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Motivation I

Definition

R: commutative ring
Spec(R): set of prime ideals of R
Krull dimension of R: supremum of lengths of chains in Spec(R)
ordered by ⊆

Extends to:

Spectral spaces via specialization order

(Bounded) distributive lattices via Stone duality
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Motivation II

Isbell 1985

• [Krull dimension is] “spectacularly wrong for the most popular
spaces, vanishing for all non-empty Hausdorff spaces; but it
seems to be the only dimension of interest for the Zariski
spaces of algebraic geometry.”

Remedy: graduated dimension

Goal:

Modify Krull dimension motivated by applications in modal logic

Point free approach

1 Locale of open subsets ⇒ Heyting algebras and intuitionistic
logic

2 Power set closure algebra ⇒ modal logics above S4
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Closure algebras

Definition

Closure Algebra A = (A,C): Boolean algebra A with a closure
operator C : A→ A satisfying the Kuratowski axioms

C(a ∨ b) = Ca ∨ Cb CCa ≤ Ca

C0 = 0 a ≤ Ca

Interior operator: I : A→ A is dual to C; i.e. Ia = −C(−a)

Natural examples:

(℘X ,C) where ℘X is the power set of X , a topological space
with closure operator C

(℘W ,R−1) where (W ,R) is a quasi-ordered set and
R−1(A) := {w ∈W | ∃v ∈ A, wRv}
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Heyting algebras

Definition

Heyting Algebra H: bounded distributive lattice such that ∧ has
residual → satisfying a ≤ b → c iff a ∧ b ≤ c

Natural examples:

Open subsets of a topological space X ; a.k.a. the locale Ω(X )

Upsets of a partially ordered set

Connecting closure and Heyting algebras

Heyting algebra of open elements of A = (A,C):
H(A) = {Ia | a ∈ A}
Closure algebra associated with H: A(H) free Boolean extension of
H with ‘appropriate’ closure operator
H(A(H)) ∼= H and A(H(A)) isomorphic to subalgebra of A
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Krull dimension of a closure algebra

Recall

For A = (A,C), let A∗ be the set of ultrafilters of A

Quasi-order A∗: xRy iff ∀a ∈ A, a ∈ y ⇒ Ca ∈ x

R-chain: finite sequence {xi ∈ A∗ | i < n} such that xiRxi+1

and xi+1R�xi for all i

length of R-chain {xi | i < n} is n − 1
allow the empty R-chain which has length −1

Definition

The Krull dimension kdim(A) of a closure algebra A is the
supremum of the lengths of R-chains in A∗. If the supremum is
not finite, then we write kdim(A) =∞.
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Some easy examples

Let A = (A,C) be a closure algebra:

Example 1

If A is trivial then kdim(A) = −1 (since A has no ultrafilters,
A∗ = ∅)

Example 2

If C = idA then kdim(A) = 0 (since the relation for A∗ is equality)

Example 3: A = {0, a, b, 1}
Let Ca = Cb = 1. Then kdim(A) = 0 (since A∗ is two element
cluster)
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Some easy examples cont.

Example 4: A = {0, a, b, 1}
Let Ca = a and Cb = 1. Then kdim(A) = 1 (since A∗ is two
element chain)
Observe: ICa = Ia = −C− a = −Cb = −1 = 0

Definitions

Let A = (A,C) be a closure algebra and a ∈ A:

a is nowhere dense in A: provided ICa = 0

Relativization Aa of A to a: the interval [0, a] with operations
∧,∨ as in A, the complement of b ∈ Aa is a− b, and closure
of b ∈ Aa is a ∧ Cb
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Internal definition

kdim is not defined point free–requires A∗!

Internal definition

For a closure algebra A = (A,C),
kdim(A) = −1 if A is the trivial algebra,
kdim(A) ≤ n if ∀d nowhere dense in A, kdim(Ad) ≤ n − 1,
kdim(A) = n if kdim(A) ≤ n and kdim(A) 6≤ n − 1,
kdim(A) =∞ if kdim(A) 6≤ n for any n = −1, 0, 1, 2, . . . .

Observation

Both definitions for kdim(A) are equivalent
Finite kdim is expressible by a modal formula
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Interpreting the modal language in CA

Interpretations in A = (A,C)

letters elements of A

Classical connectives Boolean operations of A

diamond C
box I

Formula ϕ is valid in A: ϕ evaluates to 1 for all interpretations;
written A � ϕ

The bd formulas

Let n ≥ 1:

bd1 := ♦�p1 → p1,

bdn+1 := ♦ (�pn+1 ∧ ¬bdn)→ pn+1.
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Characterizing finite kdim for CA

Theorem

Let A be a nontrivial closure algebra and n ≥ 1. TFAE:

1 kdim(A) ≤ n − 1.

2 A � bdn.

3 There does not exist a sequence e0, . . . , en of nonzero closed
elements of A such that e0 = 1 and ei+1 is nowhere dense in
Aei for each i ∈ {0, . . . , n − 1}.

4 depth(A∗) ≤ n.
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Krull dimension of a Heyting algebra

Recall

For a Heyting algebra H, let H∗ be the set of prime filters
H∗ can be partially ordered by ⊆ (closely related to R for A(H)∗)

Definition

The Krull dimension kdim(H) of a Heyting algebra H is the
supremum of the lengths of chains in H∗. If the supremum is not
finite, then we write kdim(H) =∞.

Lemma

If A is a closure algebra, then kdim(A) = kdim(H(A)).

If H is a Heyting algebra, then kdim(H) = kdim(A(H)).
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An example

Definition

Let H be a Heyting algebra and a ∈ H:
a is dense in H: provided ¬a := a→ 0 = 0

Example 4 revisited

H = {0, b, 1} open elements from previous Example 4
b is dense in A ... also in H

Definition

Let H be a Heyting algebra and a ∈ H: Relativization Ha of H to
a: the interval [a, 1] with operations ∧,∨,→ as in H and bottom a
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Internal definition

Internal definition

For a Heyting algebra H,
kdim(H) = −1 if H is the trivial algebra,
kdim(H) ≤ n if kdim(Hb) ≤ n − 1 for every dense b ∈ H,
kdim(H) = n if kdim(H) ≤ n and kdim(H) 6≤ n − 1,
kdim(H) =∞ if kdim(H) 6≤ n for any n = −1, 0, 1, 2, . . . .

Observation

Both definitions for kdim(H) are equivalent
Finite kdim(H) is expressible by an intuitionistic formula
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Interpreting the intuitionistic lang. in HA

Interpretations in H

letters elements of H

conjunction meet in H

disjunction join in H

implication → in H

Formula ϕ is valid in H: ϕ evaluates to 1 for all interpretations;
written H � ϕ

The ibd formulas

Let n ≥ 1:

ibd1 := p1 ∨ ¬p1,
ibdn+1 := pn+1 ∨ (pn+1 → ibdn).
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Characterizing finite kdim for HA

Corollary

Let H be a nontrivial Heyting algebra and n ≥ 1. TFAE:

1 kdim(H) ≤ n − 1.

2 H � ibdn.

3 There does not exist a sequence 1 > b1 > · · · > bn > 0 in H
such that bi−1 is dense in Hbi for each i ∈ {1, . . . , n}.

4 depth(H∗) ≤ n.
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Localic Krull dimension of a space

Definition

The localic Krull dimension of a topological space X is

ldim(X ) = kdim(Ω(X )) = kdim(℘X ,C)

Corollary: recursive definition of ldim

ldim(X ) = −1 if X = ∅,
ldim(X ) ≤ n if ∀D nowhere dense in X , ldim(D) ≤ n − 1,
ldim(X ) = n if ldim(X ) ≤ n and ldim(X ) 6≤ n − 1,
ldim(X ) =∞ if ldim(X ) 6≤ n for any n = −1, 0, 1, 2, . . . .



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Localic Krull dimension of a space

Definition

The localic Krull dimension of a topological space X is

ldim(X ) = kdim(Ω(X )) = kdim(℘X ,C)

Corollary: recursive definition of ldim

ldim(X ) = −1 if X = ∅,
ldim(X ) ≤ n if ∀D nowhere dense in X , ldim(D) ≤ n − 1,
ldim(X ) = n if ldim(X ) ≤ n and ldim(X ) 6≤ n − 1,
ldim(X ) =∞ if ldim(X ) 6≤ n for any n = −1, 0, 1, 2, . . . .



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Localic Krull dimension of a space

Definition

The localic Krull dimension of a topological space X is

ldim(X ) = kdim(Ω(X )) = kdim(℘X ,C)

Corollary: recursive definition of ldim

ldim(X ) = −1 if X = ∅,
ldim(X ) ≤ n if ∀D nowhere dense in X , ldim(D) ≤ n − 1,
ldim(X ) = n if ldim(X ) ≤ n and ldim(X ) 6≤ n − 1,
ldim(X ) =∞ if ldim(X ) 6≤ n for any n = −1, 0, 1, 2, . . . .



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Localic Krull dimension of a space

Definition

The localic Krull dimension of a topological space X is

ldim(X ) = kdim(Ω(X )) = kdim(℘X ,C)

Corollary: recursive definition of ldim

ldim(X ) = −1 if X = ∅,
ldim(X ) ≤ n if ∀D nowhere dense in X , ldim(D) ≤ n − 1,
ldim(X ) = n if ldim(X ) ≤ n and ldim(X ) 6≤ n − 1,
ldim(X ) =∞ if ldim(X ) 6≤ n for any n = −1, 0, 1, 2, . . . .



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Localic Krull dimension of a space

Definition

The localic Krull dimension of a topological space X is

ldim(X ) = kdim(Ω(X )) = kdim(℘X ,C)

Corollary: recursive definition of ldim

ldim(X ) = −1 if X = ∅,
ldim(X ) ≤ n if ∀D nowhere dense in X , ldim(D) ≤ n − 1,
ldim(X ) = n if ldim(X ) ≤ n and ldim(X ) 6≤ n − 1,
ldim(X ) =∞ if ldim(X ) 6≤ n for any n = −1, 0, 1, 2, . . . .



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Characterizing finite localic Krull dimension

Interpretation in X

Via the closure algebra (℘X ,C)
Thus ♦ and � are C and I resp.
ϕ is valid in X : ϕ evaluates to X under all interpretations; written
X � ϕ

Theorem

Let X 6= ∅, n ≥ 1, and Fn+1 be the (n + 1)-element chain. TFAE:

1 ldim(X ) ≤ n − 1.

2 X � bdn.

3 There does not exist a sequence E0, . . . ,En of nonempty
closed subsets of X such that E0 = X and Ei+1 is nowhere
dense in Ei for each i ∈ {0, . . . , n − 1}.

4 Fn+1 is not an interior image of X .
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Comparing ldim to other dimension functions

Lemma

Let X be a space

If X is a spectral space, then kdim(X ) ≤ ldim(X ).

If X is a regular space, then ind(X ) ≤ ldim(X ).

If X is a normal space, then Ind(X ) ≤ ldim(X ) and
dim(X ) ≤ ldim(X ).

Drawbacks and benefits via some examples

ldim(Rn) = ldim(Q) = ldim(C) =∞
ldim(ωn) = n − 1; and so ldim(ωn + 1) = n

ldim(ωω) = ldim(ωω + 1) =∞
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ldim and T1 spaces: I

Lemma

Let X be a T1 space:

ldim(X ) ≤ 0 iff X is discrete

ldim(X ) ≤ 1 iff X is nodec (every nowhere dense set is closed)

Definition

The Zeman formula is zem := �♦�p → (p → �p)

Esakia et al. 2005

X � zem iff X is nodec
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ldim and T1 spaces: II

Definition

The n-Zeman formula is
zemn := �(� (�pn+1 → bdn)→ pn+1)→ (pn+1 → �pn+1)

Theorem

Let X be T1. TFAE:

ldim(X ) ≤ n

X � zemn

X � bdn+1



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

ldim and T1 spaces: II

Definition

The n-Zeman formula is
zemn := �(� (�pn+1 → bdn)→ pn+1)→ (pn+1 → �pn+1)

Theorem

Let X be T1. TFAE:

ldim(X ) ≤ n

X � zemn

X � bdn+1



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

ldim and T1 spaces: II

Definition

The n-Zeman formula is
zemn := �(� (�pn+1 → bdn)→ pn+1)→ (pn+1 → �pn+1)

Theorem

Let X be T1. TFAE:

ldim(X ) ≤ n

X � zemn

X � bdn+1



Introduction kdim of CA kdim of HA ldim of TOP T1 setting logics S4.Zn

Some logics and properties

Definition

For n ≥ 1, put S4n := S4 + bdn and S4.Zn := S4 + zemn

Lemma

S4n+1 ( S4.Zn

S4.Zn has the finite model property

S4.Zn is the logic of uniquely rooted finite frames of depth
n + 1

Incompleteness

No logic in [S4n+1,S4.Zn) is complete with respect to a class of
T1 spaces
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The logics S4.Zn

Goal:

Construct a countable crowded Tychonoff space Zn with
ldim(Zn) = n whose logic is S4.Zn

Ingredients

1 Single frame Bn determining S4.Zn

2 Adjunction spaces (gluing); e.g. wedge sum

3 Čech-Stone compactification and Gleason cover

4 Key ingredient: building block Y , a countable crowded
ω-resolvable Tychonoff nodec space such that there is a
subspace of βY \ Y that is homeomorphic to βω and for any
nowhere dense D ⊆ Y , CD and βω are disjoint.
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Step 1: Identify Bn

Bn is the following frame and determines S4.Zn

Bn is obtained using a refined unraveling technique

•HH
HH

H

��
��

�

�� �� �� �� �� ��· · ·A
A

�� ���� ��
�
�

�� ��
...

· · ·

A
A

�� ���� ��
�
�

�� ��
...

· · ·

A
A

�� ���� ��
�
�

�� ��
...

· · ·
Depth n + 1

Oval =

cluster of

ω points

Forking is ω at each level
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Step 2: base step–build Z1

Choose and fix a point y ∈ Y
Take topological sum of ω copies of Y
Identify each copy of the point y to get Z1

Note B1 is an interior image of Z1

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
SS Y Y Y . . .

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

•
y

Z1

• • •
y y y

Y Y Y

. . . -
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Step 2: Recursive case–Chopping Zn

Start with αn : Zn → Bn

Max(Bn)
�� ���� ���� ��C0 C1 C2

. . .

�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S

•
αn(y) = r

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
SS

•
y

Zn Bn
-

αn
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Step 2: Recursive case–Chopping Zn

‘Chop’ Zn into Xi = α−1
n (R−1Ci )

Max(Bn)
�� ���� ���� ��C0 C1 C2

. . .

�
�
�
�
�
�
�
�

S
S
S
S
S
S
S
S

•
αn(y) = r

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
SS

•
y

X0 X1 X2
. . .

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

Zn Bn
-

αn
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Step 2: Recursive case–general use of Y

For each countable (Tychonoff) space Xi

•
•
•
•
ω

ω∗

Y

Y ∗

βω

βY
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Step 2: Recursive case–general use of Y

There is continuous bijection f : ω → Xi

•
•
•
•

-
f

ω Xi
ω∗

Y

Y ∗

βω

βY
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Step 2: Recursive case–general use of Y

f continuously extends to g : βω → βXi

•
•
•
•

-
g

-
f

ω Xi
ω∗

Y

Y ∗

βω βXi

βY
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Step 2: Recursive case–general use of Y

Form quotient Q via fibers of g ...

•
•
•
•

-
g

-
f

ω Xi
ω∗

YY Y

Y ∗

βω βXi

βY Q
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Step 2: Recursive case–general use of Y

Form quotient Q via fibers of g ... take subspace Y ∪ Xi

•
•
•
•

Y

Xiω
ω∗

Y

Y ∗

βω

βY Q
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Step 2: Recursive case–gluing Y ∪ Xi ’s

Take topological sum of ω copies of Y ∪ Xi

Identify through each copy of Xi to get Ai

Y Y

. . . -

Ai

Y ’s

. . .

A
A
A
A
A

A
A
A
A
A

�
�
�
�
�

�
�
�
�
�Xi Xi

A
A
A
A
A

�
�
�
�
�Xi
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Step 2: Recursive step–gluing Ai ’s to get Zn+1

Each Xi is a subset of Zn

Identify the copies of points from Zn

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
SS X0 X1 X2

. . .

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

Zn+1

Zn

. . .. . .

Y ’s

. . .

Y ’s

. . .

Y ’s

D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��Xi Xi+1

Ai Ai+1

. . . . . .

. . .

Y ’s

. . .

Y ’s

-
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Step 2: Recursive step–gluing Ai ’s to get Zn+1

Each Xi is a subset of Zn

Identify the copies of points from Zn

Send Y ’s ‘above’ Xi to cluster’s above Ci in Bn+1

�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
SS X0 X1 X2

. . .

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

Zn+1

Zn

. . .. . .

Y ’s

. . .

Y ’s

. . .

Y ’s

D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��Xi Xi+1

Ai Ai+1

. . . . . .

. . .

Y ’s

. . .

Y ’s

-
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Conclusions

Theorem

The logic of Zn is S4.Zn

Complete details available at:
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-
19.text.pdf

Thank You... Organizers and Audience

Questions ...
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