Topologies on pseudoinfinite paths

Andrey Kudinov

Institute for Information Transmission Problems, Moscow National Research University Higher School of Economics, Moscow Moscow Institute of Physics and Technology

June 14, 2016

PLAN

- 1. Language
- 2. Topological semantics
- 3. Products of logics
- 4. Neighborhood frames
- 5. Without seriality
- 6. Dense topological spaces
- 7. Logic S5
- 8. Ideas of the proof

Language and logics

$$\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \Box_i \phi, \ i = 1, 2.$$

 \perp , \rightarrow and \diamondsuit_i are expressible in the usual way.

Normal modal logic.

 K_n denotes the minimal normal modal logic with n modalities and $\mathsf{K} = \mathsf{K}_1$. L_1 and L_2 — two modal logics with one modality \square then the fusion of these logics is defined as

$$L_{1}\ast L_{2}=K_{2}+L_{1}^{\prime }+L_{2}^{\prime };$$

where L_i' is the set of all formulas from L_i where in all formulas \square is replaced by \square_i .

Topological semantics

We can define topology on set $X \neq \emptyset$ by specifying a closure operator $\mathbf{C}: 2^X \to 2^X$, satisfying the Kuratowski axioms:

1.
$$\mathbf{C}(\emptyset) = \emptyset$$
, $\neg \diamondsuit \bot$

2.
$$A \subseteq \mathbf{C}(A)$$
, for $A \subseteq X$,

$$p \to \Diamond p$$

3.
$$\mathbf{C}(A \cup B) = \mathbf{C}(A) \cup \mathbf{C}(B)$$
, for $A, B \subseteq X$, $\Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q$

$$\Diamond(p\vee q)\leftrightarrow\Diamond p\vee\Diamond q$$

4.
$$\mathbf{C}(\mathbf{C}(A)) \subseteq \mathbf{C}(A)$$
. $A \subseteq X$,

In topological semantics for modal logic closure operator correspond to \Diamond . Topological model (\mathfrak{X}, θ) , where $\mathfrak{X} = (X, \mathbf{C})$ — topological space:

$$p \longmapsto \theta(p) \subseteq X$$
$$\theta(\phi \lor \psi) = \theta(\phi) \cup \theta(\psi)$$
$$\theta(\neg \phi) = X \setminus \theta(\phi)$$
$$\theta(\diamondsuit \phi) = \mathbf{C}(\theta(\phi)).$$

$$\mathfrak{X} \models \phi \Longleftrightarrow \forall \theta (\theta(\phi) = X),$$

$$Log(\mathfrak{X}) = \{ \phi \, | \, \mathfrak{X} \models \phi \} \, .$$

Topological semantics

We can define topology on set $X \neq \varnothing$ by specifying a closure operator $\mathbf{C}: 2^X \to 2^X$, satisfying the Kuratowski axioms:

1.
$$\mathbf{C}(\varnothing) = \varnothing$$
, $\neg \diamondsuit \bot$
2. $A \subseteq \mathbf{C}(A)$, for $A \subseteq X$, $p \to \diamondsuit p$
3. $\mathbf{C}(A \cup B) = \mathbf{C}(A) \cup \mathbf{C}(B)$, for $A, B \subseteq X$, $\diamondsuit (p \lor q) \leftrightarrow \diamondsuit p \lor \diamondsuit q$
4. $\mathbf{C}(\mathbf{C}(A)) \subseteq \mathbf{C}(A)$. $A \subseteq X$, $\diamondsuit \diamondsuit p \to \diamondsuit p$

In topological semantics for modal logic closure operator correspond to \diamondsuit . Topological model (\mathfrak{X}, θ) , where $\mathfrak{X} = (X, \mathbf{C})$ — topological space:

$$p \longmapsto \theta(p) \subseteq X$$
$$\theta(\phi \lor \psi) = \theta(\phi) \cup \theta(\psi)$$
$$\theta(\neg \phi) = X \setminus \theta(\phi)$$
$$\theta(\diamondsuit \phi) = \mathbf{C}(\theta(\phi)).$$

$$\mathfrak{X} \models \phi \Longleftrightarrow \forall \theta(\theta(\phi) = X),$$

$$Log(\mathfrak{X}) = \{\phi \mid \mathfrak{X} \models \phi\}.$$

Logic S4

Alexandroff topology

On a transitive reflexive Kripke frame F=(W,R) we can define topology, i.e. closure operator:

$$\mathbf{C}_F(A) = R^{-1}(A).$$

It will be an Alexandroff topology (any intersection of open sets is open, all points have minimal neighborhood).

Lemma

$$F \models \phi \iff (W, C_F) \models \phi.$$

We define
$$Top(F) = (W, C_F)$$

Completeness of S4 w.r.t. all Alexandroff spaces.

Many topologies are not Alexandroff: \mathbb{R}^n , Cantor space, \mathbb{Q} or any metric space

Alexandroff topology

On a transitive reflexive Kripke frame F=(W,R) we can define topology, i.e. closure operator:

$$\mathbf{C}_F(A) = R^{-1}(A).$$

It will be an Alexandroff topology (any intersection of open sets is open, all points have minimal neighborhood).

Lemma

$$F \models \phi \iff (W, C_F) \models \phi.$$

We define $Top(F) = (W, C_F)$

Completeness of S4 w.r.t. all Alexandroff spaces.

Many topologies are not Alexandroff: \mathbb{R}^n , Cantor space, \mathbb{Q} or any metric space

Alexandroff topology

On a transitive reflexive Kripke frame F=(W,R) we can define topology, i.e. closure operator:

$$\mathbf{C}_F(A) = R^{-1}(A).$$

It will be an Alexandroff topology (any intersection of open sets is open, all points have minimal neighborhood).

Lemma

$$F \models \phi \iff (W, C_F) \models \phi.$$

We define $Top(F) = (W, C_F)$

Completeness of S4 w.r.t. all Alexandroff spaces.

Many topologies are not Alexandroff: \mathbb{R}^n , Cantor space, \mathbb{Q} or any metric space.

Derivational semantics

We can define topological space using derivative operator $d: 2^X \to 2^X$, where d(A) is the set of all limit points of A. In a similar way we define derivational semantics:

$$\theta(\Diamond\phi) = d(\theta(\phi))$$

The logic of all topological space is wK4 = K + $\diamondsuit\diamondsuit p \to \diamondsuit p \lor p$ (Esakia'1981). The logic of \mathbb{Q} , Cantor space (or any dense-in-itself zero-dimensional metric space) is D4 = K + $\diamondsuit\diamondsuit p \to \diamondsuit p + \diamondsuit\top$ (Shehtman'1990).

The product of Kripke frames

For two frames
$$F_1=(W_1,R_1)$$
 and $F_2=(W_2,R_2)$

$$F_1 \times F_2 = (W_1 \times W_2, R_1^*, R_2^*), \text{ where } (a_1, a_2) R_1^*(b_1, b_2) \Leftrightarrow a_1 R_1 b_1 \& a_2 = b_2$$

 $(a_1, a_2) R_2^*(b_1, b_2) \Leftrightarrow a_1 = b_1 \& a_2 R_2 b_2$

For two logics L₁ and L₂

$$\mathsf{L}_1 \times \mathsf{L}_2 = Log(\{F_1 \times F_2 \mid F_1 \models \mathsf{L}_1 \& F_2 \models \mathsf{L}_2\})$$

(Shehtman, 1978) For two classes of frames \mathfrak{F}_1 and \mathfrak{F}_2 $Log(\{F_1 \times F_2 \mid F_1 \in \mathfrak{F}_1 \ \& \ F_2 \in \mathfrak{F}_2\}) \supseteq Log(\mathfrak{F}_1) * Log(\mathfrak{F}_2) + \\ + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p.$ $\mathsf{K} \times \mathsf{K} = \mathsf{K} * \mathsf{K} + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p$ $\mathsf{S4} \times \mathsf{S4} = \mathsf{S4} * \mathsf{S4} + \Box_1 \Box_2 p \leftrightarrow \Box_1 \Box_2 p + \diamondsuit_1 \Box_2 p \rightarrow \Box_2 \diamondsuit_1 p$

The product of topological spaces

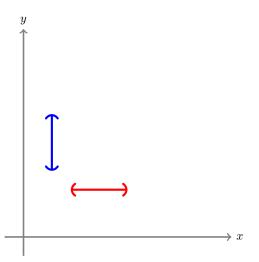
```
(van Benthem et al, 2005) For two topological space \mathfrak{X}_1=(X_1,\tau_1) and \mathfrak{X}_2=(X_2,\tau_2) \mathfrak{X}_1\times\mathfrak{X}_2=(X_1\times X_2,\tau_1^*,\tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1\times x_2\,|\,U_1\in\tau_1\,\,\&\,\,x_2\in X_2\} \tau_2^* \text{ has base } \{x_1\times U_2\,|\,x_1\in X_1\,\,\&\,\,U_2\in\tau_2\}
```

The product of topological spaces

```
(van Benthem et al, 2005)
For two topological space \mathfrak{X}_1=(X_1,	au_1) and \mathfrak{X}_2=(X_2,	au_2)
```

$$\mathfrak{X}_1 \times \mathfrak{X}_2 = (X_1 \times X_2, \tau_1^*, \tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1 \times x_2 \,|\, U_1 \in \tau_1 \,\,\&\,\, x_2 \in X_2\}$$

$$\tau_2^* \text{ has base } \{x_1 \times U_2 \,|\, x_1 \in X_1 \,\,\&\,\, U_2 \in \tau_2\}$$



The product of topological spaces

(van Benthem et al, 2005) For two topological space $\mathfrak{X}_1=(X_1,\tau_1)$ and $\mathfrak{X}_2=(X_2,\tau_2)$

$$\mathfrak{X}_1 \times \mathfrak{X}_2 = (X_1 \times X_2, \tau_1^*, \tau_2^*), \text{ where } \tau_1^* \text{ has base } \{U_1 \times x_2 \,|\, U_1 \in \tau_1 \,\,\&\,\, x_2 \in X_2\}$$

$$\tau_2^* \text{ has base } \{x_1 \times U_2 \,|\, x_1 \in X_1 \,\,\&\,\, U_2 \in \tau_2\}$$

For two logics L_1 and L_2

$$\begin{split} \mathsf{L}_1 \times_t \mathsf{L}_2 &= Log(\{\mathfrak{X}_1 \times \mathfrak{X}_2 \,|\, \mathfrak{X}_1 \models \mathsf{L}_1 \,\&\, \mathfrak{X}_2 \models \mathsf{L}_2\} \\ \mathsf{S4} \times_t \mathsf{S4} &= Log(\mathbb{Q} \times \mathbb{Q}) = \mathsf{S4} * \mathsf{S4} \;\; \text{(van Benthem et al, 2005)} \\ Log(\mathbb{R} \times \mathbb{R}) &\neq \mathsf{S4} * \mathsf{S4} \;\; \text{(Kremer, 2010?)} \end{split}$$

 $Log(Cantor \times Cantor) \neq S4 * S4$

d-logic of product of topological spaces was considered by L. Uridia (2011).

$$Log_d(\mathbb{Q} \times \mathbb{Q}) = D4 * D4$$

Generalization to neighborhood frames was done by K. Sano (2011).

Known results

Theorem (2012)

Let L_1 and L_2 be from the set $\{D,T,D4,S4\}$ then

$$\mathsf{L}_1 \times_n \mathsf{L}_2 = \mathsf{L}_1 * \mathsf{L}_2.$$

Not straightforward but still a

Corollary

In derivational semantics

- 1. $D4 \times_d D4 = D4 * D4$.
- 2. [Uridia'2011] $Log_d(\mathbb{Q} \times \mathbb{Q}) = \mathsf{D4} * \mathsf{D4}$

Topological semantics based on closure operator or derivative operator can be generalized in the neighborhood semantics.

We can consider neighborhood function $\tau:X\to 2^{2^X}$. For $x\in X$ $\tau(x)$ is a set of neighborhoods of x. It connected with ${\bf C}$ is the following way:

$$A \in \tau(x) \iff x \in \mathbf{I}(A), \text{ where } \mathbf{I}(A) = X \setminus \mathbf{C}(X \setminus A).$$

And for derivational semantics

$$A \in \tau(x) \iff x \in \bar{d}(A), \text{ where } \bar{d}(A) = X \setminus d(X \setminus A).$$

Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair $\mathfrak{X}=(X, au)$, where

- $ightharpoonup X \neq \varnothing;$
- $au: X o 2^{2^X}$, such that au(x) is a filter on X;

au — neighborhood function of \mathfrak{X} ,

 $\tau(x)$ — neighborhoods of x.

Filter on X: nonempty $\mathcal{F} \subseteq 2^X$ such that

- 1) $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$
- 2) $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$ (filter base)

The neighborhood model (n-model) is a pair (\mathfrak{X},V) , where $\mathfrak{X}=(X,\tau)$ is a n-frame and $V:PV\to 2^X$ is a valuation. Similar: neighborhood 2-frame (n-2-frame) is (X,τ_1,τ_2) such that τ_i is a neighborhood function on X for each i.

Validity in model:

$$M, x \models \Box_i \psi \iff \exists V \in \tau_i(x) \forall y \in V(M, y \models \psi).$$

$$M \models \varphi \quad \mathfrak{X} \models \varphi \quad \mathfrak{X} \models L \quad Log(\mathcal{C}) = \{\varphi \mid \mathfrak{X} \models \varphi \text{ for some } \mathfrak{X} \in \mathcal{C}\}$$

$$nV(L) = \{\mathfrak{X} \mid \mathfrak{X} \text{ is an n-frame and } \mathfrak{X} \models L\}$$

Connection with Kripke frames

Definition

Let F=(W,R) be a Kripke frame. We define neighborhood frame $\mathcal{N}(F)=(W,\tau)$ as follows. For any $w\in W$

$$\tau(w) = \{U \,|\, R(w) \subseteq U \subseteq W\} \,.$$

Lemma

Let F = (W, R) be a Kripke frame. Then

$$Log(\mathcal{N}(F)) = Log(F).$$

Bounded morphism for n-frames

Definition

Let $\mathfrak{X}=(X,\tau_1,\ldots)$ and $\mathcal{Y}=(Y,\sigma_1,\ldots)$ be n-frames. Then function $f:X\to Y$ is a bounded morphism if

- 1. f is surjective;
- 2. for any $x \in X$ and $U \in \tau_i(x)$ $f(U) \in \sigma_i(f(x))$;
- 3. for any $x \in X$ and $V \in \sigma_i(f(x))$ there exists $U \in \tau_i(x)$, such that $f(U) \subseteq V$.

In notation $f:\mathfrak{X} woheadrightarrow \mathcal{Y}$.

Lemma

If $f: \mathfrak{X} \twoheadrightarrow \mathcal{Y}$ then $Log(\mathcal{Y}) \subseteq Log(\mathfrak{X})$.

Not always fusion

It is not the case for logic K!

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed \Box_1 -free formula ϕ and any closed \Box_2 -free formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Proof.

$$\mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y) \models \Box_{1} \bot \iff \varnothing \in \tau'_{1}(x,y) \iff \\ \varnothing \in \tau_{1}(x) \iff \forall y' \in X_{2} \ (\varnothing \in \tau'_{1}(x,y')) \iff \\ \forall y' \in X_{2} \ (\mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y') \models \Box_{1} \bot) \implies \mathfrak{X}_{1} \times \mathfrak{X}_{2}, (x,y) \models \Box_{2} \Box_{1} \bot.$$

Hence,
$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot$$
.

Not always fusion

It is not the case for logic K!

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed \Box_1 -free formula ϕ and any closed \Box_2 -free formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Proof.

Since ψ does not contain neither \square_2 , nor variables, its value does not depend on the second coordinate. Let $F=\mathfrak{X}_1\times\mathfrak{X}_2$. So $F,(x,y)\models\psi$, then $\forall y'(F,(x,y')\models\psi)$, hence, $F,(x,y)\models\square_2\psi$.

Not always fusion

Lemma

For any two n-frames \mathfrak{X}_1 and \mathfrak{X}_2

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \Box_1 \bot \rightarrow \Box_2 \Box_1 \bot.$$

And even more, for any closed $\Box_1\text{-free}$ formula ϕ and any closed $\Box_2\text{-free}$ formula ψ

$$\mathfrak{X}_1 \times \mathfrak{X}_2 \models \phi \to \Box_1 \phi, \qquad \mathfrak{X}_1 \times \mathfrak{X}_2 \models \psi \to \Box_2 \psi.$$

Definition

For two unimodal logics L_1 and L_2 , we define

$$\langle L_1, L_2 \rangle = L_1 * L_2 + \Delta$$
, where

 $\Delta = \{\phi \rightarrow \square_2 \phi \,|\, \phi \text{ is closed and } \square_2\text{-free}\} \cup \{\psi \rightarrow \square_1 \psi \,|\, \psi \text{ is closed and } \square_1\text{-free}\}\,.$

Lemma

For any two normal modal logics L_1 and L_2 $\langle L_1, L_2 \rangle \subseteq L_1 \times_n L_2$.

Note that if $\lozenge \top \in L_1 \cap L_2$ then $L_1 * L_2 \models \Delta$.

Cantor space and infinite paths

Standart construction: Cantor space as the set on infinite paths on infinite binary tree \mathcal{T}_2 .

The base of topology is the sets of the following type:

$$U_m(\alpha) = \{\beta \mid a_1 = b_1, \dots a_m = b_m\}.$$

where α and β are two infinite paths:

$$\alpha = a_1 a_2 a_3 \dots, \qquad \beta = b_1 b_2 b_3 \dots$$

In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary finite S4-frame. [Mints, 1998]

Cantor space and infinite paths

Standart construction: Cantor space as the set on infinite paths on infinite binary tree \mathcal{T}_2 .

The base of topology is the sets of the following type:

$$U_m(\alpha) = \{\beta \mid a_1 = b_1, \dots a_m = b_m\}.$$

where α and β are two infinite paths:

$$\alpha = a_1 a_2 a_3 \dots, \qquad \beta = b_1 b_2 b_3 \dots$$

In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary finite S4-frame. [Mints, 1998]

Cantor space and infinite paths

Standart construction: Cantor space as the set on infinite paths on infinite binary tree \mathcal{T}_2 .

The base of topology is the sets of the following type:

$$U_m(\alpha) = \{\beta \mid a_1 = b_1, \dots a_m = b_m\}.$$

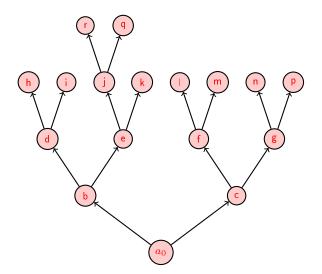
where α and β are two infinite paths:

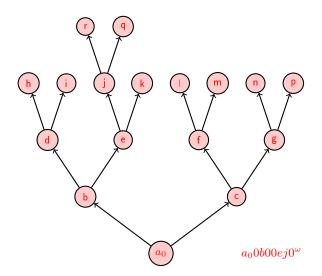
$$\alpha = a_1 a_2 a_3 \dots, \qquad \beta = b_1 b_2 b_3 \dots$$

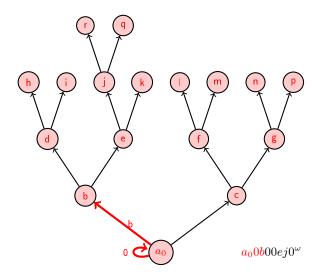
In order to proof completeness of S4 w.r.t. Cantor space we need to construct p-morphism from Cantor space to arbitrary finite S4-frame. [Mints, 1998]

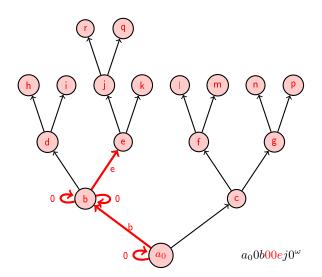
Constructing "dense" topologies from Kripke frames

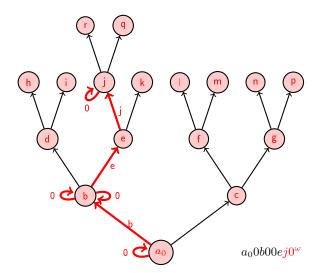
We need to construct a "dense" topological space based on a Kripke frame. This becomes important in studying of products of topological spaces.

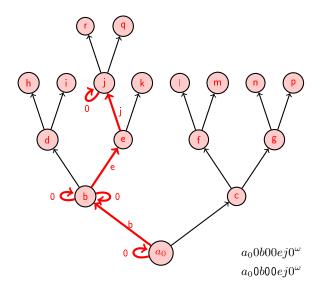


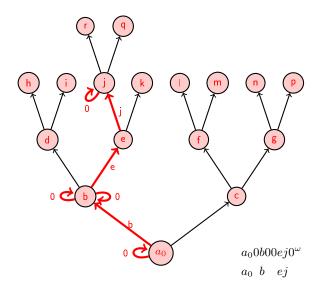


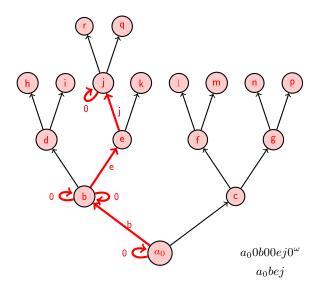


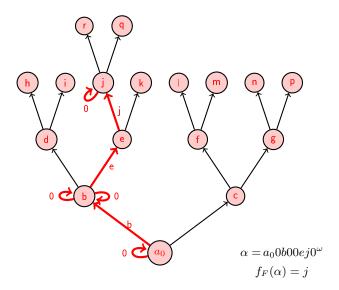












$$N_{\omega}(F)$$

Definition

Sets $U_n(\alpha)$ form a filter base. So we can define

$$\tau(\alpha)-\text{the filter with base }\left\{U_n(\alpha)\,|\,n\in\mathbb{N}\right\};$$

$$\mathcal{N}_\omega(F)=(W_\omega,\tau)-\text{ is a dense n-frame based on }F.$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in Top(F).

Lemma

Let F=(W,R) be a Kripke frame with root a_0 , then

$$f_F: \mathcal{N}_{\omega}(F) \twoheadrightarrow \mathcal{N}(F).$$

Corollary

For any frame F $Log(\mathcal{N}_{\omega}(F)) \subseteq Log(\mathcal{N}(F)) = Log(F)$.

$$N_{\omega}(F)$$

Definition

Sets $U_n(\alpha)$ form a filter base. So we can define

$$\tau(\alpha) - \text{the filter with base } \left\{ U_n(\alpha) \, | \, n \in \mathbb{N} \right\};$$

$$\mathcal{N}_{\omega}(F) = (W_{\omega}, \tau) - \text{is a dense n-frame based on } F.$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in Top(F).

Lemma

Let F=(W,R) be a Kripke frame with root a_0 , then

$$f_F: \mathcal{N}_{\omega}(F) \twoheadrightarrow \mathcal{N}(F).$$

Corollary

For any frame F $Log(\mathcal{N}_{\omega}(F)) \subseteq Log(\mathcal{N}(F)) = Log(F)$.

$$N_{\omega}(F)$$

Definition

Sets $U_n(\alpha)$ form a filter base. So we can define

$$au(lpha)$$
 — the filter with base $\,\{U_n(lpha)\,|\,n\in\mathbb{N}\}\,;$ $\,\mathcal{N}_\omega(F)=(W_\omega, au)$ — is a dense n-frame based on F .

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in Top(F).

Lemma

Let F = (W, R) be a Kripke frame with root a_0 , then

$$f_F: \mathcal{N}_{\omega}(F) \twoheadrightarrow \mathcal{N}(F).$$

Corollary

For any frame F $Log(\mathcal{N}_{\omega}(F)) \subseteq Log(\mathcal{N}(F)) = Log(F)$.

$$N_{\omega}(F)$$

Definition

Sets $U_n(\alpha)$ form a filter base. So we can define

$$\tau(\alpha) - \text{the filter with base } \left\{ U_n(\alpha) \, | \, n \in \mathbb{N} \right\};$$

$$\mathcal{N}_{\omega}(F) = (W_{\omega}, \tau) - \text{is a dense n-frame based on } F.$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike in Top(F).

Lemma

Let F = (W, R) be a Kripke frame with root a_0 , then

$$f_F: \mathcal{N}_{\omega}(F) \twoheadrightarrow \mathcal{N}(F).$$

Corollary

For any frame F $Log(\mathcal{N}_{\omega}(F)) \subseteq Log(\mathcal{N}(F)) = Log(F)$.

Counterexample

It possible that $Log(\mathcal{N}_{\omega}(F)) \neq Log(F)$. Consider:

$$G = (\{1\}^*, S), \ 1^n S 1^m \iff m = n + 1.$$

Obviously $G \models \Diamond p \rightarrow \Box p$.

Lemma

$$\mathcal{N}_{\omega}(G) \nvDash \Diamond p \to \Box p$$

Proof.

Consider valuation $\theta(p)=\left\{0^{2n}10^{\omega}\,|\,n\in\mathbb{N}\right\}$. Then in any neighbourhood of point 0^{ω} there are points where p is true and there are points where p is false. Hence,

$$\mathcal{N}_{\omega}(G) \models \Diamond p \wedge \Diamond \neg p.$$

Completeness results

Theorem (2014)

$$\mathsf{K} \times_n \mathsf{K} = \langle \mathsf{K}, \mathsf{K} \rangle.$$

Theorem

If logics L_1 and L_2 are axiomatizable by closed formulas and by axioms like $\diamondsuit^k p \to \diamondsuit p$ then $L_1 \times_n L_2 = \langle L_1, L_2 \rangle$.

Corollary

$$\mathsf{K4} \times_d \mathsf{K4} = \langle \mathsf{K4}, \mathsf{K4} \rangle.$$

Logic S5

We put

$$\begin{split} \Delta_1 &= \left\{\phi \to \Box_2 \phi \,|\, \phi \text{ is closed and } \Box_2\text{-free}\right\},\\ com_{12} &= \Box_1 \Box_2 p \to \Box_2 \Box_1 p,\\ com_{21} &= \Box_2 \Box_1 p \to \Box_1 \Box_2 p,\\ chr &= \diamondsuit_1 \Box_2 p \to \Box_2 \diamondsuit_1 p. \end{split}$$

Theorem

If logic L is axiomatizable by closed formulas and by axioms like $\lozenge^k p \to \lozenge p$ then L \times_n S5 = L * S5 + $\Delta_1 + com_{12} + chr$.

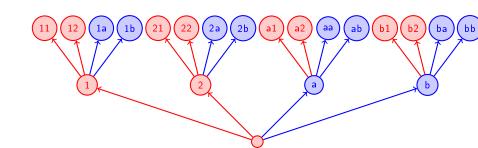
How to prove

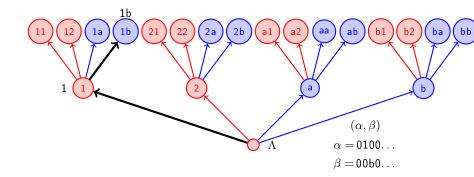
PLAN We have two loogic L_1 and L_2 Canonicity of the logic $\langle L_1, L_2 \rangle$. Construct $F_1 \models L_1$ and $F_2 \models L_2$ and $\langle F_1, F_2 \downarrow$

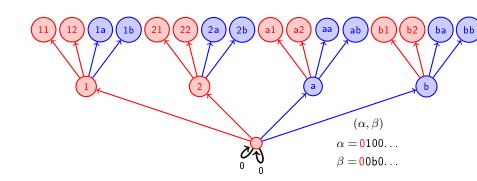
Construct
$$F_1 \models \mathsf{L}_1$$
 and $F_2 \models \mathsf{L}_2$ and $\langle F_1, F_2 \rangle \twoheadrightarrow \mathcal{F}_{\langle \mathsf{L}_1, \mathsf{L}_2 \rangle}$.

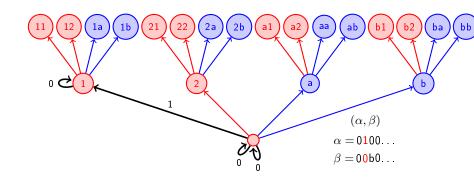
Construct $\mathcal{N}_{\omega}^{\Gamma_1}(F_1) \times \mathcal{N}_{\omega}^{\Gamma_2}(F_2) \twoheadrightarrow \mathcal{N}\left(\langle F_1, F_2 \rangle^{\Gamma_1 \cup \Gamma_2}\right)$.

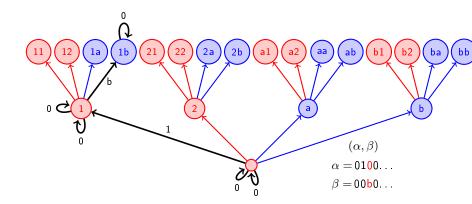
 $\downarrow \mathsf{L}_1$ and $\mathcal{N}_{\omega}^{\Gamma_2}(F_2) \models \mathsf{L}_2$

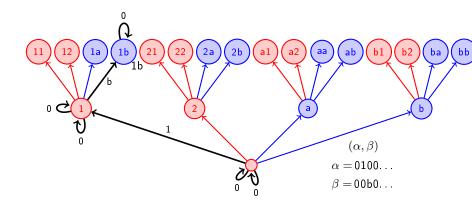












How to prove for S5

PLAN
We have two loogic L and S5

Canonicity of the logic
$$\langle \mathsf{L},\mathsf{S5}]$$
. \Downarrow
Construct $F_1 \models \mathsf{L}$ and $F_2 = (\mathbb{R},\mathbb{R}^2)$ and $\langle F_1,F_2 \rangle \twoheadrightarrow \mathcal{F}_{\langle \mathsf{L},\mathsf{S5}]}$. \Downarrow
Construct $\mathcal{N}_\omega^\Gamma(F_1) \times \mathcal{N}_\omega(F_2) \twoheadrightarrow \mathcal{N}\left(\langle F_1,F_2 |^\Gamma\right)$. \Downarrow
Check that $\mathcal{N}_\omega^\Gamma(F_1) \models \mathsf{L}$

$$C_{12} = \{ab \mapsto ba \mid a \in W_1, b \in W_2\}$$

We also define three Kripke frames:

$$\langle F_1, F_2 \rangle = (F_1 \otimes F_2, R_1^{<}, R_2^{<})$$

$$\langle F_1, F_2 \rangle = (F_1 \otimes F_2, R_1^{<}, R_2^{<})$$

$$\vec{a}R_1^{<} \vec{b} \iff \exists u \in W_1(\vec{b} = \vec{a}u)$$

$$\vec{a}R_2^{<} \vec{b} \iff \exists v \in W_2(\vec{b} = \vec{a}v)$$

$$\vec{a}R_2^{<} \vec{b} \iff \exists \vec{b}' (\vec{a}R_2^{<} \vec{b}' \& \vec{b}' \Longrightarrow \vec{b})$$

Lemma

For F_1 and F_2 defined above

$$\langle F_1, F_2 \rangle \models com_{12}, chr\Delta_1.$$

THANK YOU!