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PRELIMINARIES

Hilbert Lattice:

I Definition: A Hilbert lattice is the lattice of closed linear
subspaces of a Hilbert space,H, ordered by inclusion (a
lattice for testable properties)

I It is well stablished that the unitaries operators onH are
the lattice automorphisms of its Hilbert lattice.
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many non-classical propositional logics can be viewed as
being about actions, rather than about propositions.

I Study of information fellows, Action Logic, Game Logic,
Belief Revision

I The information systems are essentially dynamic systems:
state of the system are essentially identified with the set of
actions that can be preformed at that state; actions are
primary
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I If we wish to study the logical structure of QM we need a
logic with non-classical logical dynamics (as opposed to
non-classical logical rules for static propositions like what
we have in non-distributive logic.

I Quantum actions as information updates
I They are similar to dynamic opertors in dynamic logics
I They are also different: they are not just about the

epistemics but have also ontic aspects: preforming an
action changes the system
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I the traditional quantum logic is already a dynamic
logic:the quantum implication
(φ =⇒ ψ ::∼ (φ∧ ∼ (φ ∧ ψ)) is not really an implication

I Semantically: the most natural semantics is in dynamic
terms: after a successful test of property φ the system will
surely satisfy ψ: [φ?]ψ

I The idea is to take these dynamic modalities as the basic
operators in Quantum Dynamic Logic

I We can extended this view to other physically meaningful
actions: unitaries and the combination of unitaries and
tests

I composition of actions: α.β
I non-deterministic choice of actions [

⊔
i∈I αi]
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Quantum Dynamic Algebras
OK! So we move to a dynamic logic and making the actions
primary objects. So what?

I First there is a conceptual reason: to understand the
essense of non-calssicality of QM

I This gives a better setting for study certain problems: the
search for a complete axiomatisation with respect to the
class of Hilbert Lattices.

I traditional orthomodular quantum logic does not give a
complete axiomatisation

I lattice theoretic axiomatisation of Piron is also not complete

I This setting seems more promising in this regard since for
example it allows encoding “higher order properties” in
the first order language using the dynamic modalities.
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I A generalised dynamic algebra is a tuple
Q = (Q,

⊔
, ·,∼,

†

)
I Q is a set (of quantum actions)
I

⊔
: P(Q)→ Q an infinitary operation on Q

I · : Q×Q→ Q a binary operation on Q
I ∼: (Q)→ Q a unary
I † : Q→ Q a unary operation on Q

Definition: A Quantum Dynamic Algebra is a generalised
dynamic algebra satisfying a set of conditions.
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Given a generalised dynamic algebra Q

I LQ = {∼ x | x ∈ Q}
I UQ = {x ∈ Q | x.x† = x†.x = 1}

p, q range over LQ, and x, y range over Q
I 0 :=∼∼

⊔
∅

I 1 :=∼ 0
I

∧
i∈I pi :=∼ (

⊔
∼ pi)

I p ≤ q ⇐⇒ p ∧ q = p
I p ⊥ q iff p ≤∼ q
I [x]p :=∼ (x†. ∼ p)

I x[y] :=∼∼ (x.y)

I At(LQ) := {p ∈ LQ | ∀q ∈ LQ, (0 6= q ≤ p =⇒ q = p)}
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I At(LQ) := {p ∈ LQ | ∀q ∈ LQ, (0 6= q ≤ p =⇒ q = p)}
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AXIOMATISATION

Conditions of QDA

I (Q,
⊔
, ., 1) is a quantale generated by LQ ∪ UQ

I (Q,
⊔

) is a complete lattice
I (Q, ·, 1) is a monoid
I · distributes over

⊔
I † is an anti-distributive involution

I (x†)† = x
I (x.y)† = y†.x†

I [
⊔

i∈I xi]p =
∧

i∈I[xi]p
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AXIOMATISATION

I p ∧ q ≤ [q]p and p ∧ [p]q ≤ q (adequacy)

I p, q 6= 0 then there exists r such that r 6⊥ p and r 6⊥ q
(suprposition)

I For all p, q, p ≤ [q] ∼ [q] ∼ p (self adjointness)
I For q ∈ At(LQ), p ∧ (∼ p ∨ q) ∈ At(LQ) (covering law)
I p ≤

∨
{q ∈ At(LQ) | q ≤ p} (atomicity)

I (
⊔

i∈I xi)(p) =
⋃

i∈I xi(p) (commutivity of image and join)
I x(a) = y(a) for all a ∈ At(LQ) then x = y (actions

determind by the bahaviour on atoms)

Proposition: For a QDA, Q, LQ is a Hilbert lattice.
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HILBERT SPACE REALISATION

Hilbert Space Realisation:
LetH be a finite dimensional Hilbert space over C Let H be the
underlying set of vectors. For R ⊆ H ×H

I Im(R) = {h ∈ H | ∃h′ ∈ H, s.t. (h′, h) ∈ R}

Let LM(H,H) be the set of linear maps fromH toH.
Every liner map onH has an adjoint (Hermitian conjugate)
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HILBERT SPACE REALISATION

Define Q(H) = (Q,
⊔
, .,∼, †) by

I Q = P(LM(H,H))

I
⊔

is the set theoretic union
I A,B ⊂ LM(H,H), A · B = {a · b | a ∈ A, b ∈ B}
I A ⊂ LM(H,H), ∼ A = {PB⊥}where B = Im(

⋃
a∈A a)

I A† = {a† | a ∈ A}
Note that

I Proposition: For a Hilbert latticeH, Q(H) is a QDA.
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EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices
and QDA we will give

I A translation from Hilbert lattices to QDA
I A translation from Hilbert lattice morphisms to QDA

morphisms

the other direction is trivial: Every QDA, Q, has a Hilbert
lattice, LQ, embedded in it



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices
and QDA we will give

I A translation from Hilbert lattices to QDA

I A translation from Hilbert lattice morphisms to QDA
morphisms

the other direction is trivial: Every QDA, Q, has a Hilbert
lattice, LQ, embedded in it



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices
and QDA we will give

I A translation from Hilbert lattices to QDA
I A translation from Hilbert lattice morphisms to QDA

morphisms

the other direction is trivial: Every QDA, Q, has a Hilbert
lattice, LQ, embedded in it



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

To establish a categorical equivalence between Hilber lattices
and QDA we will give

I A translation from Hilbert lattices to QDA
I A translation from Hilbert lattice morphisms to QDA

morphisms

the other direction is trivial: Every QDA, Q, has a Hilbert
lattice, LQ, embedded in it



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

Translation from Hilbert lattices to QDAlgebras:

Let (L,≤,∼) be a HL We will define a QDA as follows:

I Let U be the set of ortholattice automorphisms on L
I for each p ∈ L, let fp : L → L by fp(a) = p ∧ (p′ ∨ a)

I Let FL = {fp | p ∈ L}
I FU = U
I FJ the smallest set of functions that contains FL and FU

and is closed under composition.
I for each a ∈ FL let a† = a and for every a ∈ FU , a† = a−1.
I We extend this to compositions by (a · b)† = b† · a†
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EQUIVALENCE OF HILBERT LATTICES AND QDA

For a Hilbert lattice L define

Q(L) = (Q(L),
⊔
, ,̇ ∼, †)

I Q(L) = P(FJ ) point about singletons
I

⊔
is set theoretic union

I A.B = {f .g | f ∈ A, g ∈ B}
I ∼ A = {fq⊥}where q =

∨
f∈A f (>)

I A† = {f † | f ∈ A}

Proposition: For a Hilbert lattice L, Q(L) is a QDA.
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EQUIVALENCE OF HILBERT LATTICES AND QDA

Remember:

I Testable properties correspond to points in the Hilbert
lattice

I Lattice automorphisms correspond to unitaries (and
anti-unitaries)

I Weak morphisms: preserving meets, complementation
I Strong morphisms: bijective, preserving, meets, joins and

complementation
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EQUIVALENCE OF HILBERT LATTICES AND QDA

We define two notions of morphisms for QDA:
I Weak morphisms: Partial functions ψ : Q1 → Q2 such that

I LQ1 = {∼ a | a ∈ Q1} is in the domain of ψ
I restriction of ψ to LQ1 , preserves t and ∼.

I Strong morphisms: Total functions ψ : Q1 → Q2 such that
I restriction of ψ to LQ1 preserves ·, t and ∼.
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EQUIVALENCE OF HILBERT LATTICES AND QDA

Taking a QDA morphism ψ : Q1 → Q2, restriction of ψ maps
LQ1 to LQ2 and preserves meets.

For weak Hilbert lattice morphism ψ : L1 → L2

Ψ : Q(L1)→ Q(L2)

Ψ({fp}) = {fψ(p)}

Ψ maps projectors (LQ(L1)) to projectors (LQ(L2)).

Proposition: Ψ is a weak QDA morphism.



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

Taking a QDA morphism ψ : Q1 → Q2, restriction of ψ maps
LQ1 to LQ2 and preserves meets.

For weak Hilbert lattice morphism ψ : L1 → L2

Ψ : Q(L1)→ Q(L2)

Ψ({fp}) = {fψ(p)}

Ψ maps projectors (LQ(L1)) to projectors (LQ(L2)).

Proposition: Ψ is a weak QDA morphism.



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

Taking a QDA morphism ψ : Q1 → Q2, restriction of ψ maps
LQ1 to LQ2 and preserves meets.

For weak Hilbert lattice morphism ψ : L1 → L2

Ψ : Q(L1)→ Q(L2)

Ψ({fp}) = {fψ(p)}

Ψ maps projectors (LQ(L1)) to projectors (LQ(L2)).

Proposition: Ψ is a weak QDA morphism.



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

Taking a QDA morphism ψ : Q1 → Q2, restriction of ψ maps
LQ1 to LQ2 and preserves meets.

For weak Hilbert lattice morphism ψ : L1 → L2

Ψ : Q(L1)→ Q(L2)

Ψ({fp}) = {fψ(p)}

Ψ maps projectors (LQ(L1)) to projectors (LQ(L2)).

Proposition: Ψ is a weak QDA morphism.



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

For strong Hilbert lattice morphism ψ : L1 → L2

Ψ : Q(L1)→ Q(L2)

Let `ψ(q) =
∧
ψ(s)≤q a

Ψ(f )(q) = ψ · f · `ψ(q)
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EQUIVALENCE OF HILBERT LATTICES AND QDA

Proposition: For a strong lattice morphism ψ

ψ · `ψ = id.

Then

I Proposition: Ψ maps the projectors ({fp |p ∈ L1}) to
projectors ({fq | q ∈ L2})

I Ψ(fp)(q) = ψ · fp · `ψ(q) = fψ(p)(q)

I Proposition: UQ1 is mapped to unitaries UQ2

I Ψ(u) preserves meets, joins, and complementation and
thus Ψ(u) is a Hilbert lattice automorphism. Thus
Ψ(u) ∈ UQ2

I for some {f · g} ∈ Q,
Ψ(f · g) = ψ · f ġ · `ψ = ψ · f ˙̀

ψ · ψ · g · `ψ = Ψ(f ) ·Ψ(g)



Motivation Preliminaries Axiomatisation Equivalence of HL and QDA

EQUIVALENCE OF HILBERT LATTICES AND QDA

Proposition: For a strong lattice morphism ψ

ψ · `ψ = id.

Then
I Proposition: Ψ maps the projectors ({fp |p ∈ L1}) to

projectors ({fq | q ∈ L2})

I Ψ(fp)(q) = ψ · fp · `ψ(q) = fψ(p)(q)

I Proposition: UQ1 is mapped to unitaries UQ2

I Ψ(u) preserves meets, joins, and complementation and
thus Ψ(u) is a Hilbert lattice automorphism. Thus
Ψ(u) ∈ UQ2

I for some {f · g} ∈ Q,
Ψ(f · g) = ψ · f ġ · `ψ = ψ · f ˙̀
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I Proposition: Ψ maps the projectors ({fp |p ∈ L1}) to

projectors ({fq | q ∈ L2})
I Ψ(fp)(q) = ψ · fp · `ψ(q) = fψ(p)(q)

I Proposition: UQ1 is mapped to unitaries UQ2

I Ψ(u) preserves meets, joins, and complementation and
thus Ψ(u) is a Hilbert lattice automorphism. Thus
Ψ(u) ∈ UQ2

I for some {f · g} ∈ Q,
Ψ(f · g) = ψ · f ġ · `ψ = ψ · f ˙̀

ψ · ψ · g · `ψ = Ψ(f ) ·Ψ(g)
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I Thus taking two QDAlgebras Q1,Q2 and a morphism Ψ
between them we get Hilbert lattices LQ1 and LQ2 and the
restriction of Ψ to LQ1 given a Hilbert lattice morphism.

I Thus taking two Hilbert lattices L1,L2 and a weak/strong
morphism ψ between them. We define QDAlgebras
Q(L1),Q(L2) and the morphism

Ψ(A) = {ψ · a · `ψ | a ∈ A}

gives a weak/strong morphism of QDAlgebras.
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