n

LOCALIC KRULL DIMENSION

Joel Lucero-Bryan, Khalifa University

Joint work:

Guram Bezhanishvili, New Mexico State University Nick Bezhanishvili, University of Amsterdam Jan van Mill, University of Amsterdam

> ToLo V, Tbilisi, Georgia 13–17 June 2016

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Monu	TION I				
	ATION I				

R: commutative ring Spec(R): set of prime ideals of *R*

Krull dimension of R: supremum of lengths of chains in Spec(R) ordered by \subseteq

Extends to:

- Spectral spaces via specialization order
- (Bounded) distributive lattices via Stone duality

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	TION I				

R: commutative ring Spec(*R*): set of prime ideals of *R Krull dimension of R*: supremum of lengths of chains in Spec(*R*) ordered by \subseteq

Extends to:

- Spectral spaces via specialization order
- (Bounded) distributive lattices via Stone duality

Mommon I		

R: commutative ring Spec(*R*): set of prime ideals of *R Krull dimension of R*: supremum of lengths of chains in Spec(*R*) ordered by \subseteq

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EXTENDS TO:

• Spectral spaces via specialization order

• (Bounded) distributive lattices via Stone duality

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	TION I				

R: commutative ring Spec(*R*): set of prime ideals of *R Krull dimension of R*: supremum of lengths of chains in Spec(*R*) ordered by \subseteq

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EXTENDS TO:

- Spectral spaces via specialization order
- (Bounded) distributive lattices via Stone duality

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Motiva	ATION II				

$\rm ISBELL \ 1985$

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

Point free Approach

- Locale of open subsets ⇒ Heyting algebras and intuitionistic logic
- ② Power set closure algebra \Rightarrow modal logics above **S4**

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	ATION II				

$\rm ISBELL \ 1985$

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

Point free Approach

- Locale of open subsets ⇒ Heyting algebras and intuitionistic logic
- ② Power set closure algebra \Rightarrow modal logics above **S4**

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Motiva	ATION II				

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

Point free approach

- Iccale of open subsets ⇒ Heyting algebras and intuitionistic logic
- ② Power set closure algebra \Rightarrow modal logics above S4

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	ATION II				

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

- Quartic Locale of open subsets ⇒ Heyting algebras and intuitionistic logic
 - 2) Power set closure algebra \Rightarrow modal logics above **S4**

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	ATION II				

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

- $\label{eq:local} \textbf{O} \mbox{ Locale of open subsets} \Rightarrow \mbox{Heyting algebras and intuitionistic logic}$
 -) Power set closure algebra \Rightarrow modal logics above **S4**

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
MOTIV	ATION II				

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

- Quartic Locale of open subsets ⇒ Heyting algebras and intuitionistic logic
- 2 Power set closure algebra \Rightarrow modal logics above S4

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Motiva	ATION II				

- [Krull dimension is] "spectacularly wrong for the most popular spaces, vanishing for all non-empty Hausdorff spaces; but it seems to be the only dimension of interest for the Zariski spaces of algebraic geometry."
- Remedy: graduated dimension

GOAL:

Modify Krull dimension motivated by applications in modal logic

- Quartic Locale of open subsets ⇒ Heyting algebras and intuitionistic logic
- **2** Power set closure algebra \Rightarrow modal logics above **S4**

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CLOSUE	RE ALGEBI	RAS			

Closure Algebra $\mathfrak{A} = (A, \mathbf{C})$: Boolean algebra A with a closure operator $\mathbf{C} : A \to A$ satisfying the Kuratowski axioms

$$\mathbf{C}(a \lor b) = \mathbf{C}a \lor \mathbf{C}b$$
 $\mathbf{C}\mathbf{C}a \leq \mathbf{C}a$
 $\mathbf{C}0 = 0$ $a \leq \mathbf{C}a$

Interior operator: $I : A \rightarrow A$ is dual to C; i.e. Ia = -C(-a)

- (℘X, C) where ℘X is the power set of X, a topological space with closure operator C
- $(\wp W, R^{-1})$ where (W, R) is a quasi-ordered set and $R^{-1}(A) := \{ w \in W \mid \exists v \in A, wRv \}$

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CLOSUE	RE ALGEBI	RAS			

Closure Algebra $\mathfrak{A} = (A, \mathbf{C})$: Boolean algebra A with a closure operator $\mathbf{C} : A \to A$ satisfying the Kuratowski axioms

$$\mathbf{C}(a \lor b) = \mathbf{C}a \lor \mathbf{C}b$$
 $\mathbf{C}\mathbf{C}a \le \mathbf{C}a$
 $\mathbf{C}0 = 0$ $a \le \mathbf{C}a$

Interior operator: $I : A \rightarrow A$ is dual to C; i.e. Ia = -C(-a)

- (℘X, C) where ℘X is the power set of X, a topological space with closure operator C
- $(\wp W, R^{-1})$ where (W, R) is a quasi-ordered set and $R^{-1}(A) := \{ w \in W \mid \exists v \in A, wRv \}$

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CLOSUE	RE ALGEBI	RAS			

Closure Algebra $\mathfrak{A} = (A, \mathbf{C})$: Boolean algebra A with a closure operator $\mathbf{C} : A \to A$ satisfying the Kuratowski axioms

$$\mathbf{C}(a \lor b) = \mathbf{C}a \lor \mathbf{C}b$$
 $\mathbf{C}\mathbf{C}a \le \mathbf{C}a$
 $\mathbf{C}0 = 0$ $a \le \mathbf{C}a$

Interior operator: $I : A \rightarrow A$ is dual to C; i.e. Ia = -C(-a)

- (℘X, C) where ℘X is the power set of X, a topological space with closure operator C
- $(\wp W, R^{-1})$ where (W, R) is a quasi-ordered set and $R^{-1}(A) := \{ w \in W \mid \exists v \in A, wRv \}$

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CLOSUE	RE ALGEBI	RAS			

Closure Algebra $\mathfrak{A} = (A, \mathbf{C})$: Boolean algebra A with a closure operator $\mathbf{C} : A \to A$ satisfying the Kuratowski axioms

$$\mathbf{C}(a \lor b) = \mathbf{C}a \lor \mathbf{C}b$$
 $\mathbf{C}\mathbf{C}a \le \mathbf{C}a$
 $\mathbf{C}0 = 0$ $a \le \mathbf{C}a$

Interior operator: $I : A \rightarrow A$ is dual to C; i.e. Ia = -C(-a)

- (℘X, C) where ℘X is the power set of X, a topological space with closure operator C
- $(\wp W, R^{-1})$ where (W, R) is a quasi-ordered set and $R^{-1}(A) := \{ w \in W \mid \exists v \in A, wRv \}$

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
HEYTIN	IG ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \land has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \land b \leq c$

NATURAL EXAMPLES:

• Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$

• Upsets of a partially ordered set

Connecting closure and Heyting algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	G ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \wedge has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \wedge b \leq c$

NATURAL EXAMPLES:

• Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$

Upsets of a partially ordered set

Connecting closure and Heyting algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	IG ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \land has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \land b \leq c$

NATURAL EXAMPLES:

• Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$

Upsets of a partially ordered set

Connecting closure and Heyting algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	IG ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \wedge has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \wedge b \leq c$

NATURAL EXAMPLES:

- Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$
- Upsets of a partially ordered set

Connecting closure and Heyting algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	G ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \wedge has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \wedge b \leq c$

NATURAL EXAMPLES:

- Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$
- Upsets of a partially ordered set

Connecting closure and Heyting Algebras

Heyting algebra of open elements of $\mathfrak{A} = (A, \mathbb{C})$: $\mathfrak{H}(\mathfrak{A}) = \{ \mathbf{I}a \mid a \in A \}$

Closure algebra associated with $\mathfrak{H}: \mathfrak{A}(\mathfrak{H})$ free Boolean extension of \mathfrak{H} with 'appropriate' closure operator $\mathfrak{H}(\mathfrak{A}(\mathfrak{H})) \cong \mathfrak{H}$ and $\mathfrak{A}(\mathfrak{H}(\mathfrak{A}))$ isomorphic to subalgebra of \mathfrak{A}

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	G ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \land has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \land b \leq c$

NATURAL EXAMPLES:

- Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$
- Upsets of a partially ordered set

Connecting closure and Heyting Algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	G ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \wedge has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \wedge b \leq c$

NATURAL EXAMPLES:

- Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$
- Upsets of a partially ordered set

Connecting closure and Heyting Algebras

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
Heytin	G ALGEBI	RAS			

Heyting Algebra \mathfrak{H} : bounded distributive lattice such that \land has residual \rightarrow satisfying $a \leq b \rightarrow c$ iff $a \land b \leq c$

NATURAL EXAMPLES:

- Open subsets of a topological space X; a.k.a. the locale $\Omega(X)$
- Upsets of a partially ordered set

Connecting closure and Heyting Algebras

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence {x_i ∈ 𝔄_{*} | i < n} such that x_iRx_{i+1} and x_{i+1}Rx_i for all i
- length of R-chain {x_i | i < n} is n − 1 allow the empty R-chain which has length −1

Definition

The *Krull dimension* $kdim(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $kdim(\mathfrak{A}) = \infty$.

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence {x_i ∈ 𝔄_{*} | i < n} such that x_iRx_{i+1} and x_{i+1}Rx_i for all i
- length of R-chain {x_i | i < n} is n − 1 allow the empty R-chain which has length −1

Definition

The *Krull dimension* $\operatorname{kdim}(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{A}) = \infty$.

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence $\{x_i \in \mathfrak{A}_* \mid i < n\}$ such that $x_i R x_{i+1}$ and $x_{i+1} R x_i$ for all i
- length of *R*-chain {x_i | i < n} is n − 1 allow the empty *R*-chain which has length −1

Definition

The *Krull dimension* $\operatorname{kdim}(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{A}) = \infty$.

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence $\{x_i \in \mathfrak{A}_* \mid i < n\}$ such that $x_i R x_{i+1}$ and $x_{i+1} R x_i$ for all i
- *length* of *R*-chain {x_i | i < n} is n − 1 allow the empty *R*-chain which has length −

Definition

The *Krull dimension* $kdim(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $kdim(\mathfrak{A}) = \infty$.

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence $\{x_i \in \mathfrak{A}_* \mid i < n\}$ such that $x_i R x_{i+1}$ and $x_{i+1} R x_i$ for all i
- length of R-chain {x_i | i < n} is n − 1 allow the empty R-chain which has length −1

Definition

The *Krull dimension* $kdim(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $kdim(\mathfrak{A}) = \infty$.

RECALL

For $\mathfrak{A} = (A, \mathbf{C})$, let \mathfrak{A}_* be the set of ultrafilters of A

- Quasi-order \mathfrak{A}_* : *xRy* iff $\forall a \in A$, $a \in y \Rightarrow \mathbf{C}a \in x$
- *R-chain*: finite sequence $\{x_i \in \mathfrak{A}_* \mid i < n\}$ such that $x_i R x_{i+1}$ and $x_{i+1} R x_i$ for all i
- length of *R*-chain {x_i | i < n} is n − 1 allow the empty *R*-chain which has length −1

DEFINITION

The *Krull dimension* $\operatorname{kdim}(\mathfrak{A})$ of a closure algebra \mathfrak{A} is the supremum of the lengths of *R*-chains in \mathfrak{A}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{A}) = \infty$.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
SOME F	LASV EXAN	IPLES			

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra:

EXAMPLE 1

If \mathfrak{A} is trivial then $\operatorname{kdim}(\mathfrak{A}) = -1$ (since A has no ultrafilters, $\mathfrak{A}_* = \varnothing$)

Example 2

If $C = id_A$ then $kdim(\mathfrak{A}) = 0$ (since the relation for \mathfrak{A}_* is equality)

EXAMPLE 3: $A = \{0, a, b, 1\}$

Let Ca = Cb = 1. Then $kdim(\mathfrak{A}) = 0$ (since \mathfrak{A}_* is two element cluster)

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
SOME F	LASV EXAN	IPLES			

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra:

EXAMPLE 1

If $\mathfrak A$ is trivial then $\operatorname{kdim}(\mathfrak A)=-1$ (since A has no ultrafilters, $\mathfrak A_*=\varnothing)$

EXAMPLE 2

If $\mathbf{C} = \mathbf{id}_A$ then $\operatorname{kdim}(\mathfrak{A}) = 0$ (since the relation for \mathfrak{A}_* is equality)

EXAMPLE 3: $A = \{0, a, b, 1\}$

Let Ca = Cb = 1. Then $\operatorname{kdim}(\mathfrak{A}) = 0$ (since \mathfrak{A}_* is two element cluster)

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
SOME F	EASV EXAN	ADLES			

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra:

EXAMPLE 1

If \mathfrak{A} is trivial then $\operatorname{kdim}(\mathfrak{A}) = -1$ (since A has no ultrafilters, $\mathfrak{A}_* = \varnothing$)

EXAMPLE 2

If $\mathbf{C} = \mathbf{id}_A$ then $\operatorname{kdim}(\mathfrak{A}) = 0$ (since the relation for \mathfrak{A}_* is equality)

EXAMPLE 3: $A = \{0, a, b, 1\}$

Let Ca = Cb = 1. Then $kdim(\mathfrak{A}) = 0$ (since \mathfrak{A}_* is two element cluster)

Inte	od		63	00
IIILI	ou	uc	u	011

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:

• a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$

Relativization 𝔅_a of 𝔅 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔅, the complement of b ∈ 𝔅_a is a − b, and closure of b ∈ 𝔅_a is a ∧ Cb

Introduction								
		11		a		•		
meroduction			а,		C			

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:

• a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$

Relativization 𝔄_a of 𝔄 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔄, the complement of b ∈ 𝔄_a is a − b, and closure of b ∈ 𝔄_a is a ∧ Cb

Introduction								
		11		a		•		
meroduction			а,		C			

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

- Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:
 - a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$
 - Relativization 𝔄_a of 𝔄 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔄, the complement of b ∈ 𝔄_a is a − b, and closure of b ∈ 𝔄_a is a ∧ Cb
| Introduction | | | | | | | | |
|--------------|--|----|----|--|---|---|--|--|
| | | 11 | | | | • | | |
| meroduction | | | а, | | C | | | |

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:

- a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$
- Relativization 𝔄_a of 𝔄 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔄, the complement of b ∈ 𝔄_a is a − b, and closure of b ∈ 𝔄_a is a ∧ Cb

Introduction								
		11				•		
meroduction			а,		C			

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:

- a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$
- Relativization 𝔄_a of 𝔄 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔄, the complement of b ∈ 𝔄_a is a − b, and closure of b ∈ 𝔄_a is a ∧ Cb

Introduction								
		11				•		
meroduction			а,		C			

Some easy examples cont.

EXAMPLE 4: $A = \{0, a, b, 1\}$

Let Ca = a and Cb = 1. Then $kdim(\mathfrak{A}) = 1$ (since \mathfrak{A}_* is two element chain) Observe: ICa = Ia = -C - a = -Cb = -1 = 0

DEFINITIONS

Let $\mathfrak{A} = (A, \mathbf{C})$ be a closure algebra and $a \in A$:

- a is nowhere dense in \mathfrak{A} : provided $\mathbf{IC}a = 0$
- Relativization 𝔅_a of 𝔅 to a: the interval [0, a] with operations
 ∧, ∨ as in 𝔅, the complement of b ∈ 𝔅_a is a − b, and closure of b ∈ 𝔅_a is a ∧ Cb

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN		THON .			

kdim is not defined point free–requires $\mathfrak{A}_*!$

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbb{C})$, $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra, $\operatorname{kdim}(\mathfrak{A}) \leq n$ if $\forall d$ nowhere dense in \mathfrak{A} , $\operatorname{kdim}(\mathfrak{A}_d) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = n$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ and $\operatorname{kdim}(\mathfrak{A}) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = \infty$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ for any $n = -1, 0, 1, 2, \ldots$

OBSERVATION

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbf{C})$,

$\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra,

$$\begin{split} & \mathrm{kdim}(\mathfrak{A}) \leq n & \text{if } \forall d \text{ nowhere dense in } \mathfrak{A}, \, \mathrm{kdim}(\mathfrak{A}_d) \leq n-1, \\ & \mathrm{kdim}(\mathfrak{A}) = n & \text{if } \mathrm{kdim}(\mathfrak{A}) \leq n \text{ and } \mathrm{kdim}(\mathfrak{A}) \nleq n-1, \\ & \mathrm{kdim}(\mathfrak{A}) = \infty & \text{if } \mathrm{kdim}(\mathfrak{A}) \nleq n \text{ for any } n = -1, 0, 1, 2, \ldots. \end{split}$$

Observation

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbf{C})$,

 $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra,

 $\begin{array}{ll} \operatorname{kdim}(\mathfrak{A}) \leq n & \text{if} \quad \forall d \text{ nowhere dense in } \mathfrak{A}, \operatorname{kdim}(\mathfrak{A}_d) \leq n-1, \\ \operatorname{kdim}(\mathfrak{A}) = n & \text{if} \quad \operatorname{kdim}(\mathfrak{A}) \leq n \text{ and } \operatorname{kdim}(\mathfrak{A}) \not\leq n-1, \\ \operatorname{kdim}(\mathfrak{A}) = \infty & \text{if} \quad \operatorname{kdim}(\mathfrak{A}) \not\leq n \text{ for any } n = -1, 0, 1, 2, \dots \end{array}$

OBSERVATION

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbb{C})$, $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra, $\operatorname{kdim}(\mathfrak{A}) \leq n$ if $\forall d$ nowhere dense in \mathfrak{A} , $\operatorname{kdim}(\mathfrak{A}_d) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = n$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ and $\operatorname{kdim}(\mathfrak{A}) \not\leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = \infty$ if $\operatorname{kdim}(\mathfrak{A}) \not\leq n$ for any $n = -1, 0, 1, 2, \ldots$

Observation

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbf{C})$, $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra, $\operatorname{kdim}(\mathfrak{A}) \leq n$ if $\forall d$ nowhere dense in \mathfrak{A} , $\operatorname{kdim}(\mathfrak{A}_d) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = n$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ and $\operatorname{kdim}(\mathfrak{A}) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = \infty$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ for any $n = -1, 0, 1, 2, \dots$

Observation

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbb{C})$, $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra, $\operatorname{kdim}(\mathfrak{A}) \leq n$ if $\forall d$ nowhere dense in \mathfrak{A} , $\operatorname{kdim}(\mathfrak{A}_d) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = n$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ and $\operatorname{kdim}(\mathfrak{A}) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = \infty$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ for any $n = -1, 0, 1, 2, \dots$

OBSERVATION

Both definitions for $\operatorname{kdim}(\mathfrak{A})$ are equivalent

Finite kdim is expressible by a modal formula

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
INTERN	AL DEFIN	ITION			

INTERNAL DEFINITION

For a closure algebra $\mathfrak{A} = (A, \mathbb{C})$, $\operatorname{kdim}(\mathfrak{A}) = -1$ if \mathfrak{A} is the trivial algebra, $\operatorname{kdim}(\mathfrak{A}) \leq n$ if $\forall d$ nowhere dense in \mathfrak{A} , $\operatorname{kdim}(\mathfrak{A}_d) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = n$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ and $\operatorname{kdim}(\mathfrak{A}) \leq n-1$, $\operatorname{kdim}(\mathfrak{A}) = \infty$ if $\operatorname{kdim}(\mathfrak{A}) \leq n$ for any $n = -1, 0, 1, 2, \ldots$

OBSERVATION

RPRETATIONS IN $\mathfrak{A}=(A, C)$							
letters	elements of ${\mathfrak A}$						
Classical connectives	Boolean operations of A						
diamond	С						
box							

Formula φ is valid in \mathfrak{A} : φ evaluates to 1 for all interpretations; written $\mathfrak{A} \models \varphi$

THE **bd** FORMULAS

Let $n \geq 1$:

$$bd_1 := \Diamond \Box p_1 \to p_1,$$

$$bd_{n+1} := \Diamond (\Box p_{n+1} \land \neg bd_n) \to p_{n+1}.$$

000

IN

INTERPRETING THE MODAL LANGUAGE IN CA

TERP	ERPRETATIONS IN $\mathfrak{A}=(A, \mathbf{C})$						
	letters	elements of \mathfrak{A}					
	Classical connectives	Boolean operations of A					
	diamond	С					
	box						

Formula φ is valid in \mathfrak{A} : φ evaluates to 1 for all interpretations; written $\mathfrak{A} \models \varphi$

THE **bd** FORMULAS

Let $n \geq 1$:

 $bd_1 := \Diamond \Box p_1 \to p_1,$ $bd_{n+1} := \Diamond (\Box p_{n+1} \land \neg bd_n) \to p_{n+1}.$

INTERPRETATIONS IN $\mathfrak{A} = (A, \mathbf{C})$

letters	elements of ${\mathfrak A}$
Classical connectives	Boolean operations of A
diamond	C
box	I

Formula φ is valid in \mathfrak{A} : φ evaluates to 1 for all interpretations; written $\mathfrak{A} \models \varphi$

THE **bd** FORMULAS

Let $n \geq 1$:

 $bd_1 := \Diamond \Box p_1 \to p_1,$ $bd_{n+1} := \Diamond (\Box p_{n+1} \land \neg bd_n) \to p_{n+1}.$

INTERPRETATIONS IN $\mathfrak{A} = (A, \mathbf{C})$

letters	elements of $\mathfrak A$
Classical connectives	Boolean operations of A
diamond	C
box	I

Formula φ is valid in \mathfrak{A} : φ evaluates to 1 for all interpretations; written $\mathfrak{A} \models \varphi$

THE **bd** FORMULAS

Let $n \geq 1$:

$$bd_1 := \Diamond \Box p_1 \to p_1,$$

$$bd_{n+1} := \Diamond (\Box p_{n+1} \land \neg bd_n) \to p_{n+1}.$$

INTERPRETATIONS IN $\mathfrak{A} = (A, \mathbf{C})$

letters	elements of $\mathfrak A$	
Classical connectives	Boolean operations of A	
diamond	C	
box	I	

 $\label{eq:product} \begin{array}{l} \textit{Formula} \ \varphi \ \textit{is valid in } \mathfrak{A} \colon \ \varphi \ \textit{evaluates to } 1 \ \textit{for all interpretations}; \\ & \text{written } \mathfrak{A} \vDash \varphi \end{array}$

THE bd FORMULAS Let $n \ge 1$: $bd_1 := \Diamond \Box p_1 \rightarrow p_1,$ $bd_{n+1} := \Diamond (\Box p_{n+1} \land \neg bd_n) \rightarrow p_{n+1}.$

INTERPRETATIONS IN $\mathfrak{A} = (A, \mathbf{C})$

letters	elements of A	
Classical connectives	Boolean operations of A	
diamond	C	
box	I	

 $\label{eq:formula} \begin{array}{l} \varphi \mbox{ is valid in } \mathfrak{A} \colon \varphi \mbox{ evaluates to } 1 \mbox{ for all interpretations}; \\ \mbox{ written } \mathfrak{A} \vDash \varphi \end{array}$

THE **bd** FORMULAS

Let $n \ge 1$:

$$\mathsf{bd}_1 := \Diamond \Box \rho_1 \to \rho_1, \ \mathsf{bd}_{n+1} := \Diamond (\Box \rho_{n+1} \land \neg \mathsf{bd}_n) \to \rho_{n+1}.$$

INTERPRETATIONS IN $\mathfrak{A} = (A, \mathbf{C})$

letters	elements of A	
Classical connectives	Boolean operations of A	
diamond	C	
box	I	

 $\label{eq:formula} \begin{array}{l} \varphi \mbox{ is valid in } \mathfrak{A} \colon \varphi \mbox{ evaluates to } 1 \mbox{ for all interpretations}; \\ \mbox{ written } \mathfrak{A} \vDash \varphi \end{array}$

THE **bd** FORMULAS

Let $n \geq 1$:

$$\mathsf{bd}_1 := \Diamond \Box \rho_1 \to \rho_1,$$

 $\mathsf{bd}_{n+1} := \Diamond (\Box \rho_{n+1} \land \neg \mathsf{bd}_n) \to \rho_{n+1}.$

20

CHARACTERIZING FINITE kdim for CA

Theorem

Let \mathfrak{A} be a nontrivial closure algebra and $n \geq 1$. TFAE:

- kdim(\mathfrak{A}) $\leq n-1$.
- $() \mathfrak{A} \vDash \mathsf{bd}_n.$
- There does not exist a sequence e₀,..., e_n of nonzero closed elements of 𝔅 such that e₀ = 1 and e_{i+1} is nowhere dense in 𝔅_{e_i} for each i ∈ {0,..., n − 1}.

• depth(\mathfrak{A}_*) $\leq n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

CHARACTERIZING FINITE kdim for CA

THEOREM

Let \mathfrak{A} be a nontrivial closure algebra and $n \ge 1$. TFAE:

- kdim(\mathfrak{A}) $\leq n-1$.
- 2 $\mathfrak{A} \models \mathsf{bd}_n$.

There does not exist a sequence e₀,..., e_n of nonzero closed elements of 𝔅 such that e₀ = 1 and e_{i+1} is nowhere dense in 𝔅_{e_i} for each i ∈ {0,..., n − 1}.

• depth $(\mathfrak{A}_*) \leq n$

CHARACTERIZING FINITE kdim for CA

Theorem

Let \mathfrak{A} be a nontrivial closure algebra and $n \ge 1$. TFAE:

- kdim(\mathfrak{A}) $\leq n-1$.
- 2 $\mathfrak{A} \models \mathsf{bd}_n$.
- **3** There does not exist a sequence e_0, \ldots, e_n of nonzero closed elements of \mathfrak{A} such that $e_0 = 1$ and e_{i+1} is nowhere dense in \mathfrak{A}_{e_i} for each $i \in \{0, \ldots, n-1\}$.

 ${ extsf{0}} \quad extsf{depth}(\mathfrak{A}_*) \leq n$

CHARACTERIZING FINITE kdim for CA

THEOREM

Let \mathfrak{A} be a nontrivial closure algebra and $n \geq 1$. TFAE:

- kdim(\mathfrak{A}) $\leq n-1$.
- 2 $\mathfrak{A} \models \mathsf{bd}_n$.
- There does not exist a sequence e₀,..., e_n of nonzero closed elements of 𝔅 such that e₀ = 1 and e_{i+1} is nowhere dense in 𝔅_{e_i} for each i ∈ {0,..., n − 1}.

• depth
$$(\mathfrak{A}_*) \leq n$$
.

Recall

For a Heyting algebra \mathfrak{H} , let \mathfrak{H}_* be the set of prime filters

Definition

The *Krull dimension* kdim(\mathfrak{H}) of a Heyting algebra \mathfrak{H} is the supremum of the lengths of chains in \mathfrak{H}_* . If the supremum is not finite, then we write kdim(\mathfrak{H}) = ∞ .

Lemma

- If \mathfrak{A} is a closure algebra, then $\operatorname{kdim}(\mathfrak{A}) = \operatorname{kdim}(\mathfrak{H}(\mathfrak{A}))$.
- If \mathfrak{H} is a Heyting algebra, then $\operatorname{kdim}(\mathfrak{H}) = \operatorname{kdim}(\mathfrak{A}(\mathfrak{H}))$.

Recall

For a Heyting algebra \mathfrak{H} , let \mathfrak{H}_* be the set of prime filters \mathfrak{H}_* can be partially ordered by \subseteq (closely related to R for $\mathfrak{A}(\mathfrak{H})_*$)

Definition

The *Krull dimension* kdim(\mathfrak{H}) of a Heyting algebra \mathfrak{H} is the supremum of the lengths of chains in \mathfrak{H}_* . If the supremum is not finite, then we write kdim(\mathfrak{H}) = ∞ .

Lemma

- If \mathfrak{A} is a closure algebra, then $\operatorname{kdim}(\mathfrak{A}) = \operatorname{kdim}(\mathfrak{H}(\mathfrak{A}))$.
- If \mathfrak{H} is a Heyting algebra, then $\operatorname{kdim}(\mathfrak{H}) = \operatorname{kdim}(\mathfrak{A}(\mathfrak{H}))$.

Recall

For a Heyting algebra \mathfrak{H} , let \mathfrak{H}_* be the set of prime filters \mathfrak{H}_* can be partially ordered by \subseteq (closely related to R for $\mathfrak{A}(\mathfrak{H})_*$)

DEFINITION

The Krull dimension $\operatorname{kdim}(\mathfrak{H})$ of a Heyting algebra \mathfrak{H} is the supremum of the lengths of chains in \mathfrak{H}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{H}) = \infty$.

LEMMA

- If \mathfrak{A} is a closure algebra, then $\operatorname{kdim}(\mathfrak{A}) = \operatorname{kdim}(\mathfrak{H}(\mathfrak{A}))$.
- If \mathfrak{H} is a Heyting algebra, then $\operatorname{kdim}(\mathfrak{H}) = \operatorname{kdim}(\mathfrak{A}(\mathfrak{H}))$.

Recall

For a Heyting algebra \mathfrak{H} , let \mathfrak{H}_* be the set of prime filters \mathfrak{H}_* can be partially ordered by \subseteq (closely related to R for $\mathfrak{A}(\mathfrak{H})_*$)

DEFINITION

The Krull dimension $\operatorname{kdim}(\mathfrak{H})$ of a Heyting algebra \mathfrak{H} is the supremum of the lengths of chains in \mathfrak{H}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{H}) = \infty$.

Lemma

- If \mathfrak{A} is a closure algebra, then $\operatorname{kdim}(\mathfrak{A}) = \operatorname{kdim}(\mathfrak{H}(\mathfrak{A}))$.
- If \mathfrak{H} is a Heyting algebra, then $\operatorname{kdim}(\mathfrak{H}) = \operatorname{kdim}(\mathfrak{A}(\mathfrak{H}))$

Recall

For a Heyting algebra \mathfrak{H} , let \mathfrak{H}_* be the set of prime filters \mathfrak{H}_* can be partially ordered by \subseteq (closely related to R for $\mathfrak{A}(\mathfrak{H})_*$)

DEFINITION

The Krull dimension $\operatorname{kdim}(\mathfrak{H})$ of a Heyting algebra \mathfrak{H} is the supremum of the lengths of chains in \mathfrak{H}_* . If the supremum is not finite, then we write $\operatorname{kdim}(\mathfrak{H}) = \infty$.

Lemma

- If \mathfrak{A} is a closure algebra, then $\operatorname{kdim}(\mathfrak{A}) = \operatorname{kdim}(\mathfrak{H}(\mathfrak{A}))$.
- If \mathfrak{H} is a Heyting algebra, then $\operatorname{kdim}(\mathfrak{H}) = \operatorname{kdim}(\mathfrak{A}(\mathfrak{H}))$.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
AN EXA	MPLE				

Let \mathfrak{H} be a Heyting algebra and $a \in \mathfrak{H}$: *a is dense in* \mathfrak{H} : provided $\neg a := a \rightarrow 0 = 0$

EXAMPLE 4 REVISITED

 $\mathfrak{H}=\{0,b,1\}$ open elements from previous Example 4 b is dense in \mathfrak{A} ... also in \mathfrak{H}

Definition

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
AN EXA	MPLE				

Let \mathfrak{H} be a Heyting algebra and $a \in \mathfrak{H}$: *a is dense in* \mathfrak{H} : provided $\neg a := a \rightarrow 0 = 0$

Example 4 revisited

 $\mathfrak{H} = \{0, b, 1\}$ open elements from previous Example 4 b is dense in \mathfrak{A} ... also in \mathfrak{H}

Definition

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
·					
AN EXA	MPLE				

Let \mathfrak{H} be a Heyting algebra and $a \in \mathfrak{H}$: *a is dense in* \mathfrak{H} : provided $\neg a := a \rightarrow 0 = 0$

Example 4 revisited

 $\mathfrak{H} = \{0, b, 1\}$ open elements from previous Example 4 b is dense in \mathfrak{A} ... also in \mathfrak{H}

Definition

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
·					
AN EXA	MPLE				

Let \mathfrak{H} be a Heyting algebra and $a \in \mathfrak{H}$: *a is dense in* \mathfrak{H} : provided $\neg a := a \rightarrow 0 = 0$

Example 4 revisited

 $\mathfrak{H}=\{0,b,1\}$ open elements from previous Example 4 b is dense in \mathfrak{A} ... also in \mathfrak{H}

DEFINITION

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
AN EXA	MPLE				

Let \mathfrak{H} be a Heyting algebra and $a \in \mathfrak{H}$: *a is dense in* \mathfrak{H} : provided $\neg a := a \rightarrow 0 = 0$

Example 4 revisited

 $\mathfrak{H} = \{0, b, 1\}$ open elements from previous Example 4 b is dense in \mathfrak{A} ... also in \mathfrak{H}

DEFINITION

Introduction	kdim of CA	kdim of HA	Idim of TOP	T_1 setting	logics S4.Z _n

INTERNAL DEFINITION

For a Heyting algebra \mathfrak{H} , $\operatorname{kdim}(\mathfrak{H}) = -1$ if \mathfrak{H} is the trivial algebra, $\operatorname{kdim}(\mathfrak{H}) \leq n$ if $\operatorname{kdim}(\mathfrak{H}_b) \leq n-1$ for every dense $b \in \mathfrak{H}$, $\operatorname{kdim}(\mathfrak{H}) = n$ if $\operatorname{kdim}(\mathfrak{H}) \leq n$ and $\operatorname{kdim}(\mathfrak{H}) \leq n-1$, $\operatorname{kdim}(\mathfrak{H}) = \infty$ if $\operatorname{kdim}(\mathfrak{H}) \leq n$ for any $n = -1, 0, 1, 2, \ldots$

Observation

Both definitions for $kdim(\mathfrak{H})$ are equivalent Finite $kdim(\mathfrak{H})$ is expressible by an intuitionistic formula

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n

INTERNAL DEFINITION

For a Heyting algebra \mathfrak{H} , $\operatorname{kdim}(\mathfrak{H}) = -1$ if \mathfrak{H} is the trivial algebra, $\operatorname{kdim}(\mathfrak{H}) \leq n$ if $\operatorname{kdim}(\mathfrak{H}_b) \leq n-1$ for every dense $b \in \mathfrak{H}$, $\operatorname{kdim}(\mathfrak{H}) = n$ if $\operatorname{kdim}(\mathfrak{H}) \leq n$ and $\operatorname{kdim}(\mathfrak{H}) \not\leq n-1$, $\operatorname{kdim}(\mathfrak{H}) = \infty$ if $\operatorname{kdim}(\mathfrak{H}) \not\leq n$ for any $n = -1, 0, 1, 2, \ldots$

Observation

Both definitions for $kdim(\mathfrak{H})$ are equivalent Finite $kdim(\mathfrak{H})$ is expressible by an intuitionistic formula

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n

INTERNAL DEFINITION

For a Heyting algebra \mathfrak{H} , $\operatorname{kdim}(\mathfrak{H}) = -1$ if \mathfrak{H} is the trivial algebra, $\operatorname{kdim}(\mathfrak{H}) \leq n$ if $\operatorname{kdim}(\mathfrak{H}_b) \leq n-1$ for every dense $b \in \mathfrak{H}$, $\operatorname{kdim}(\mathfrak{H}) = n$ if $\operatorname{kdim}(\mathfrak{H}) \leq n$ and $\operatorname{kdim}(\mathfrak{H}) \not\leq n-1$, $\operatorname{kdim}(\mathfrak{H}) = \infty$ if $\operatorname{kdim}(\mathfrak{H}) \not\leq n$ for any $n = -1, 0, 1, 2, \ldots$

OBSERVATION

Both definitions for $\operatorname{kdim}(\mathfrak{H})$ are equivalent

Finite $\operatorname{kdim}(\mathfrak{H})$ is expressible by an intuitionistic formula

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n

INTERNAL DEFINITION

For a Heyting algebra \mathfrak{H} , $\operatorname{kdim}(\mathfrak{H}) = -1$ if \mathfrak{H} is the trivial algebra, $\operatorname{kdim}(\mathfrak{H}) \leq n$ if $\operatorname{kdim}(\mathfrak{H}_b) \leq n-1$ for every dense $b \in \mathfrak{H}$, $\operatorname{kdim}(\mathfrak{H}) = n$ if $\operatorname{kdim}(\mathfrak{H}) \leq n$ and $\operatorname{kdim}(\mathfrak{H}) \not\leq n-1$, $\operatorname{kdim}(\mathfrak{H}) = \infty$ if $\operatorname{kdim}(\mathfrak{H}) \not\leq n$ for any $n = -1, 0, 1, 2, \ldots$

OBSERVATION

Both definitions for $kdim(\mathfrak{H})$ are equivalent Finite $kdim(\mathfrak{H})$ is expressible by an intuitionistic formula

INTERPRETING THE INTUITIONISTIC LANG. IN HA

Interpretations in \mathfrak{H}

letters	elements of \mathfrak{H}		
conjunction	meet in H		
disjunction	join in H		
implication	$ ightarrow$ in \mathfrak{H}		

Formula φ is valid in \mathfrak{H} : φ evaluates to 1 for all interpretations; written $\mathfrak{H} \models \varphi$

THE ibd FORMULAS

Let $n \geq 1$:

 $\mathsf{ibd}_1 := p_1 \lor \neg p_1,$ $\mathsf{ibd}_{n+1} := p_{n+1} \lor (p_{n+1} \to \mathsf{ibd}_n).$
INTERPRETING THE INTUITIONISTIC LANG. IN HA

Interpretations in \mathfrak{H}

letters	elements of \mathfrak{H}
conjunction	meet in H
disjunction	join in H
implication	$ ightarrow$ in \mathfrak{H}

Formula φ is valid in \mathfrak{H} : φ evaluates to 1 for all interpretations; written $\mathfrak{H} \models \varphi$

INTERPRETING THE INTUITIONISTIC LANG. IN HA

Interpretations in \mathfrak{H}

letters	elements of \mathfrak{H}
conjunction	meet in H
disjunction	join in H
implication	$ ightarrow$ in \mathfrak{H}

 $\label{eq:formula} \begin{array}{l} \varphi \text{ is valid in } \mathfrak{H} \colon \varphi \text{ evaluates to 1 for all interpretations};\\ \text{written } \mathfrak{H} \vDash \varphi \end{array}$

The ibd formulas

Let $n \geq 1$:

$$\mathsf{ibd}_1 := p_1 \lor \neg p_1,$$

 $\mathsf{ibd}_{n+1} := p_{n+1} \lor (p_{n+1} \to \mathsf{ibd}_n).$

CHARACTERIZING FINITE kdim for HA

COROLLARY

- kdim(\mathfrak{H}) $\leq n-1$.
- Image: Sy ⊨ ibd_n.
- There does not exist a sequence $1 > b_1 > \cdots > b_n > 0$ in \mathfrak{H} such that b_{i-1} is dense in \mathfrak{H}_{b_i} for each $i \in \{1, \ldots, n\}$.
- depth(\mathfrak{H}_*) $\leq n$.

CHARACTERIZING FINITE kdim for HA

COROLLARY

- kdim(\mathfrak{H}) $\leq n-1$.
- 2 $\mathfrak{H} \models \mathsf{ibd}_n$.
- There does not exist a sequence 1 > b₁ > ··· > b_n > 0 in 𝔅 such that b_{i−1} is dense in 𝔅_{bi} for each i ∈ {1,...,n}.
- depth(\mathfrak{H}_*) $\leq n$.

CHARACTERIZING FINITE kdim for HA

COROLLARY

•
$$\operatorname{kdim}(\mathfrak{H}) \leq n-1.$$

- **2** $\mathfrak{H} \models \mathsf{ibd}_n$.
- There does not exist a sequence $1 > b_1 > \cdots > b_n > 0$ in \mathfrak{H} such that b_{i-1} is dense in \mathfrak{H}_{b_i} for each $i \in \{1, \ldots, n\}$.

```
] \quad \operatorname{depth}(\mathfrak{H}_*) \leq n.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CHARACTERIZING FINITE kdim for HA

COROLLARY

•
$$\operatorname{kdim}(\mathfrak{H}) \leq n-1.$$

- **2** $\mathfrak{H} \models \mathsf{ibd}_n$.
- There does not exist a sequence $1 > b_1 > \cdots > b_n > 0$ in \mathfrak{H} such that b_{i-1} is dense in \mathfrak{H}_{b_i} for each $i \in \{1, \ldots, n\}$.

• depth
$$(\mathfrak{H}_*) \leq n$$
.

Definition

The localic Krull dimension of a topological space X is

$$\operatorname{ldim}(X) = \operatorname{kdim}(\Omega(X)) = \operatorname{kdim}(\wp X, \mathbf{C})$$

COROLLARY: RECURSIVE DEFINITION OF ldim

 $\begin{aligned} \operatorname{ldim}(X) &= -1 & \text{if } & X = \emptyset, \\ \operatorname{ldim}(X) &\leq n & \text{if } & \forall D \text{ nowhere dense in } X, \operatorname{ldim}(D) \leq n - 1, \\ \operatorname{ldim}(X) &= n & \text{if } & \operatorname{ldim}(X) \leq n \text{ and } \operatorname{ldim}(X) \nleq n - 1, \\ \operatorname{ldim}(X) &= \infty & \text{if } & \operatorname{ldim}(X) \nleq n \text{ for any } n = -1, 0, 1, 2, \ldots. \end{aligned}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

DEFINITION

The localic Krull dimension of a topological space X is

$$\operatorname{ldim}(X) = \operatorname{kdim}(\Omega(X)) = \operatorname{kdim}(\wp X, \mathbf{C})$$

COROLLARY: RECURSIVE DEFINITION OF ldim

$\operatorname{ldim}(X) = -1$	if	$X = \varnothing$,
$\operatorname{ldim}(X) \leq n$	if	$\forall D$ nowhere dense in X, $\operatorname{ldim}(D) \leq n-1$,
$\operatorname{ldim}(X) = n$	if	$\operatorname{ldim}(X) \leq n$ and $\operatorname{ldim}(X) \not\leq n-1$,
$\operatorname{ldim}(X) = \infty$	if	$\operatorname{ldim}(X) eq n$ for any $n = -1, 0, 1, 2, \ldots$

Definition

The localic Krull dimension of a topological space X is

$$\operatorname{ldim}(X) = \operatorname{kdim}(\Omega(X)) = \operatorname{kdim}(\wp X, \mathbf{C})$$

COROLLARY: RECURSIVE DEFINITION OF ldim

$$\begin{split} \operatorname{ldim}(X) &= -1 \quad \text{if} \quad X = \emptyset, \\ \operatorname{ldim}(X) &\leq n \quad \text{if} \quad \forall D \text{ nowhere dense in } X, \operatorname{ldim}(D) \leq n - 1, \\ \operatorname{ldim}(X) &= n \quad \text{if} \quad \operatorname{ldim}(X) \leq n \text{ and } \operatorname{ldim}(X) \leq n - 1, \\ \operatorname{ldim}(X) &= \infty \quad \text{if} \quad \operatorname{ldim}(X) \leq n \text{ for any } n = -1, 0, 1, 2, \ldots. \end{split}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

LOCALIC KRULL DIMENSION OF A SPACE

DEFINITION

The localic Krull dimension of a topological space X is

$$\operatorname{ldim}(X) = \operatorname{kdim}(\Omega(X)) = \operatorname{kdim}(\wp X, \mathbf{C})$$

COROLLARY: RECURSIVE DEFINITION OF ldim

$\operatorname{ldim}(X) = -1$	if	$X = \varnothing$,
$\operatorname{ldim}(X) \leq n$	if	$\forall D$ nowhere dense in X, $\operatorname{ldim}(D) \leq n-1$,
$\operatorname{ldim}(X) = n$	if	$\operatorname{ldim}(X) \leq n$ and $\operatorname{ldim}(X) \not\leq n-1$,
$\operatorname{ldim}(X) = \infty$	if	$\operatorname{Idim}(X) eq n$ for any $n = -1, 0, 1, 2, \dots$

DEFINITION

The localic Krull dimension of a topological space X is

$$\operatorname{ldim}(X) = \operatorname{kdim}(\Omega(X)) = \operatorname{kdim}(\wp X, \mathbf{C})$$

COROLLARY: RECURSIVE DEFINITION OF ldim

$\operatorname{ldim}(X) = -1$	if	$X = \varnothing$,
$\operatorname{ldim}(X) \leq n$	if	$\forall D$ nowhere dense in X, $\operatorname{ldim}(D) \leq n-1$,
$\operatorname{ldim}(X) = n$	if	$\operatorname{ldim}(X) \leq n \text{ and } \operatorname{ldim}(X) \not\leq n-1$,
$\operatorname{ldim}(X) = \infty$	if	$\operatorname{ldim}(X) \not\leq n$ for any $n = -1, 0, 1, 2, \ldots$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

INTERPRETATION IN X

```
Via the closure algebra (\wp X, \mathbf{C})
Thus \diamondsuit and \Box are \mathbf{C} and \mathbf{I} resp.
```

 φ is valid in X: φ evaluates to X under all interpretations; written $X \vDash \varphi$

Theorem

- $ldim(X) \le n-1.$
- $2 X \vDash \mathsf{bd}_n.$
- There does not exist a sequence E₀,..., E_n of nonempty closed subsets of X such that E₀ = X and E_{i+1} is nowhere dense in E_i for each i ∈ {0,..., n − 1}.
- \mathfrak{F}_{n+1} is not an interior image of X.

INTERPRETATION IN X

Via the closure algebra ($\wp X, \mathbf{C}$) Thus \Diamond and \Box are \mathbf{C} and \mathbf{I} resp. φ is valid in X: φ evaluates to X under all interpretations; written $X \vDash \varphi$

Theorem

- $ldim(X) \le n-1.$
- $X \vDash \mathsf{bd}_n.$
- There does not exist a sequence E₀,..., E_n of nonempty closed subsets of X such that E₀ = X and E_{i+1} is nowhere dense in E_i for each i ∈ {0,..., n − 1}.
- \mathfrak{F}_{n+1} is not an interior image of X.

INTERPRETATION IN X

Via the closure algebra ($\wp X, \mathbf{C}$) Thus \Diamond and \Box are \mathbf{C} and \mathbf{I} resp. φ is valid in X: φ evaluates to X under all interpretations; written $X \vDash \varphi$

THEOREM

- $\operatorname{ldim}(X) \leq n-1$.
- $2 X \vDash \mathsf{bd}_n.$
- There does not exist a sequence E₀,..., E_n of nonempty closed subsets of X such that E₀ = X and E_{i+1} is nowhere dense in E_i for each i ∈ {0,..., n − 1}.
- \mathfrak{F}_{n+1} is not an interior image of X.

INTERPRETATION IN X

Via the closure algebra ($\wp X, \mathbf{C}$) Thus \Diamond and \Box are \mathbf{C} and \mathbf{I} resp. φ is valid in X: φ evaluates to X under all interpretations; written $X \vDash \varphi$

THEOREM

Let $X \neq \emptyset$, $n \ge 1$, and \mathfrak{F}_{n+1} be the (n+1)-element chain. TFAE:

- $\operatorname{ldim}(X) \leq n-1$.
- $2 X \vDash \mathsf{bd}_n.$
- O There does not exist a sequence E₀,..., E_n of nonempty closed subsets of X such that E₀ = X and E_{i+1} is nowhere dense in E_i for each i ∈ {0,..., n − 1}.

) \mathfrak{F}_{n+1} is not an interior image of X.

INTERPRETATION IN X

Via the closure algebra ($\wp X, \mathbf{C}$) Thus \Diamond and \Box are \mathbf{C} and \mathbf{I} resp. φ is valid in X: φ evaluates to X under all interpretations; written $X \vDash \varphi$

THEOREM

- $\operatorname{ldim}(X) \leq n-1$.
- $2 X \vDash \mathsf{bd}_n.$
- O There does not exist a sequence E₀,..., E_n of nonempty closed subsets of X such that E₀ = X and E_{i+1} is nowhere dense in E_i for each i ∈ {0,..., n − 1}.
- \mathfrak{F}_{n+1} is not an interior image of X.

COMPARING Idim to other dimension functions

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq ldim(X)$.
- If X is a normal space, then Ind(X) ≤ ldim(X) and dim(X) ≤ ldim(X).

Drawbacks and benefits via some examples

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

COMPARING ldim to other dimension functions

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq Idim(X)$.
- If X is a normal space, then Ind(X) ≤ ldim(X) and dim(X) ≤ ldim(X).

Drawbacks and benefits via some examples

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

COMPARING ldim to other dimension functions

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq Idim(X)$.
- If X is a normal space, then $Ind(X) \leq Idim(X)$ and $dim(X) \leq Idim(X)$.

Drawbacks and benefits via some examples

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq ldim(X)$.
- If X is a normal space, then $Ind(X) \leq Idim(X)$ and $dim(X) \leq Idim(X)$.

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq ldim(X)$.
- If X is a normal space, then $Ind(X) \leq Idim(X)$ and $dim(X) \leq Idim(X)$.

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq Idim(X)$.
- If X is a normal space, then $Ind(X) \leq Idim(X)$ and $dim(X) \leq Idim(X)$.

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

LEMMA

Let X be a space

- If X is a spectral space, then $\operatorname{kdim}(X) \leq \operatorname{ldim}(X)$.
- If X is a regular space, then $ind(X) \leq Idim(X)$.
- If X is a normal space, then $Ind(X) \leq Idim(X)$ and $dim(X) \leq Idim(X)$.

- $\operatorname{ldim}(\mathbb{R}^n) = \operatorname{ldim}(\mathbb{Q}) = \operatorname{ldim}(\mathcal{C}) = \infty$
- $\operatorname{ldim}(\omega^n) = n 1$; and so $\operatorname{ldim}(\omega^n + 1) = n$
- $\operatorname{ldim}(\omega^{\omega}) = \operatorname{ldim}(\omega^{\omega} + 1) = \infty$

ldim and T_1 spaces: I

Lemma

Let X be a T_1 space:

- $\operatorname{ldim}(X) \leq 0$ iff X is discrete
- $\operatorname{ldim}(X) \leq 1$ iff X is nodec (every nowhere dense set is closed)

Definition

The Zeman formula is zem := $\Box \Diamond \Box p \rightarrow (p \rightarrow \Box p)$

Esakia et al. 2005

 $X \vDash$ zem iff X is nodec

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
ldim AND	T_1 SPACE	s. I			

Lemma

Let X be a T_1 space:

- $\operatorname{ldim}(X) \leq 0$ iff X is discrete
- $\operatorname{ldim}(X) \leq 1$ iff X is nodec (every nowhere dense set is closed)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

The Zeman formula is zem := $\Box \Diamond \Box p \rightarrow (p \rightarrow \Box p)$

Esakia et al. 2005

 $X \vDash$ zem iff X is nodec

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
ldim AND	T_1 Space	s: I			

Lemma

Let X be a T_1 space:

- $\operatorname{ldim}(X) \leq 0$ iff X is discrete
- $\operatorname{ldim}(X) \leq 1$ iff X is nodec (every nowhere dense set is closed)

DEFINITION

The Zeman formula is zem := $\Box \Diamond \Box p \rightarrow (p \rightarrow \Box p)$

Esakia et al. 2005

 $X \vDash$ zem iff X is nodec

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
11		ana T			

Idim AND I_1 SPACES: I

Lemma

Let X be a T_1 space:

- $\operatorname{ldim}(X) \leq 0$ iff X is discrete
- $\operatorname{ldim}(X) \leq 1$ iff X is nodec (every nowhere dense set is closed)

DEFINITION

The Zeman formula is zem := $\Box \Diamond \Box p \rightarrow (p \rightarrow \Box p)$

Esakia et al. 2005

 $X \vDash$ zem iff X is nodec

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ldim and T_1 spaces: II

DEFINITION

The *n*-Zeman formula is $\operatorname{zem}_n := \Box(\Box(\Box p_{n+1} \to \operatorname{bd}_n) \to p_{n+1}) \to (p_{n+1} \to \Box p_{n+1})$

Theorem

Let X be T_1 . TFAE:

- $\operatorname{ldim}(X) \leq n$
- $X \vDash \operatorname{zem}_n$
- $X \models \mathsf{bd}_{n+1}$

ldim and T_1 spaces: II

DEFINITION

The *n*-Zeman formula is

$$\operatorname{\mathsf{zem}}_n := \Box(\Box(\Box p_{n+1} \to \operatorname{\mathsf{bd}}_n) \to p_{n+1}) \to (p_{n+1} \to \Box p_{n+1})$$

THEOREM

Let 2	X be	T_1 .	TFAE:
-------	------	---------	-------

- $\operatorname{ldim}(X) \leq n$
- $X \vDash \operatorname{zem}_n$
- $X \models \mathsf{bd}_{n+1}$

・ロト ・西ト ・ヨト ・ヨー うらぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ldim and T_1 spaces: II

DEFINITION

The *n*-Zeman formula is

$$\operatorname{\mathsf{zem}}_n := \Box(\Box(\Box p_{n+1} \to \operatorname{\mathsf{bd}}_n) \to p_{n+1}) \to (p_{n+1} \to \Box p_{n+1})$$

Theorem

Let X be T_1 . TFAE:

- $\operatorname{ldim}(X) \leq n$
- $X \vDash \operatorname{zem}_n$
- $X \models \mathsf{bd}_{n+1}$

DEFINITION

For $n \ge 1$, put $\mathbf{S4}_n := \mathbf{S4} + bd_n$ and $\mathbf{S4}.\mathbf{Z}_n := \mathbf{S4} + zem_n$

Lemma

- $S4_{n+1} \subsetneq S4.Z_n$
- **S4**.**Z**_n has the finite model property
- **S4**.**Z**_n is the logic of uniquely rooted finite frames of depth n + 1

INCOMPLETENESS

No logic in $[S4_{n+1}, S4.Z_n)$ is complete with respect to a class of T_1 spaces

Introduction								
		11				•		
meroduction			а,		C			

DEFINITION

For $n \ge 1$, put $\mathbf{S4}_n := \mathbf{S4} + bd_n$ and $\mathbf{S4}.\mathbf{Z}_n := \mathbf{S4} + zem_n$

LEMMA

- **S4**.**Z**_n has the finite model property
- **S4**.**Z**_n is the logic of uniquely rooted finite frames of depth n + 1

INCOMPLETENESS

No logic in $[S4_{n+1}, S4.Z_n)$ is complete with respect to a class of T_1 spaces

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▼ のへの

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n

DEFINITION

For $n \ge 1$, put $S4_n := S4 + bd_n$ and $S4.Z_n := S4 + zem_n$

LEMMA

- $S4_{n+1} \subsetneq S4.Z_n$
- S4.Z_n has the finite model property
- **S4**.**Z**_n is the logic of uniquely rooted finite frames of depth n + 1

INCOMPLETENESS

No logic in $[S4_{n+1}, S4.Z_n)$ is complete with respect to a class of T_1 spaces

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへ⊙

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n

DEFINITION

For $n \ge 1$, put $S4_n := S4 + bd_n$ and $S4.Z_n := S4 + zem_n$

LEMMA

- $S4_{n+1} \subsetneq S4.Z_n$
- S4.Z_n has the finite model property
- **S4**.**Z**_n is the logic of uniquely rooted finite frames of depth n + 1

INCOMPLETENESS

No logic in $[S4_{n+1}, S4.Z_n)$ is complete with respect to a class of T_1 spaces

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Zn

DEFINITION

For $n \ge 1$, put $S4_n := S4 + bd_n$ and $S4.Z_n := S4 + zem_n$

LEMMA

- $S4_{n+1} \subsetneq S4.Z_n$
- S4.Z_n has the finite model property
- **S4**.**Z**_n is the logic of uniquely rooted finite frames of depth n + 1

INCOMPLETENESS

No logic in $[S4_{n+1}, S4.Z_n)$ is complete with respect to a class of T_1 spaces

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
		_			
THE LC)GICS S4 . Z	7 _ n			

GOAL:

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

[NGREDIENTS

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Čech-Stone compactification and Gleason cover
- Key ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.
| Introduction | kdim of CA | kdim of HA | ldim of TOP | T_1 setting | logics S4.Z _n |
|--------------|----------------------------|------------|-------------|---------------|--------------------------|
| | | _ | | | |
| THE LC |)GICS S4 . Z | 7 n | | | |

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Occupation Constant State S
- Key ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
THELOCI		7			

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Occupation Contractification and Gleason cover
- Sey ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
		_			
THE LC)GICS S4 . Z	7 n			

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Čech-Stone compactification and Gleason cover
- Sey ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
		7			
THE LC)GICS 54. 2	n			

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Čech-Stone compactification and Gleason cover
- Sey ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
		_			
THE LC)GICS S4 . Z	7 n			

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Čech-Stone compactification and Gleason cover
- Key ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
		_			
THE LC)GICS S4 . Z	7 n			

Construct a countable crowded Tychonoff space Z_n with $\operatorname{ldim}(Z_n) = n$ whose logic is **S4**.**Z**_n

- Single frame \mathfrak{B}_n determining **S4**.**Z**_n
- Adjunction spaces (gluing); e.g. wedge sum
- Čech-Stone compactification and Gleason cover
- Key ingredient: building block Y, a countable crowded ω-resolvable Tychonoff nodec space such that there is a subspace of βY \ Y that is homeomorphic to βω and for any nowhere dense D ⊆ Y, CD and βω are disjoint.

 \mathfrak{B}_n is the following frame and determines $S4.Z_n$ \mathfrak{B}_n is obtained using a refined unraveling technique

(日)、

э

イロン 不同と イヨン イヨン

э

Step 2: base step-build Z_1

Choose and fix a point $y \in Y$ Take topological sum of ω copies of YIdentify each copy of the point y to get Z_1 Note \mathfrak{B}_1 is an interior image of Z_1

Step 2: Recursive case-Chopping Z_n

Start with $\alpha_n : Z_n \to \mathfrak{B}_n$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

STEP 2: RECURSIVE CASE-CHOPPING Z_n

'Chop' Z_n into $X_i = \alpha_n^{-1}(R^{-1}\mathfrak{C}_i)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Step 2: Recursive case-general use of Y

For each countable (Tychonoff) space X_i

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Step 2: Recursive case-general use of Y

There is continuous bijection $f: \omega \to X_i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Step 2: Recursive case-general use of Y

f continuously extends to $g: \beta \omega \rightarrow \beta X_i$

Step 2: Recursive case-general use of Y

Form quotient Q via fibers of g ...

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Step 2: Recursive case-general use of Y

Form quotient Q via fibers of g ... take subspace $Y \cup X_i$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

イロト 不得 トイヨト イヨト

3

Step 2: Recursive case-gluing $Y \cup X_i$'s

Take topological sum of ω copies of $Y \cup X_i$ Identify through each copy of X_i to get A_i

Step 2: Recursive step-gluing A_i 's to get Z_{n+1}

Each X_i is a subset of Z_n Identify the copies of points from Z_n

STEP 2: Recursive step-gluing A_i 's to get Z_{n+1}

Each X_i is a subset of Z_n Identify the copies of points from Z_n Send Y's 'above' X_i to cluster's above \mathfrak{C}_i in \mathfrak{B}_{n+1}

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CONCL	USIONS				

The logic of Z_n is **S4**.**Z**_n

Complete details available at: http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-19.text.pdf

Thank You... Organizers and Audience

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CONCL	USIONS				

The logic of Z_n is **S4**.**Z**_n

Complete details available at: http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-19.text.pdf

Thank You... Organizers and Audience

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
CONCL	USIONS				

The logic of Z_n is **S4**.**Z**_n

Complete details available at: http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-19.text.pdf

Thank You... Organizers and Audience

Introduction	kdim of CA	kdim of HA	ldim of TOP	T_1 setting	logics S4.Z _n
~					
CONCL	USIONS				

The logic of Z_n is **S4**.**Z**_n

Complete details available at: http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-19.text.pdf

Thank You... Organizers and Audience