The Riesz representation theorem for valuations on distributive lattices

Sam van Gool¹ Tomáš Kroupa² Vincenzo Marra² June 15, 2016

¹Department of Mathematics, City College of New York

²Dipartimento di Matematica, Università degli Studi di Milano

Let D be a bounded distributive lattice. A valuation on D is a function $v: D \to \mathbb{R}$ satisfying $v(\bot) = 0$ and

$$v(x \lor y) + v(x \land y) = v(x) + v(y)$$
 $x, y \in D.$

Valuations on distributive lattices appear in

- Geometry and measure theory
- Probability theory
- Functional analysis

Example

Let $\mathscr{B}(X)$ be the Borel σ -algebra over a bounded measurable set $X \subset \mathbb{R}^n$. These functions are valuations on $\mathscr{B}(X)$:

- Lebesgue measure on $\mathscr{B}(X)$
- $p(A) := #(A \cap \mathbb{Z}^n), \quad A \in \mathscr{B}(X)$

Example

Let $\mathscr{B}(X)$ be the Borel σ -algebra over a bounded measurable set $X \subset \mathbb{R}^n$. These functions are valuations on $\mathscr{B}(X)$:

- Lebesgue measure on *B*(X)
- $p(A) := #(A \cap \mathbb{Z}^n), \quad A \in \mathscr{B}(X)$

Theorem (Hadwiger, 1955)

Let C be the family of compact convex sets in \mathbb{R}^n and \mathcal{U} be the lattice of polyconvex sets. Then there is a unique valuation χ on \mathcal{U} such that $\chi(C) = 1$ for each nonempty $C \in C$.

Every probability on a Boolean algebra is a valuation. Probability functions are often extended to non-classical setting:

- Heyting algebras and MV-algebras have distributive lattice reducts.
- Virtually any probability-like functional studied on those algebras thus becomes a valution.

Every probability on a Boolean algebra is a valuation. Probability functions are often extended to non-classical setting:

- Heyting algebras and MV-algebras have distributive lattice reducts.
- Virtually any probability-like functional studied on those algebras thus becomes a valution.

Example (Mundici)

Let M be an MV-algebra and $s \colon M \to [0,1]$ be a state: $s(\top) = 1$ and

 $s(a \oplus b) = s(a) + s(b)$, $a, b, \in M$ with $a \odot b = \bot$.

Then s is a valuation.

Let X be a compact Hausdorff space and C(X) be the Banach space of continuous functions $X \to \mathbb{R}$. There is a bijection between

- 1. bounded linear functionals L on C(X) and
- 2. signed Baire measures μ on X

such that

$$L(f) = \int_X f \,\mathrm{d}\mu \qquad f \in C(X).$$

Let X be a compact Hausdorff space and C(X) be the Banach space of continuous functions $X \to \mathbb{R}$. There is a bijection between

- 1. bounded linear functionals L on C(X) and
- 2. signed Baire measures μ on X

such that

$$L(f) = \int_X f \,\mathrm{d}\mu \qquad f \in C(X).$$

Note

Here we can think of X as the dual topological space to C(X) on which the linear functional L is represented by μ .

- We will look at valuations from the perspective of **Stone duality** for distributive lattices.
- The mirror image of a valuation will be a measure over a certain family of subsets of the **spectral space**.
- Our main result is a representation theorem for valuations by measures named **spectral Baire measures**.

From valuations to charges

From charges to measures

From valuations to charges

Let v be a valuation on a bounded distributive lattice D. We call v

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(\top) = 1$

Let v be a valuation on a bounded distributive lattice D. We call v

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(\top) = 1$

A real function c on a Boolean algebra B is a charge if $c(\perp) = 0$ and $c(x \lor y) = c(x) + c(y)$ whenever $x \land y = \bot$. A charge c is positive if $c(x) \ge 0$ for any $x \in B$.

Let v be a valuation on a bounded distributive lattice D. We call v

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(\top) = 1$

A real function c on a Boolean algebra B is a charge if $c(\bot) = 0$ and $c(x \lor y) = c(x) + c(y)$ whenever $x \land y = \bot$. A charge c is positive if $c(x) \ge 0$ for any $x \in B$.

Lemma

The valuations on a Boolean algebra B are exactly the charges on B. The **monotone** valuations on B are exactly the **positive** charges on B. We will pass from D to the Boolean algebra F(D) freely generated by D.

Definition

The free Boolean extension of a distributive lattice D is a pair $(F(D), \iota_D)$ where $\iota_D \colon D \to F(D)$ is a homomorphism such that the following diagram commutes for any Boolean algebra B and a homomorphism $h \colon D \to B$:

Any valuation v on D extends uniquely to a valuation v' on F(D). Moreover, v' is monotone normalised iff v is monotone normalised.

Any valuation v on D extends uniquely to a valuation v' on F(D). Moreover, v' is monotone normalised iff v is monotone normalised.

Hint

Let w be a valuation on F(D) extending v. Then

$$v(x) = w(x) = w(x \wedge y) + w(x \wedge \neg y) = v(x \wedge y) + w(x \wedge \neg y).$$

Any valuation v on D extends uniquely to a valuation v' on F(D). Moreover, v' is monotone normalised iff v is monotone normalised.

Hint

Let w be a valuation on F(D) extending v. Then

$$v(x) = w(x) = w(x \wedge y) + w(x \wedge \neg y) = v(x \wedge y) + w(x \wedge \neg y).$$

Then

$$w(x \wedge \neg y) = v(x) - v(x \wedge y).$$

The general formula for v' is derived using DNF of elements in F(D).

If D is a finite distributive lattice, then valuations are determined by their values on the join-irreducible elements $\mathcal{JI}(D)$ of D (Rota).

Lemma

Let D be a finite distributive lattice. Then there is a bijection between

- valuations on D and
- functions $p: \mathcal{JI}(D) \to \mathbb{R}$.

If D is a finite distributive lattice, then valuations are determined by their values on the join-irreducible elements $\mathcal{JI}(D)$ of D (Rota).

Lemma

Let D be a finite distributive lattice. Then there is a bijection between

- valuations on D and
- functions $p: \mathcal{JI}(D) \to \mathbb{R}$.

In the case of infinite D we need to work with valuations over lattices of sets in the **Stone space** of D.

Let D be a bounded distributive lattice:

- X := Spec D is its Stone space
- Kn(X) is the lattice of compact open sets
- Stone map $x \in D \mapsto \hat{x} \in Kn(X)$

Let D be a bounded distributive lattice:

- X := Spec D is its Stone space
- Kn(X) is the lattice of compact open sets
- Stone map $x \in D \mapsto \hat{x} \in Kn(X)$

We construct the free Boolean extension of the lattice $Kn(X) \cong D$:

• Let π be the patch topology on X, which is generated by

$$\{A \mid A \in \mathsf{Kn}(X)\} \cup \{A^{\mathcal{C}} \mid A \in \mathsf{Kn}(X)\}.$$

• Then $\operatorname{Clop}(X, \pi)$ = the free Boolean extension of $\operatorname{Kn}(X)$.

Representation of valuations by charges

Lemma

Let μ be a charge on $Clop(X, \pi)$. Define a function $v_{\mu} \colon D \to \mathbb{R}$ by setting

$$\mathbf{v}_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto \mathbf{v}_{\mu}$

is a **bijection** between charges on $Clop(X, \pi)$ and valuations on D.

$$\begin{array}{ccc} D & \stackrel{\cong}{\longrightarrow} & \mathsf{Kn}(X) \\ & & & \downarrow^{\iota_{\mathsf{Kn}(X)}} \\ F(D) & \stackrel{\cong}{\longrightarrow} & \mathsf{Clop}(X,\pi) \end{array}$$

Representation of valuations by charges

Lemma

Let μ be a charge on $Clop(X, \pi)$. Define a function $v_{\mu} \colon D \to \mathbb{R}$ by setting

$$\mathbf{v}_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto \mathbf{v}_{\mu}$

is a **bijection** between charges on $Clop(X, \pi)$ and valuations on D.

We will further extend the charges to measures.

From charges to measures

Measures and pre-measures

Definition

Let Σ be a σ -complete Boolean algebra. A function $\mu \colon \Sigma \to \mathbb{R}^+$ is a measure if $\mu(\bot) = 0$ and

$$\mu\left(\bigvee_{i\in\mathbb{N}}x_i\right)=\sum_{i\in\mathbb{N}}\mu(x_i)$$

for any countable subset $\{x_i \mid i \in \mathbb{N}\} \subseteq \Sigma$ such that $x_i \wedge x_j = \bot$, $i \neq j$.

Measures and pre-measures

Definition

Let Σ be a σ -complete Boolean algebra. A function $\mu \colon \Sigma \to \mathbb{R}^+$ is a measure if $\mu(\bot) = 0$ and

$$\mu\left(\bigvee_{i\in\mathbb{N}}x_i\right)=\sum_{i\in\mathbb{N}}\mu(x_i)$$

for any countable subset $\{x_i \mid i \in \mathbb{N}\} \subseteq \Sigma$ such that $x_i \wedge x_j = \bot$, $i \neq j$.

Definition

Let B be a Boolean algebra. A function $\mu\colon B\to \mathbb{R}^+$ is a pre-measure if $\mu(\bot)=0$ and

$$\iota\left(\bigvee_{i\in\mathbb{N}}x_i\right)=\sum_{i\in\mathbb{N}}\mu(x_i)$$

for any countable subset $\{x_i \mid i \in \mathbb{N}\} \subseteq B$ such that $x_i \wedge x_j = \bot$, $i \neq j$, whenever $\bigvee_{i \in \mathbb{N}} x_i \in B$.

Let *B* be a Boolean algebra of subsets of a set *X* and Σ be the Boolean σ -algebra generated by *B* in 2^X . Then any **pre-measure** on *B* uniquely extends to a **measure** on Σ .

Let X be a topological space.

- The Borel algebra $\mathscr{B}(X)$ is the σ -algebra generated by the open sets.
- The Baire algebra ℬ_c(X) is the smallest σ-algebra making all continuous functions X → ℝ measurable.

For every compact Hausdorff space X,

 $\mathscr{B}_{c}(X) \subseteq \mathscr{B}(X).$

Let X be a topological space.

- The Borel algebra $\mathscr{B}(X)$ is the σ -algebra generated by the open sets.
- The Baire algebra ℬ_c(X) is the smallest σ-algebra making all continuous functions X → ℝ measurable.

For every compact Hausdorff space X,

 $\mathscr{B}_{c}(X) \subseteq \mathscr{B}(X).$

However, we are working with spectral spaces.

We say that a topological space X is spectral if

- X is compact, T_0 , sober and
- Kn(X) is a lattice and a basis for the topology.

We say that a topological space X is spectral if

- X is compact, T_0 , sober and
- Kn(X) is a lattice and a basis for the topology.

A continuous map $f: X \to Y$ between spectral spaces X and Y is called spectral when

 $f^{-1}(A) \in Kn(X)$ for every $A \in Kn(Y)$.

We will present the Borel algebra of X in analogy with the Baire algebra.

Definition

The Sierpiński space is a space $\mathbf{2}:=\{0,1\}$ with the collection of open sets $\{\emptyset,\{0\},\{0,1\}\}.$

We will present the Borel algebra of X in analogy with the Baire algebra.

Definition

The Sierpiński space is a space $\mathbf{2}:=\{0,1\}$ with the collection of open sets $\{\emptyset,\{0\},\{0,1\}\}.$

Lemma

For any space X, the Borel algebra $\mathscr{B}(X)$ coincides with the smallest σ -algebra making all the continuous functions $X \to \mathbf{2}$ measurable.

Let X be a spectral space. The spectral Baire algebra $\mathscr{S}(X)$ is the smallest σ -algebra making all the **spectral maps** $X \to \mathbf{2}$ measurable.

Lemma

Let X be a spectral space. Then $\mathscr{S}(X)$ is generated by the compact open sets Kn(X).

Let X be a spectral space. The spectral Baire algebra $\mathscr{S}(X)$ is the smallest σ -algebra making all the **spectral maps** $X \to \mathbf{2}$ measurable.

Lemma

Let X be a spectral space. Then $\mathscr{S}(X)$ is generated by the compact open sets Kn(X).

Now we have almost all ingredients.

From charges to measures

Recall what we have already proved:

Lemma

Let μ be a charge on $Clop(X, \pi)$. Define a function $v_{\mu} \colon D \to \mathbb{R}$ by setting

$$\mathbf{v}_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto \mathbf{V}_{\mu}$

is a **bijection** between charges on $Clop(X, \pi)$ and valuations on D.

From charges to measures

Recall what we have already proved:

Lemma

Let μ be a charge on $Clop(X, \pi)$. Define a function $v_{\mu} \colon D \to \mathbb{R}$ by setting

$$\mathbf{v}_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto \mathbf{v}_{\mu}$

is a **bijection** between charges on $Clop(X, \pi)$ and valuations on D.

We want to extend μ onto the spectral Baire algebra $\mathscr{S}(X)$ by applying Hahn-Kolmogorov theorem:

Is μ a pre-measure on $Clop(X, \pi)$?

 μ is indeed a pre-measure on $Clop(X, \pi)$ as a consequence of the following observation.

Lemma

Let X be a spectral space and Kn(X) be the lattice of compact open sets. Suppose that $\{A_i \mid i \in \mathcal{I}\} \subseteq Kn(X)$ is a family such that the following conditions hold:

- $A_i \neq \emptyset$ for each $i \in \mathcal{I}$.
- $A_i \cap A_j = \emptyset$ for each $i \neq j$.
- $\bigcup_{i\in\mathcal{I}}\in \mathrm{Kn}(X).$

 μ is indeed a pre-measure on $Clop(X, \pi)$ as a consequence of the following observation.

Lemma

Let X be a spectral space and Kn(X) be the lattice of compact open sets. Suppose that $\{A_i \mid i \in \mathcal{I}\} \subseteq Kn(X)$ is a family such that the following conditions hold:

- $A_i \neq \emptyset$ for each $i \in \mathcal{I}$.
- $A_i \cap A_j = \emptyset$ for each $i \neq j$.
- $\bigcup_{i\in\mathcal{I}}\in \mathrm{Kn}(X).$

Then \mathcal{I} is finite.

Representation theorem

Theorem

Let D be a bounded distributive lattice, X := Spec D be its spectral space and $\mu : \mathscr{S}(X) \to \mathbb{R}^+$ be a spectral measure. Define a function $v_{\mu} : D \to \mathbb{R}^+$ by setting

$$v_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto v_{\mu}$

is a bijection between

- spectral measures on $\mathscr{S}(X)$ and
- monotone valuations on D.

Representation theorem

Theorem

Let D be a bounded distributive lattice, X := Spec D be its spectral space and $\mu \colon \mathscr{S}(X) \to \mathbb{R}^+$ be a spectral measure. Define a function $v_{\mu} \colon D \to \mathbb{R}^+$ by setting

$$v_{\mu}(x) := \mu(\hat{x}) \qquad x \in D.$$

Then

 $\mu \mapsto v_{\mu}$

is a bijection between

- spectral measures on $\mathscr{S}(X)$ and
- monotone valuations on D.

We can extend the theorem to the bijection between signed spectral measures and **bounded** valuations.

Any **probability charge** on a Boolean algebra B induces a unique Baire probability measure on the Stone space of B.

Any **probability charge** on a Boolean algebra B induces a unique Baire probability measure on the Stone space of B.

Riesz theorem for spectral spaces

Let X be a **spectral space** and C(X) be the Banach space of continuous functions $X \to \mathbb{R}$. There is a bijection between

- 1. bounded linear functionals L on C(X) and
- 2. signed Baire measures μ

such that $L(f) = \int_X f \, d\mu$ for every $f \in C(X)$.

- Reproving the classical Riesz theorem by our results for spectral spaces.
- Development of measure theory for spectral spaces.

Questions?