 -rule (ρ) is admissible in S if all the theorems of $S + (\rho)$ are provable in S.

Theorem (Criterion of admissibility)

A Π_2 -rule (ρ) is admissibile in S if and only if any contact algebra (B, \prec) is a substructure of some contact algebra (C, \prec) satisfying Φ_{ρ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Admissibility of Π_2 -rules

Definition

A Π_2 -rule (ρ) is admissible in S if all the theorems of $S + (\rho)$ are provable in S.

Theorem (Criterion of admissibility)

A Π_2 -rule (ρ) is admissibile in S if and only if any contact algebra (B, \prec) is a substructure of some contact algebra (C, \prec) satisfying Φ_{ρ} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Corollary

 $(\rho 7)$ and $(\rho 8)$ are admissibile in \mathcal{S} .

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Definition

The MacNeille completion of a compingent algebra (B, \prec) is (\overline{B}, \prec) , where \overline{B} is the MacNeille completion of B and \prec is defined as:

 $\alpha \prec \beta \ \Leftrightarrow \ \text{ there exist } \textbf{\textit{a}}, \textbf{\textit{b}} \in \textbf{\textit{B}} \text{ such that } \alpha \leq \textbf{\textit{a}} \prec \textbf{\textit{b}} \leq \beta.$

ション ふゆ アメリア メリア しょうくしゃ

Definition

The MacNeille completion of a compingent algebra (B, \prec) is (\overline{B}, \prec) , where \overline{B} is the MacNeille completion of B and \prec is defined as:

 $\alpha \prec \beta \ \Leftrightarrow \ \text{ there exist } a, b \in B \text{ such that } \alpha \leq a \prec b \leq \beta.$

ション ふゆ アメリア メリア しょうくしゃ

Lemma

Given a compingent algebra (B, \prec) , its MacNeille completion (\overline{B}, \prec) is a de Vries algebra.

Definition

The MacNeille completion of a compingent algebra (B, \prec) is (\overline{B}, \prec) , where \overline{B} is the MacNeille completion of B and \prec is defined as:

 $\alpha \prec \beta \ \Leftrightarrow \ \text{ there exist } \textbf{\textit{a}}, \textbf{\textit{b}} \in \textbf{\textit{B}} \text{ such that } \alpha \leq \textbf{\textit{a}} \prec \textbf{\textit{b}} \leq \beta.$

Lemma

Given a compingent algebra (B, \prec) , its MacNeille completion (\overline{B}, \prec) is a de Vries algebra.

Corollary

• $S + (\rho 7) + (\rho 8)$ is sound and complete with respect to de Vries algebras.

Definition

The MacNeille completion of a compingent algebra (B, \prec) is (\overline{B}, \prec) , where \overline{B} is the MacNeille completion of B and \prec is defined as:

 $\alpha \prec \beta \ \Leftrightarrow \ \text{ there exist } \textbf{\textit{a}}, \textbf{\textit{b}} \in \textbf{\textit{B}} \text{ such that } \alpha \leq \textbf{\textit{a}} \prec \textbf{\textit{b}} \leq \beta.$

Lemma

Given a compingent algebra (B, \prec) , its MacNeille completion (\overline{B}, \prec) is a de Vries algebra.

Corollary

- $S + (\rho 7) + (\rho 8)$ is sound and complete with respect to de Vries algebras.
- $S + (\rho 7) + (\rho 8)$ is sound and complete with respect to compact Hausdorff spaces.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < ○</p>

Definition

An axiom or rule is MacNeille canonical if, whenever a compingent algebra (B, \prec) validates it, also its MacNeille completion (\overline{B}, \prec) does.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Definition

An axiom or rule is MacNeille canonical if, whenever a compingent algebra (B, \prec) validates it, also its MacNeille completion (\overline{B}, \prec) does.

Corollary

Let the axiom (A) and the Π_2 -rule (ρ) be MacNeille canonical.

- $S + (\rho 7) + (\rho 8) + (A)$ is sound and complete with respect to de Vries algebras validating (A).
- $S + (\rho 7) + (\rho 8) + (\rho)$ is sound and complete with respect to de Vries algebras satisfying Φ_{ρ} .

Definition

An axiom or rule is MacNeille canonical if, whenever a compingent algebra (B, \prec) validates it, also its MacNeille completion (\overline{B}, \prec) does.

Corollary

Let the axiom (A) and the Π_2 -rule (ρ) be MacNeille canonical.

- $S + (\rho 7) + (\rho 8) + (A)$ is sound and complete with respect to de Vries algebras validating (A).
- $S + (\rho 7) + (\rho 8) + (\rho)$ is sound and complete with respect to de Vries algebras satisfying Φ_{ρ} .

MacNeille canonical axioms and rules can be used to express topological properties.

• Connectedness:

• Connectedness:

(C)
$$(\varphi \rightsquigarrow \varphi) \rightarrow (\top \rightsquigarrow \varphi) \lor (\top \rightsquigarrow \neg \varphi)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Connectedness:

(C)
$$(\varphi \rightsquigarrow \varphi) \rightarrow (\top \rightsquigarrow \varphi) \lor (\top \rightsquigarrow \neg \varphi)$$

 $S + (\rho 7) + (\rho 8) + (C)$ is the logic of connected compact Hausdorff spaces.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Connectedness:

(C)
$$(\varphi \rightsquigarrow \varphi) \rightarrow (\top \rightsquigarrow \varphi) \lor (\top \rightsquigarrow \neg \varphi)$$

 $S + (\rho 7) + (\rho 8) + (C)$ is the logic of connected compact Hausdorff spaces.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Zero-dimensionality:

• Connectedness:

(C)
$$(\varphi \rightsquigarrow \varphi) \rightarrow (\top \rightsquigarrow \varphi) \lor (\top \rightsquigarrow \neg \varphi)$$

 $S + (\rho 7) + (\rho 8) + (C)$ is the logic of connected compact Hausdorff spaces.

• Zero-dimensionality:

$$(\rho9) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \land (p \rightsquigarrow p) \to \chi}{(\varphi \rightsquigarrow \psi) \to \chi}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Connectedness:

(C)
$$(\varphi \rightsquigarrow \varphi) \rightarrow (\top \rightsquigarrow \varphi) \lor (\top \rightsquigarrow \neg \varphi)$$

 $S + (\rho 7) + (\rho 8) + (C)$ is the logic of connected compact Hausdorff spaces.

• Zero-dimensionality:

$$(\rho9) \quad \frac{(\varphi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \land (p \rightsquigarrow p) \rightarrow \chi}{(\varphi \rightsquigarrow \psi) \rightarrow \chi}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $S + (\rho 7) + (\rho 8) + (\rho 9)$ is the logic of Stone spaces.

Related work

Our completeness result for Π_2 -rules is inspired by the work of Balbiani, Tinchev and Vakarelov in *Modal Logics for Region-based Theories of Space* (2007).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Related work

Our completeness result for Π_2 -rules is inspired by the work of Balbiani, Tinchev and Vakarelov in *Modal Logics for Region-based Theories of Space* (2007).

They use a first-order language without quantifiers. In this language they provide propositional calculi related to RCC (Region Connection Calculus).

(ロ) (型) (E) (E) (E) (O)

Related work

Our completeness result for Π_2 -rules is inspired by the work of Balbiani, Tinchev and Vakarelov in *Modal Logics for Region-based Theories of Space* (2007).

They use a first-order language without quantifiers. In this language they provide propositional calculi related to RCC (Region Connection Calculus).

Some of these calculi involve particular non-standard rules:

(NOR) $\frac{\varphi \Rightarrow (aCp \lor p^*Cb)}{\varphi \Rightarrow aCb}$ (EXT) $\frac{\varphi \Rightarrow (p = 0 \lor aCp)}{\varphi \Rightarrow (a = 1)}$

where p does not occurr in a, b, φ

where *p* does not occurr in a, φ

Balbiani et al. consider two semantics for their language:

Balbiani et al. consider two semantics for their language:

- Relational semantics based on Kripke frames;
- Topological semantics via algebras of regular closed subsets of topological spaces

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Balbiani et al. consider two semantics for their language:

- Relational semantics based on Kripke frames;
- Topological semantics via algebras of regular closed subsets of topological spaces

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

With respect to these semantics, the authors give completeness results for the propositional calculi they introduced.

Conclusion

• We developed a finitary propositional calculus for compact Hausdorff spaces via de Vries algebras.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conclusion

- We developed a finitary propositional calculus for compact Hausdorff spaces via de Vries algebras.
- We developed the theory of Π_2 -rules, showing:
 - a correspondence between logics and inductive classes;

- a semantic criterion for admissibility of Π_2 -rules.

Conclusion

- We developed a finitary propositional calculus for compact Hausdorff spaces via de Vries algebras.
- We developed the theory of Π_2 -rules, showing:
 - a correspondence between logics and inductive classes;
 - a semantic criterion for admissibility of Π_2 -rules.
- We showed how MacNeille completions can be used to obtain logics for subclasses of compact Hausdorff spaces.

うして ふゆう ふほう ふほう うらつ

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?