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Language and logics

φ ::= p | ¬φ | φ ∨ φ | 2iφ, i = 1, 2.

⊥, → and ♦i are expressible in the usual way.
Normal modal logic.
Kn denotes the minimal normal modal logic with n modalities and K = K1.
L1 and L2 � two modal logics with one modality 2 then the fusion of these
logics is de�ned as

L1 ∗ L2 = K2 + L′1 + L2
′;

where L′i is the set of all formulas from Li where in all formulas 2 is replaced by
2i.



Topological semantics

We can de�ne topology on set X 6= ∅ by specifying a closure operator
C : 2X → 2X , satisfying the Kuratowski axioms:

1. C(∅) = ∅, ¬♦⊥
2. A ⊆ C(A), for A ⊆ X, p→ ♦p
3. C(A ∪B) = C(A) ∪C(B), for A,B ⊆ X, ♦(p ∨ q)↔ ♦p ∨ ♦q
4. C

(
C(A)

)
⊆ C(A). A ⊆ X, ♦♦p→ ♦p

Logic S4
In topological semantics for modal logic closure operator correspond to ♦.
Topological model (X, θ), where X = (X,C) � topological space:

p 7−→ θ(p) ⊆ X
θ(φ ∨ ψ) = θ(φ) ∪ θ(ψ)

θ(¬φ) = X \ θ(φ)

θ(♦φ) = C(θ(φ)).

X |= φ⇐⇒ ∀θ(θ(φ) = X),

Log(X) = {φ |X |= φ} .
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Alexandro� topology

On a transitive re�exive Kripke frame F = (W,R) we can de�ne topology, i.e.
closure operator:

CF (A) = R−1(A).

It will be an Alexandro� topology (any intersection of open sets is open, all
points have minimal neighborhood).

Lemma
F |= φ ⇐⇒ (W,CF ) |= φ.

We de�ne Top(F ) = (W,CF )
Completeness of S4 w.r.t. all Alexandro� spaces.
Many topologies are not Alexandro�: Rn, Cantor space, Q or any metric space.
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Derivational semantics

We can de�ne topological space using derivative operator d : 2X → 2X , where
d(A) is the set of all limit points of A.
In a similar way we de�ne derivational semantics:

θ(♦φ) = d(θ(φ))

The logic of all topological space is wK4 = K +♦♦p→ ♦p ∨ p (Esakia'1981).
The logic of Q, Cantor space (or any dense-in-itself zero-dimensional metric
space) is D4 = K +♦♦p→ ♦p+♦> (Shehtman'1990).



The product of Kripke frames

For two frames F1 = (W1, R1) and F2 = (W2, R2)

F1 × F2 = (W1 ×W2, R
∗
1, R

∗
2), where (a1, a2)R∗1(b1, b2)⇔ a1R1b1 & a2 = b2

(a1, a2)R∗2(b1, b2)⇔ a1 = b1 & a2R2b2

For two logics L1 and L2

L1 × L2 = Log({F1 × F2 |F1 |= L1 & F2 |= L2})

(Shehtman, 1978)
For two classes of frames F1 and F2

Log({F1 × F2 |F1 ∈ F1 & F2 ∈ F2}) ⊇ Log(F1) ∗ Log(F2)+
+2122p↔ 2122p+♦122p→ 22♦1p.

K× K = K ∗ K + 2122p↔ 2122p+♦122p→ 22♦1p

S4× S4 = S4 ∗ S4 + 2122p↔ 2122p+♦122p→ 22♦1p

...



The product of topological spaces

(van Benthem et al, 2005)
For two topological space X1 = (X1, τ1) and X2 = (X2, τ2)

X1 × X2 = (X1 ×X2, τ
∗
1 , τ
∗
2 ), where τ∗1 has base {U1 × x2 |U1 ∈ τ1 & x2 ∈ X2}

τ∗2 has base {x1 × U2 |x1 ∈ X1 & U2 ∈ τ2}
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The product of topological spaces

(van Benthem et al, 2005)
For two topological space X1 = (X1, τ1) and X2 = (X2, τ2)

X1 × X2 = (X1 ×X2, τ
∗
1 , τ
∗
2 ), where τ∗1 has base {U1 × x2 |U1 ∈ τ1 & x2 ∈ X2}

τ∗2 has base {x1 × U2 |x1 ∈ X1 & U2 ∈ τ2}

For two logics L1 and L2

L1 ×t L2 = Log({X1 × X2 |X1 |= L1 & X2 |= L2}
S4×t S4 = Log(Q×Q) = S4 ∗ S4 (van Benthem et al, 2005)

Log(R× R) 6= S4 ∗ S4 (Kremer, 2010?)

Log(Cantor × Cantor) 6= S4 ∗ S4

d-logic of product of topological spaces was considered by L. Uridia (2011).

Log d(Q×Q) = D4 ∗ D4

Generalization to neighborhood frames was done by K. Sano (2011).



Known results

Theorem (2012)

Let L1 and L2 be from the set {D,T,D4,S4} then

L1 ×n L2 = L1 ∗ L2.

Not straightforward but still a

Corollary

In derivational semantics

1. D4×d D4 = D4 ∗ D4.
2. [Uridia'2011] Logd(Q×Q) = D4 ∗ D4



Topological semantics based on closure operator or derivative operator can be
generalized in the neighborhood semantics.

We can consider neighborhood function τ : X → 22X

. For x ∈ X τ(x) is a set
of neighborhoods of x. It connected with C is the following way:

A ∈ τ(x) ⇐⇒ x ∈ I(A), where I(A) = X \C(X \A).

And for derivational semantics

A ∈ τ(x) ⇐⇒ x ∈ d̄(A), where d̄(A) = X \ d(X \A).



Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair X = (X, τ), where

I X 6= ∅;

I τ : X → 22X

, such that τ(x) is a �lter on X;

τ � neighborhood function of X,
τ(x) � neighborhoods of x.
Filter on X: nonempty F ⊆ 2X such that
1) U ∈ F & U ⊆ V ⇒ V ∈ F
2) U, V ∈ F ⇒ U ∩ V ∈ F (�lter base)

The neighborhood model (n-model) is a pair (X, V ), where X = (X, τ) is a
n-frame and V : PV → 2X is a valuation. Similar: neighborhood 2-frame
(n-2-frame) is (X, τ1, τ2) such that τi is a neighborhood function on X for
each i.
Validity in model:

M,x |= 2iψ ⇐⇒ ∃V ∈ τi(x)∀y ∈ V (M,y |= ψ).

M |= ϕ X |= ϕ X |= L Log(C) = {ϕ |X |= ϕ for some X ∈ C}

nV (L) = {X |X is an n-frame and X |= L}



Connection with Kripke frames

De�nition
Let F = (W,R) be a Kripke frame. We de�ne neighborhood frame
N (F ) = (W, τ) as follows. For any w ∈W

τ(w) = {U |R(w) ⊆ U ⊆W} .

Lemma
Let F = (W,R) be a Kripke frame. Then

Log(N (F )) = Log(F ).



Bounded morphism for n-frames

De�nition
Let X = (X, τ1, . . .) and Y = (Y, σ1, . . .) be n-frames. Then function
f : X → Y is a bounded morphism if

1. f is surjective;

2. for any x ∈ X and U ∈ τi(x) f(U) ∈ σi(f(x));

3. for any x ∈ X and V ∈ σi(f(x)) there exists U ∈ τi(x), such that
f(U) ⊆ V .

In notation f : X � Y.

Lemma
If f : X � Y then Log(Y) ⊆ Log(X).



Not always fusion

It is not the case for logic K!

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.

X1 × X2, (x, y) |= 21⊥ ⇐⇒ ∅ ∈ τ ′1(x, y) ⇐⇒
∅ ∈ τ1(x) ⇐⇒ ∀y′ ∈ X2 (∅ ∈ τ ′1(x, y′)) ⇐⇒

∀y′ ∈ X2 (X1 × X2, (x, y
′) |= 21⊥) =⇒ X1 × X2, (x, y) |= 2221⊥.

Hence, X1 × X2 |= 21⊥ → 2221⊥.
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And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.
Since ψ does not contain neither 22, nor variables, its value does not depend
on the second coordinate. Let F = X1 × X2. So F, (x, y) |= ψ, then
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Not always fusion

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free
formula ψ

X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

De�nition
For two unimodal logics L1 and L2, we de�ne

〈L1, L2〉 = L1 ∗ L2 + ∆, where

∆ = {φ→ 22φ |φ is closed and 22-free}∪{ψ → 21ψ |ψ is closed and 21-free} .

Lemma
For any two normal modal logics L1 and L2 〈L1, L2〉 ⊆ L1 ×n L2.

Note that if ♦> ∈ L1 ∩ L2 then L1 ∗ L2 |= ∆.



Cantor space and in�nite paths

Standart construction: Cantor space as the set on in�nite paths on in�nite
binary tree T2.
The base of topology is the sets of the following type:

Um(α) = {β | a1 = b1, . . . am = bm} .

where α and β are two in�nite paths:

α = a1a2a3 . . . , β = b1b2b3 . . . .

In order to proof completeness of S4 w.r.t. Cantor space we need to construct
p-morphism from Cantor space to arbitrary �nite S4-frame. [Mints, 1998]
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Constructing �dense� topologies from Kripke frames

We need to construct a �dense� topological space based on a Kripke frame.
This becomes important in studying of products of topological spaces.
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Nω(F )

De�nition
Sets Un(α) form a �lter base. So we can de�ne

τ(α)− the �lter with base {Un(α) |n ∈ N} ;

Nω(F ) = (Wω, τ) � is a dense n-frame based on F .

Frame Nω(F ) is dense in a sense that the intersection of all neighborhoods of a
point is empty. So, there are no minimal neighborhoods unlike in Top(F ).

Lemma
Let F = (W,R) be a Kripke frame with root a0, then

fF : Nω(F ) � N (F ).

Corollary

For any frame F Log(Nω(F )) ⊆ Log(N (F )) = Log(F ).
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Counterexample

It possible that Log(Nω(F )) 6= Log(F ). Consider:

G = ({1}∗ , S), 1nS1m ⇐⇒ m = n+ 1.

Obviously G |= ♦p→ 2p.

Lemma
Nω(G) 2 ♦p→ 2p

Proof.
Consider valuation θ(p) =

{
02n10ω |n ∈ N

}
. Then in any neighbourhood of

point 0ω there are points where p is true and there are points where p is false.
Hence,

Nω(G) |= ♦p ∧ ♦¬p.



Completeness results

Theorem (2014)

K×n K = 〈K,K〉.

Theorem
If logics L1 and L2 are axiomatizable by closed formulas and by axioms like
♦kp→ ♦p then L1 ×n L2 = 〈L1, L2〉.

Corollary

K4×d K4 = 〈K4,K4〉.



Logic S5

We put

∆1 = {φ→ 22φ |φ is closed and 22-free} ,
com12 = 2122p→ 2221p,

com21 = 2221p→ 2122p,

chr = ♦122p→ 22♦1p.

Theorem
If logic L is axiomatizable by closed formulas and by axioms like ♦kp→ ♦p
then L×n S5 = L ∗ S5 + ∆1 + com12 + chr.



How to prove

PLAN
We have two loogic L1 and L2

Canonicity of the logic 〈L1, L2〉.
⇓

Construct F1 |= L1 and F2 |= L2 and 〈F1, F2〉� F〈L1,L2〉.
⇓

Construct Nω
Γ1(F1)×Nω

Γ2(F2) � N
(
〈F1, F2〉Γ1∪Γ2

)
.

⇓
Check that Nω

Γ1(F1) |= L1 and Nω
Γ2(F2) |= L2
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How to prove for S5

PLAN
We have two loogic L and S5

Canonicity of the logic 〈L, S5].
⇓

Construct F1 |= L and F2 = (R,R2) and 〈F1, F2〉� F〈L,S5].
⇓

Construct Nω
Γ(F1)×Nω(F2) � N

(
〈F1, F2]Γ

)
.

⇓
Check that Nω

Γ(F1) |= L



We de�ne

C12 = {ab 7→ ba | a ∈W1, b ∈W2}

We also de�ne three Kripke frames:

〈F1, F2〉 = (F1]F2, R
<
1 , R

<
2 )

〈F1, F2] = (F1]F2, R
<
1 , R

/
2)

~aR<
1
~b ⇐⇒ ∃u ∈W1(~b = ~au)

~aR<
2
~b ⇐⇒ ∃v ∈W2(~b = ~av)

~aR/
2
~b ⇐⇒ ∃~b′(~aR<

2
~b′ & ~b′ ==⇒

C12

~b)

Lemma
For F1 and F2 de�ned above

〈F1, F2] |= com12, chr∆1.



THANK YOU!
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