On Equivalence of Hilbert Lattices and Quantum Dynamic Algebras

Soroush Rafiee Rad

joint work with Sack, Kishida, Zhong

Institute for Logic, Language and Computation

June 2016

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
●○	0000000	0000	000000000

• Finding the right structures for Quantum Theory:

Preliminaries	Axiomatisation	Equivalence of HL and QDA
0000000	0000	00000000
	1 101111111111100	

- Finding the right structures for Quantum Theory:
 - Enough structure

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
•0	0000000	0000	00000000

- Finding the right structures for Quantum Theory:
 - Enough structure
 - Avoiding unnecessary complexity

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
•0	0000000	0000	00000000

- Finding the right structures for Quantum Theory:
 - Enough structure
 - Avoiding unnecessary complexity
- ► Hilbert Lattices are well-studied example of such structure

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
⊙●	0000000	0000	

Motivation

 (Main) Objects of interest in Quantum theory: Tests (measurement), unitaries

Motivation ○●	Preliminaries 0000000	Axiomatisation 0000	Equivalence of HL and QDA

- (Main) Objects of interest in Quantum theory: Tests (measurement), unitaries
- ► QS are modelled on Hilbert Spaces, say *H*.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
0•	0000000	0000	00000000

- (Main) Objects of interest in Quantum theory: Tests (measurement), unitaries
- ► QS are modelled on Hilbert Spaces, say *H*.
 - ► State of the system are one dimensional subspaces of *H*,

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
0•	0000000	0000	00000000

- (Main) Objects of interest in Quantum theory: Tests (measurement), unitaries
- ► QS are modelled on Hilbert Spaces, say *H*.
 - ► State of the system are one dimensional subspaces of *H*,
 - ► A "testable property": a closed linear subspaces of *H*, say *A* and the cor. test by the projectors *P*_A on *A*, (idempotent, self-adjoint linear maps on *H*)

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
0•	000000	0000	00000000

- (Main) Objects of interest in Quantum theory: Tests (measurement), unitaries
- ► QS are modelled on Hilbert Spaces, say *H*.
 - ► State of the system are one dimensional subspaces of *H*,
 - ► A "testable property": a closed linear subspaces of *H*, say *A* and the cor. test by the projectors *P*_A on *A*, (idempotent, self-adjoint linear maps on *H*)
 - ▶ Unitaries: Invertible linear maps on *H*.

Motivation 00	Preliminaries	Axiomatisation	Equivalence of HL and QDA
000	•••••••	0000	00000000

Hilbert Lattice:

- ► Definition: A Hilbert lattice is the lattice of closed linear subspaces of a Hilbert space, *H*, ordered by inclusion (a lattice for testable properties)
- ► It is well stablished that the unitaries operators on H are the lattice automorphisms of its Hilbert lattice.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Quantum Dynamic Algebras:

 Baltag and Smets propose a new approach to study of QL as a dynamci logic

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

- Baltag and Smets propose a new approach to study of QL as a dynamci logic
- In line with the genral trend of the dynamification of logic: many non-classical propositional logics can be viewed as being about actions, rather than about propositions.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

- Baltag and Smets propose a new approach to study of QL as a dynamci logic
- In line with the genral trend of the dynamification of logic: many non-classical propositional logics can be viewed as being about actions, rather than about propositions.
- Study of information fellows, Action Logic, Game Logic, Belief Revision

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

- Baltag and Smets propose a new approach to study of QL as a dynamci logic
- In line with the genral trend of the dynamification of logic: many non-classical propositional logics can be viewed as being about actions, rather than about propositions.
- Study of information fellows, Action Logic, Game Logic, Belief Revision
- The information systems are essentially dynamic systems: state of the system are essentially identified with the set of actions that can be preformed at that state; actions are primary

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Motivation 00	Preliminaries	Axiomatisation	Equivalence of HL and QDA

Observation:

 non-classicality of QM is a result of non-classicality of information fellow.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	000000000

- non-classicality of QM is a result of non-classicality of information fellow.
- If we wish to study the logical structure of QM we need a logic with non-classical logical dynamics (as opposed to non-classical logical rules for static propositions like what we have in non-distributive logic.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	

- non-classicality of QM is a result of non-classicality of information fellow.
- If we wish to study the logical structure of QM we need a logic with non-classical logical dynamics (as opposed to non-classical logical rules for static propositions like what we have in non-distributive logic.
- Quantum actions as information updates

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	

- non-classicality of QM is a result of non-classicality of information fellow.
- If we wish to study the logical structure of QM we need a logic with non-classical logical dynamics (as opposed to non-classical logical rules for static propositions like what we have in non-distributive logic.
- Quantum actions as information updates
 - They are similar to dynamic opertors in dynamic logics

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	000000000

- non-classicality of QM is a result of non-classicality of information fellow.
- If we wish to study the logical structure of QM we need a logic with non-classical logical dynamics (as opposed to non-classical logical rules for static propositions like what we have in non-distributive logic.
- Quantum actions as information updates
 - They are similar to dynamic opertors in dynamic logics
 - They are also different: they are not just about the epistemics but have also ontic aspects: preforming an action changes the system

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Observation:

the traditional quantum logic *is* already a dynamic logic:

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Observation:

the traditional quantum logic *is* already a dynamic logic:the quantum implication
 (φ ⇒ ψ ::~ (φ∧ ~ (φ ∧ ψ)) is not really an implication

Motivation 00	Preliminaries	Axiomatisation	Equivalence of HL and QDA

- ► the traditional quantum logic *is* already a dynamic logic:the quantum implication
 (\$\phi\$ ⇒ \$\psi\$::~ (\$\phi\$ ∧ ~ (\$\phi\$ ∧ \$\psi\$)) is not really an implication
 - Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ

Motivation 00	Preliminaries	Axiomatisation	Equivalence of HL and QDA

- ► the traditional quantum logic *is* already a dynamic logic:the quantum implication
 (\$\phi\$ ⇒ \$\psi\$::~ (\$\phi\$ ∧ ~ (\$\phi\$ ∧ \$\psi\$)) is not really an implication
 - Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ

Motivation 00	Preliminaries	Axiomatisation	Equivalence of HL and QDA

- ► the traditional quantum logic *is* already a dynamic logic: the quantum implication
 - $(\phi \implies \psi :: \sim (\phi \land \sim (\phi \land \psi))$ is not really an implication
 - Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ
- The idea is to take these dynamic modalities as the basic operators in Quantum Dynamic Logic

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Observation:

 the traditional quantum logic *is* already a dynamic logic:the quantum implication

 $(\phi \implies \psi :: \sim (\phi \land \sim (\phi \land \psi))$ is not really an implication

- Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ
- The idea is to take these dynamic modalities as the basic operators in Quantum Dynamic Logic
- We can extended this view to other physically meaningful actions: unitaries and the combination of unitaries and tests

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Observation:

 the traditional quantum logic *is* already a dynamic logic:the quantum implication

 $(\phi \implies \psi :: \sim (\phi \land \sim (\phi \land \psi))$ is not really an implication

- Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ
- The idea is to take these dynamic modalities as the basic operators in Quantum Dynamic Logic
- We can extended this view to other physically meaningful actions: unitaries and the combination of unitaries and tests
 - composition of actions: α . β

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Observation:

 the traditional quantum logic *is* already a dynamic logic:the quantum implication

 $(\phi \implies \psi :: \sim (\phi \land \sim (\phi \land \psi))$ is not really an implication

- Semantically: the most natural semantics is in dynamic terms: after a successful test of property φ the system will surely satisfy ψ: [φ?]ψ
- The idea is to take these dynamic modalities as the basic operators in Quantum Dynamic Logic
- We can extended this view to other physically meaningful actions: unitaries and the combination of unitaries and tests
 - composition of actions: α . β
 - non-deterministic choice of actions $[\bigsqcup_{i \in I} \alpha_i]$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Quantum Dynamic Algebras OK! So we move to a dynamic logic and making the actions primary objects. So what?

► First there is a conceptual reason: to understand the essense of non-calssicality of QM

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

- ► First there is a conceptual reason: to understand the essense of non-calssicality of QM
- ► This gives a better setting for study certain problems: the search for a complete axiomatisation with respect to the class of Hilbert Lattices.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

- ► First there is a conceptual reason: to understand the essense of non-calssicality of QM
- ► This gives a better setting for study certain problems: the search for a complete axiomatisation with respect to the class of Hilbert Lattices.
 - traditional orthomodular quantum logic does not give a complete axiomatisation

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

- ► First there is a conceptual reason: to understand the essense of non-calssicality of QM
- ► This gives a better setting for study certain problems: the search for a complete axiomatisation with respect to the class of Hilbert Lattices.
 - traditional orthomodular quantum logic does not give a complete axiomatisation
 - lattice theoretic axiomatisation of Piron is also not complete

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Quantum Dynamic Algebras OK! So we move to a dynamic logic and making the actions primary objects. So what?

- ► First there is a conceptual reason: to understand the essense of non-calssicality of QM
- ► This gives a better setting for study certain problems: the search for a complete axiomatisation with respect to the class of Hilbert Lattices.
 - traditional orthomodular quantum logic does not give a complete axiomatisation
 - lattice theoretic axiomatisation of Piron is also not complete
- This setting seems more promising in this regard since for example it allows encoding "higher order properties" in the first order language using the dynamic modalities.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Generalised Dynamic Algebras: (Baltag and Smets)

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Generalised Dynamic Algebras: (Baltag and Smets)

► A generalised dynamic algebra is a tuple $Q = (Q, \bigsqcup, \cdot, \sim,)$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Generalised Dynamic Algebras: (Baltag and Smets)

A generalised dynamic algebra is a tuple
 Q = (Q, ∐, ·, ∼, †)

Generalised Dynamic Algebras: (Baltag and Smets)

- A generalised dynamic algebra is a tuple
 Q = (Q, ∐, ·, ~, †)
 - *Q* is a set (of quantum actions)
 - $\Box : \mathcal{P}(Q) \to Q$ an infinitary operation on Q
 - $\cdot : Q \times Q \rightarrow Q$ a binary operation on Q
 - $\sim: (Q) \to Q$ a unary
 - $\dagger: Q \rightarrow Q$ a unary operation on Q

Generalised Dynamic Algebras: (Baltag and Smets)

- A generalised dynamic algebra is a tuple
 Q = (Q, □, ·, ~, †)
 - *Q* is a set (of quantum actions)
 - $\Box : \mathcal{P}(Q) \to Q$ an infinitary operation on Q
 - $\overline{\cdot}: Q \times Q \rightarrow Q$ a binary operation on Q
 - $\sim: (Q) \to Q$ a unary
 - $\dagger: Q \rightarrow Q$ a unary operation on Q

Definition: A Quantum Dynamic Algebra is a generalised dynamic algebra satisfying a set of conditions.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra \mathcal{Q}

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra \mathcal{Q}

$$\blacktriangleright \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra \mathcal{Q}

$$\mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$
$$\mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra ${\mathcal Q}$

$$\blacktriangleright \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p, q range over \mathcal{L}_{Q} , and x, y range over Q

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra \mathcal{Q}

$$\blacktriangleright \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p,q range over $\mathcal{L}_{\mathcal{Q}},$ and x,y range over Q

►
$$0 := \sim \sim \bigsqcup \emptyset$$

▶ 1 :=~ 0

•
$$\bigwedge_{i\in I} p_i := \sim (\bigsqcup \sim p_i)$$

$$\blacktriangleright \ p \leq q \iff p \land q = p$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra \mathcal{Q}

$$\bullet \ \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p,q range over $\mathcal{L}_{\mathcal{Q}}$, and x,y range over Q

►
$$0 := \sim \sim \bigsqcup \emptyset$$

- ▶ 1 :=~ 0
- $\bigwedge_{i \in I} p_i := \sim (\bigsqcup \sim p_i)$

$$\blacktriangleright \ p \leq q \iff p \land q = p$$

► $p \perp q$ iff $p \leq \sim q$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra ${\cal Q}$

$$\bullet \ \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p,q range over $\mathcal{L}_{\mathcal{Q}},$ and x,y range over Q

►
$$0 := \sim \sim \bigsqcup \emptyset$$

- ▶ 1 :=~ 0
- $\bigwedge_{i \in I} p_i := \sim (\bigsqcup \sim p_i)$
- $\blacktriangleright \ p \leq q \iff p \land q = p$
- ► $p \perp q$ iff $p \leq \sim q$
- $\blacktriangleright \ [x]p:=\sim (x^{\dagger}.\sim p)$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra ${\cal Q}$

$$\bullet \ \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p, q range over \mathcal{L}_{Q} , and x, y range over Q

►
$$0 := \sim \sim \bigsqcup \emptyset$$

- ▶ 1 :=~ 0
- $\bigwedge_{i \in I} p_i := \sim (\bigsqcup \sim p_i)$
- $\blacktriangleright \ p \leq q \iff p \land q = p$
- ► $p \perp q$ iff $p \leq \sim q$
- $\blacktriangleright \ [x]p:=\sim (x^{\dagger}.\sim p)$
- ► $x[y] := \sim \sim (x.y)$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

Given a generalised dynamic algebra $\mathcal Q$

$$\bullet \ \mathcal{L}_{\mathcal{Q}} = \{ \sim x \, | \, x \in Q \}$$

$$\blacktriangleright \ \mathcal{U}_{\mathcal{Q}} = \{ x \in Q \, | \, x.x^{\dagger} = x^{\dagger}.x = 1 \}$$

p, q range over \mathcal{L}_{Q} , and x, y range over Q

- ► $0 := \sim \sim \bigsqcup \emptyset$
- ▶ 1 :=~ 0
- $\bigwedge_{i \in I} p_i := \sim (\bigsqcup \sim p_i)$
- $\blacktriangleright \ p \leq q \iff p \land q = p$
- ► $p \perp q$ iff $p \leq \sim q$
- $\blacktriangleright \ [x]p:=\sim (x^{\dagger}.\sim p)$
- $\blacktriangleright \ x[y] := \sim \sim (x.y)$
- $\blacktriangleright At(\mathcal{L}_{\mathcal{Q}}) := \{ p \in \mathcal{L}_{\mathcal{Q}} \, | \, \forall q \in \mathcal{L}_{\mathcal{Q}}, (0 \neq q \leq p \implies q = p) \}$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Motivation 00	Preliminaries 0000000	Axiomatisation •000	Equivalence of HL and QDA 00000000

Conditions of QDA

► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$

Motivation 00	Preliminaries 0000000	Axiomatisation •000	Equivalence of HL and QDA 00000000

- ► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$
 - (Q, \bigsqcup) is a complete lattice

Motivation 00	Preliminaries 0000000	Axiomatisation •000	Equivalence of HL and QDA 00000000

- ► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$
 - (Q, \bigsqcup) is a complete lattice
 - $(Q, \cdot, 1)$ is a monoid

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	●000	00000000

- ► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$
 - (Q, \bigsqcup) is a complete lattice
 - $(Q, \cdot, 1)$ is a monoid
 - ► · distributes over 📋

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	•000	00000000

- ► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$
 - (Q, \bigsqcup) is a complete lattice
 - $(Q, \cdot, 1)$ is a monoid
 - ► · distributes over []
- ► † is an anti-distributive involution

•
$$(x^{\dagger})^{\dagger} = x$$

•
$$(x.y)^{\dagger} = y^{\dagger}.x^{\dagger}$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	•000	00000000

- ► $(Q, \bigsqcup, ., 1)$ is a quantale generated by $\mathcal{L}_Q \cup \mathcal{U}_Q$
 - (Q, \bigsqcup) is a complete lattice
 - $(Q, \cdot, 1)$ is a monoid
 - ► · distributes over []
- ► † is an anti-distributive involution

•
$$(x^{\dagger})^{\dagger} = x$$

$$\bullet \quad (x.y)^{\dagger} = y^{\dagger}.x^{\dagger}$$

•
$$[\bigsqcup_{i\in I} x_i]p = \bigwedge_{i\in I} [x_i]p$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	

• $p \land q \leq [q]p$ and $p \land [p]q \leq q$ (adequacy)

- $p \land q \leq [q]p$ and $p \land [p]q \leq q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)

- ► $p \land q \leq [q]p$ and $p \land [p]q \leq q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \le [q] \sim [q] \sim p$ (self adjointness)

- ► $p \land q \le [q]p$ and $p \land [p]q \le q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \leq [q] \sim [q] \sim p$ (self adjointness)
- ► For $q \in At(\mathcal{L}_Q)$, $p \land (\sim p \lor q) \in At(\mathcal{L}_Q)$ (covering law)

- ► $p \land q \le [q]p$ and $p \land [p]q \le q$ (adequacy)
- ► $p,q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \le [q] \sim [q] \sim p$ (self adjointness)
- ► For $q \in At(\mathcal{L}_Q)$, $p \land (\sim p \lor q) \in At(\mathcal{L}_Q)$ (covering law)
- ► $p \leq \bigvee \{q \in At(\mathcal{L}_Q) \mid q \leq p\}$ (atomicity)

- ► $p \land q \le [q]p$ and $p \land [p]q \le q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \le [q] \sim [q] \sim p$ (self adjointness)
- ► For $q \in At(\mathcal{L}_Q)$, $p \land (\sim p \lor q) \in At(\mathcal{L}_Q)$ (covering law)
- ► $p \leq \bigvee \{q \in At(\mathcal{L}_Q) \mid q \leq p\}$ (atomicity)
- ► $(\bigsqcup_{i \in I} x_i)(p) = \bigcup_{i \in I} x_i(p)$ (commutivity of image and join)

- ► $p \land q \le [q]p$ and $p \land [p]q \le q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \le [q] \sim [q] \sim p$ (self adjointness)
- ► For $q \in At(\mathcal{L}_Q)$, $p \land (\sim p \lor q) \in At(\mathcal{L}_Q)$ (covering law)
- ► $p \leq \bigvee \{q \in At(\mathcal{L}_Q) \mid q \leq p\}$ (atomicity)
- ► $(\bigsqcup_{i \in I} x_i)(p) = \bigcup_{i \in I} x_i(p)$ (commutivity of image and join)
- *x*(*a*) = *y*(*a*) for all *a* ∈ *At*(*L*_Q) then *x* = *y* (actions determind by the bahaviour on atoms)

- ► $p \land q \le [q]p$ and $p \land [p]q \le q$ (adequacy)
- ► $p, q \neq 0$ then there exists *r* such that $r \not\perp p$ and $r \not\perp q$ (suprposition)
- ► For all $p, q, p \le [q] \sim [q] \sim p$ (self adjointness)
- ► For $q \in At(\mathcal{L}_Q)$, $p \land (\sim p \lor q) \in At(\mathcal{L}_Q)$ (covering law)
- ► $p \leq \bigvee \{q \in At(\mathcal{L}_Q) \mid q \leq p\}$ (atomicity)
- ► $(\bigsqcup_{i \in I} x_i)(p) = \bigcup_{i \in I} x_i(p)$ (commutivity of image and join)
- *x*(*a*) = *y*(*a*) for all *a* ∈ *At*(*L*_Q) then *x* = *y* (actions determind by the bahaviour on atoms)

Proposition: For a QDA, Q, L_Q is a Hilbert lattice.

HILBERT SPACE REALISATION

Hilbert Space Realisation:

Let \mathcal{H} be a finite dimensional Hilbert space over \mathbb{C} Let H be the underlying set of vectors. For $R \subseteq H \times H$

•
$$Im(R) = \{h \in H \mid \exists h' \in H, \ s.t. \ (h', h) \in R\}$$

HILBERT SPACE REALISATION

Hilbert Space Realisation:

Let \mathcal{H} be a finite dimensional Hilbert space over \mathbb{C} Let H be the underlying set of vectors. For $R \subseteq H \times H$

• $Im(R) = \{h \in H \mid \exists h' \in H, s.t. (h', h) \in R\}$

Let $LM(\mathcal{H}, \mathcal{H})$ be the set of linear maps from \mathcal{H} to \mathcal{H} .

HILBERT SPACE REALISATION

Hilbert Space Realisation:

Let \mathcal{H} be a finite dimensional Hilbert space over \mathbb{C} Let H be the underlying set of vectors. For $R \subseteq H \times H$

• $Im(R) = \{h \in H \mid \exists h' \in H, s.t. (h', h) \in R\}$

Let $LM(\mathcal{H}, \mathcal{H})$ be the set of linear maps from \mathcal{H} to \mathcal{H} . Every liner map on \mathcal{H} has an adjoint (Hermitian conjugate)

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	000●	00000000

HILBERT SPACE REALISATION

Define $Q(\mathcal{H}) = (Q, \bigsqcup, ., \sim, \dagger)$ by

- $\blacktriangleright Q = \mathcal{P}(LM(\mathcal{H},\mathcal{H}))$
- ► 📋 is the set theoretic union

►
$$A, B \subset LM(\mathcal{H}, \mathcal{H}), A \cdot B = \{a \cdot b \mid a \in A, b \in B\}$$

► $A \subset LM(\mathcal{H}, \mathcal{H}), \sim A = \{P_{B^{\perp}}\}$ where $B = Im(\bigcup_{a \in A} a)$

$$\bullet \ A^{\dagger} = \{a^{\dagger} \mid a \in A\}$$

Note that

• **Proposition:** For a Hilbert lattice \mathcal{H} , $\mathcal{Q}(\mathcal{H})$ is a QDA.

00 000000 0000 000000	Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
	00	000000	0000	00000000

EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices and QDA we will give

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices and QDA we will give

• A translation from Hilbert lattices to QDA

To establish a categorical equivalence between Hilber lattices and QDA we will give

- A translation from Hilbert lattices to QDA
- A translation from Hilbert lattice morphisms to QDA morphisms

To establish a categorical equivalence between Hilber lattices and QDA we will give

- ► A translation from Hilbert lattices to QDA
- A translation from Hilbert lattice morphisms to QDA morphisms

the other direction is trivial: Every QDA, Q, has a Hilbert lattice, \mathcal{L}_Q , embedded in it

Translation from Hilbert lattices to QDAlgebras:

Let (\mathcal{L},\leq,\sim) be a HL We will define a QDA as follows:

- Let *U* be the set of ortholattice automorphisms on \mathcal{L}
- ► for each $p \in \mathcal{L}$, let $f_p : \mathcal{L} \to \mathcal{L}$ by $f_p(a) = p \land (p' \lor a)$
- Let $F_{\mathcal{L}} = \{f_p \mid p \in \mathcal{L}\}$
- $F_{\mathcal{U}} = \mathcal{U}$
- ► F_J the smallest set of functions that contains F_L and F_U and is closed under composition.
- for each $a \in F_{\mathcal{L}}$ let $a^{\dagger} = a$ and for every $a \in F_{\mathcal{U}}$, $a^{\dagger} = a^{-1}$.
- We extend this to compositions by $(a \cdot b)^{\dagger} = b^{\dagger} \cdot a^{\dagger}$

For a Hilbert lattice \mathcal{L} define

$$\mathcal{Q}(\mathcal{L}) = (\mathcal{Q}(\mathcal{L}), \bigsqcup,; \sim, \dagger)$$

- $Q(\mathcal{L}) = \mathcal{P}(F_{\mathcal{J}})$ point about singletons
- ► 📋 is set theoretic union

•
$$A.B = \{f.g \mid f \in A, g \in B\}$$

• $\sim A = \{f_{q^{\perp}}\}$ where $q = \bigvee_{f \in A} f(\top)$

$$\blacktriangleright \ A^{\dagger} = \{ f^{\dagger} \, | f \in A \}$$

For a Hilbert lattice ${\mathcal L}$ define

$$\mathcal{Q}(\mathcal{L}) = (Q(\mathcal{L}), \bigsqcup,; \sim, \dagger)$$

- $Q(\mathcal{L}) = \mathcal{P}(F_{\mathcal{J}})$ point about singletons
- ► 📋 is set theoretic union

•
$$A.B = \{f.g \mid f \in A, g \in B\}$$

► ~
$$A = \{f_{q^{\perp}}\}$$
 where $q = \bigvee_{f \in A} f(\top)$

$$\blacktriangleright A^{\dagger} = \{ f^{\dagger} \mid f \in A \}$$

Proposition: For a Hilbert lattice \mathcal{L} , $\mathcal{Q}(\mathcal{L})$ is a QDA.

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Equivalence of Hilbert Lattices and QDA

Remember:

- Testable properties correspond to points in the Hilbert lattice
- Lattice automorphisms correspond to unitaries (and anti-unitaries)

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	0000000	0000	00000000

Equivalence of Hilbert Lattices and QDA

Remember:

- Testable properties correspond to points in the Hilbert lattice
- Lattice automorphisms correspond to unitaries (and anti-unitaries)
- Weak morphisms: preserving meets, complementation

Remember:

- Testable properties correspond to points in the Hilbert lattice
- Lattice automorphisms correspond to unitaries (and anti-unitaries)
- Weak morphisms: preserving meets, complementation
- Strong morphisms: bijective, preserving, meets, joins and complementation

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	00000000

We define two notions of morphisms for QDA:

- Weak morphisms: Partial functions $\psi : Q_1 \rightarrow Q_2$ such that
 - $\mathcal{L}_{\mathcal{Q}_1} = \{ \sim a \, | \, a \in Q_1 \}$ is in the domain of ψ
 - restriction of ψ to $\mathcal{L}_{\mathcal{Q}_1}$, preserves \sqcup and \sim .
- **Strong morphisms:** Total functions $\psi : Q_1 \rightarrow Q_2$ such that
 - restriction of ψ to $\mathcal{L}_{\mathcal{Q}_1}$ preserves \cdot , \sqcup and \sim .

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	000000000

Taking a QDA morphism $\psi : Q_1 \to Q_2$, restriction of ψ maps \mathcal{L}_{Q_1} to \mathcal{L}_{Q_2} and preserves meets.

Taking a QDA morphism $\psi : Q_1 \to Q_2$, restriction of ψ maps \mathcal{L}_{Q_1} to \mathcal{L}_{Q_2} and preserves meets.

For **weak** Hilbert lattice morphism $\psi : \mathcal{L}_1 \to \mathcal{L}_2$

 $\Psi: \mathcal{Q}(\mathcal{L}_1) \to \mathcal{Q}(\mathcal{L}_2)$ $\Psi(\{f_p\}) = \{f_{\psi(p)}\}$

Taking a QDA morphism $\psi : Q_1 \to Q_2$, restriction of ψ maps \mathcal{L}_{Q_1} to \mathcal{L}_{Q_2} and preserves meets.

For **weak** Hilbert lattice morphism $\psi : \mathcal{L}_1 \to \mathcal{L}_2$

 $\Psi: \mathcal{Q}(\mathcal{L}_1) \to \mathcal{Q}(\mathcal{L}_2)$ $\Psi(\{f_p\}) = \{f_{\psi(p)}\}$

 Ψ maps projectors ($\mathcal{L}_{\mathcal{Q}(\mathcal{L}_1)}$) to projectors ($\mathcal{L}_{\mathcal{Q}(\mathcal{L}_2)}$).

Taking a QDA morphism $\psi : Q_1 \to Q_2$, restriction of ψ maps \mathcal{L}_{Q_1} to \mathcal{L}_{Q_2} and preserves meets.

For **weak** Hilbert lattice morphism $\psi : \mathcal{L}_1 \to \mathcal{L}_2$

 $\Psi: \mathcal{Q}(\mathcal{L}_1) \to \mathcal{Q}(\mathcal{L}_2)$ $\Psi(\{f_p\}) = \{f_{\psi(p)}\}$

 Ψ maps projectors ($\mathcal{L}_{\mathcal{Q}(\mathcal{L}_1)}$) to projectors ($\mathcal{L}_{\mathcal{Q}(\mathcal{L}_2)}$).

Proposition: Ψ is a weak QDA morphism.



For **strong** Hilbert lattice morphism $\psi : \mathcal{L}_1 \to \mathcal{L}_2$

$$\Psi:\mathcal{Q}(\mathcal{L}_1)\to\mathcal{Q}(\mathcal{L}_2)$$

Let $\ell_{\psi}(q) = \bigwedge_{\psi(s) \le q} a$

 $\Psi(f)(q) = \psi \cdot f \cdot \ell_{\psi}(q)$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	000000000

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	000000000

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

Then

• **Proposition:** Ψ maps the projectors ({ $f_p | p \in \mathcal{L}_1$ }) to projectors ({ $f_q | q \in \mathcal{L}_2$ })

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	000000000

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

Then

• **Proposition:** Ψ maps the projectors ({ $f_p | p \in \mathcal{L}_1$ }) to projectors ({ $f_q | q \in \mathcal{L}_2$ })

•
$$\Psi(f_p)(q) = \psi \cdot f_p \cdot \ell_{\psi}(q) = f_{\psi(p)}(q)$$

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

- **Proposition:** Ψ maps the projectors ({ $f_p | p \in \mathcal{L}_1$ }) to projectors ({ $f_q | q \in \mathcal{L}_2$ })
- $\Psi(f_p)(q) = \psi \cdot f_p \cdot \ell_{\psi}(q) = f_{\psi(p)}(q)$
- ► **Proposition:** U_{Q_1} is mapped to unitaries U_{Q_2}

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

- ► **Proposition:** Ψ maps the projectors ({ $f_p | p \in \mathcal{L}_1$ }) to projectors ({ $f_q | q \in \mathcal{L}_2$ })
- $\Psi(f_p)(q) = \psi \cdot f_p \cdot \ell_{\psi}(q) = f_{\psi(p)}(q)$
- ► **Proposition:** U_{Q_1} is mapped to unitaries U_{Q_2}
- ▶ $\Psi(u)$ preserves meets, joins, and complementation and thus $\Psi(u)$ is a Hilbert lattice automorphism. Thus $\Psi(u) \in U_{Q_2}$

Motivation	Preliminaries	Axiomatisation	Equivalence of HL and QDA
00	000000	0000	000000000

Proposition: For a strong lattice morphism ψ

$$\psi \cdot \ell_{\psi} = id.$$

- ► **Proposition:** Ψ maps the projectors ({ $f_p | p \in \mathcal{L}_1$ }) to projectors ({ $f_q | q \in \mathcal{L}_2$ })
- $\Psi(f_p)(q) = \psi \cdot f_p \cdot \ell_{\psi}(q) = f_{\psi(p)}(q)$
- ► **Proposition:** U_{Q_1} is mapped to unitaries U_{Q_2}
- ► Ψ(*u*) preserves meets, joins, and complementation and thus Ψ(*u*) is a Hilbert lattice automorphism. Thus Ψ(*u*) ∈ U_{Q2}

► for some
$$\{f \cdot g\} \in Q$$
,
 $\Psi(f \cdot g) = \psi \cdot f \dot{g} \cdot \ell_{\psi} = \psi \cdot f \dot{\ell}_{\psi} \cdot \psi \cdot g \cdot \ell_{\psi} = \Psi(f) \cdot \Psi(g)$

- ► Thus taking two QDAlgebras Q₁, Q₂ and a morphism Ψ between them we get Hilbert lattices L_{Q1} and L_{Q2} and the restriction of Ψ to L_{Q1} given a Hilbert lattice morphism.
- ► Thus taking two Hilbert lattices L₁, L₂ and a weak/strong morphism ψ between them. We define QDAlgebras Q(L₁), Q(L₂) and the morphism

$$\Psi(A) = \{\psi \cdot a \cdot \ell_{\psi} \,|\, a \in A\}$$

gives a weak/strong morphism of QDAlgebras.