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Motivation

Definition

Let D be a bounded distributive lattice. A valuation on D is a function

v : D → R satisfying v(⊥) = 0 and

v(x ∨ y) + v(x ∧ y) = v(x) + v(y) x , y ∈ D.

Valuations on distributive lattices appear in

• Geometry and measure theory

• Probability theory

• Functional analysis
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Geometry

Example

Let B(X ) be the Borel σ-algebra over a bounded measurable set

X ⊂ Rn. These functions are valuations on B(X ):

• Lebesgue measure on B(X )

• p(A) := #(A ∩ Zn), A ∈ B(X )

Theorem (Hadwiger, 1955)

Let C be the family of compact convex sets in Rn and U be the lattice of

polyconvex sets. Then there is a unique valuation χ on U such that

χ(C ) = 1 for each nonempty C ∈ C.

2



Geometry

Example

Let B(X ) be the Borel σ-algebra over a bounded measurable set

X ⊂ Rn. These functions are valuations on B(X ):

• Lebesgue measure on B(X )

• p(A) := #(A ∩ Zn), A ∈ B(X )

Theorem (Hadwiger, 1955)

Let C be the family of compact convex sets in Rn and U be the lattice of

polyconvex sets. Then there is a unique valuation χ on U such that

χ(C ) = 1 for each nonempty C ∈ C.

2



Probability

Every probability on a Boolean algebra is a valuation. Probability

functions are often extended to non-classical setting:

• Heyting algebras and MV-algebras have distributive lattice

reducts.

• Virtually any probability-like functional studied on those algebras

thus becomes a valution.

Example (Mundici)

Let M be an MV-algebra and s : M → [0, 1] be a state: s(>) = 1 and

s(a⊕ b) = s(a) + s(b), a, b,∈ M with a� b = ⊥.

Then s is a valuation.
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Riesz theorem

Let X be a compact Hausdorff space and C (X ) be the Banach space of

continuous functions X → R. There is a bijection between

1. bounded linear functionals L on C (X ) and

2. signed Baire measures µ on X

such that

L(f ) =

∫
X

f dµ f ∈ C (X ).

Note

Here we can think of X as the dual topological space to C (X ) on which

the linear functional L is represented by µ.
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Our goal

• We will look at valuations from the perspective of Stone duality for

distributive lattices.

• The mirror image of a valuation will be a measure over a certain

family of subsets of the spectral space.

• Our main result is a representation theorem for valuations by

measures named spectral Baire measures.
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Outline

From valuations to charges

From charges to measures
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From valuations to charges



Terminology

Definition

Let v be a valuation on a bounded distributive lattice D. We call v

• monotone if x ≤ y implies v(x) ≤ v(y)

• normalised if v(>) = 1

A real function c on a Boolean algebra B is a charge if c(⊥) = 0 and

c(x ∨ y) = c(x) + c(y) whenever x ∧ y = ⊥. A charge c is positive if

c(x) ≥ 0 for any x ∈ B.

Lemma

The valuations on a Boolean algebra B are exactly the charges on B.

The monotone valuations on B are exactly the positive charges on B.
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Extending valuations to charges (1)

We will pass from D to the Boolean algebra F (D) freely generated by D.

Definition

The free Boolean extension of a distributive lattice D is a pair (F (D), ιD)

where ιD : D → F (D) is a homomorphism such that the following

diagram commutes for any Boolean algebra B and a homomorphism

h : D → B:

D

F (D) B

ιD h

h̄
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Extending valuations to charges (2)

Theorem

Any valuation v on D extends uniquely to a valuation v ′ on F (D).

Moreover, v ′ is monotone normalised iff v is monotone normalised.

Hint

Let w be a valuation on F (D) extending v . Then

v(x) = w(x) = w(x ∧ y) + w(x ∧ ¬y) = v(x ∧ y) + w(x ∧ ¬y).

Then

w(x ∧ ¬y) = v(x)− v(x ∧ y).

The general formula for v ′ is derived using DNF of elements in F (D).
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Finite case

If D is a finite distributive lattice, then valuations are determined by their

values on the join-irreducible elements J I(D) of D (Rota).

Lemma

Let D be a finite distributive lattice. Then there is a bijection between

• valuations on D and

• functions p : J I(D)→ R.

In the case of infinite D we need to work with valuations over lattices of

sets in the Stone space of D.
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Dual space

Let D be a bounded distributive lattice:

• X := SpecD is its Stone space

• Kn(X ) is the lattice of compact open sets

• Stone map x ∈ D 7→ x̂ ∈ Kn(X )

We construct the free Boolean extension of the lattice Kn(X ) ∼= D:

• Let π be the patch topology on X , which is generated by

{A | A ∈ Kn(X )} ∪ {AC | A ∈ Kn(X )}.

• Then Clop(X , π) = the free Boolean extension of Kn(X ).
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Representation of valuations by charges

Lemma

Let µ be a charge on Clop(X , π). Define a function vµ : D → R by

setting

vµ(x) := µ(x̂) x ∈ D.

Then

µ 7→ vµ

is a bijection between charges on Clop(X , π) and valuations on D.

D Kn(X )

F (D) Clop(X , π)

ιD

∼=

ιKn(X )

∼=

We will further extend the charges to measures.
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From charges to measures



Measures and pre-measures

Definition

Let Σ be a σ-complete Boolean algebra. A function µ : Σ→ R+ is

a measure if µ(⊥) = 0 and

µ

(∨
i∈N

xi

)
=
∑
i∈N

µ(xi )

for any countable subset {xi | i ∈ N} ⊆ Σ such that xi ∧ xj = ⊥, i 6= j .

Definition

Let B be a Boolean algebra. A function µ : B → R+ is a pre-measure if

µ(⊥) = 0 and

µ

(∨
i∈N

xi

)
=
∑
i∈N

µ(xi )

for any countable subset {xi | i ∈ N} ⊆ B such that xi ∧ xj = ⊥, i 6= j ,

whenever
∨

i∈N xi ∈ B.
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Hahn-Kolmogorov theorem

Let B be a Boolean algebra of subsets of a set X and Σ be the Boolean

σ-algebra generated by B in 2X . Then any pre-measure on B uniquely

extends to a measure on Σ.
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Borel and Baire

Definition

Let X be a topological space.

• The Borel algebra B(X ) is the σ-algebra generated by the open sets.

• The Baire algebra Bc(X ) is the smallest σ-algebra making all

continuous functions X → R measurable.

For every compact Hausdorff space X ,

Bc(X ) ⊆ B(X ).

However, we are working with spectral spaces.
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Spectral spaces

Definition

We say that a topological space X is spectral if

• X is compact, T0, sober and

• Kn(X ) is a lattice and a basis for the topology.

A continuous map f : X → Y between spectral spaces X and Y is called

spectral when

f −1(A) ∈ Kn(X ) for every A ∈ Kn(Y ).
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Indicator functions into Sierpiński space

We will present the Borel algebra of X in analogy with the Baire algebra.

Definition

The Sierpiński space is a space 2 := {0, 1} with the collection of open

sets {∅, {0}, {0, 1}}.

Lemma

For any space X , the Borel algebra B(X ) coincides with the smallest

σ-algebra making all the continuous functions X → 2 measurable.
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Spectral Baire algebra

Definition

Let X be a spectral space. The spectral Baire algebra S (X ) is the

smallest σ-algebra making all the spectral maps X → 2 measurable.

Lemma

Let X be a spectral space. Then S (X ) is generated by the compact

open sets Kn(X ).

Now we have almost all ingredients.
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From charges to measures

Recall what we have already proved:

Lemma

Let µ be a charge on Clop(X , π). Define a function vµ : D → R by

setting

vµ(x) := µ(x̂) x ∈ D.

Then

µ 7→ vµ

is a bijection between charges on Clop(X , π) and valuations on D.

We want to extend µ onto the spectral Baire algebra S (X ) by applying

Hahn-Kolmogorov theorem:

Is µ a pre-measure on Clop(X , π)?
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Diagram

D Kn(X )

F (D) Clop(X , π)

S (X )

ιD

∼=

ιKn(X )

∼=

20



Infinite joins never exist

µ is indeed a pre-measure on Clop(X , π) as a consequence of the

following observation.

Lemma

Let X be a spectral space and Kn(X ) be the lattice of compact open

sets. Suppose that {Ai | i ∈ I} ⊆ Kn(X ) is a family such that the

following conditions hold:

• Ai 6= ∅ for each i ∈ I.

• Ai ∩ Aj = ∅ for each i 6= j .

•
⋃
i∈I
∈ Kn(X ).

Then I is finite.
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Representation theorem

Theorem

Let D be a bounded distributive lattice, X := SpecD be its spectral

space and µ : S (X )→ R+ be a spectral measure. Define a function

vµ : D → R+ by setting

vµ(x) := µ(x̂) x ∈ D.

Then

µ 7→ vµ

is a bijection between

• spectral measures on S (X ) and

• monotone valuations on D.

We can extend the theorem to the bijection between signed spectral

measures and bounded valuations.
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Applications

Theorem

Any probability charge on a Boolean algebra B induces a unique Baire

probability measure on the Stone space of B.

Riesz theorem for spectral spaces

Let X be a spectral space and C (X ) be the Banach space of

continuous functions X → R. There is a bijection between

1. bounded linear functionals L on C (X ) and

2. signed Baire measures µ

such that L(f ) =
∫
X
f dµ for every f ∈ C (X ).
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Items for future research

• Reproving the classical Riesz theorem by our results for spectral

spaces.

• Development of measure theory for spectral spaces.
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Questions?
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