# The Riesz representation theorem for valuations on distributive lattices 

Sam van Gool ${ }^{1}$ Tomáš Kroupa ${ }^{2}$ Vincenzo Marra ${ }^{2}$
June 15, 2016
${ }^{1}$ Department of Mathematics, City College of New York
${ }^{2}$ Dipartimento di Matematica, Università degli Studi di Milano

## Motivation

## Definition

Let $D$ be a bounded distributive lattice. A valuation on $D$ is a function $v: D \rightarrow \mathbb{R}$ satisfying $v(\perp)=0$ and

$$
v(x \vee y)+v(x \wedge y)=v(x)+v(y) \quad x, y \in D .
$$

Valuations on distributive lattices appear in

- Geometry and measure theory
- Probability theory
- Functional analysis


## Geometry

## Example

Let $\mathscr{B}(X)$ be the Borel $\sigma$-algebra over a bounded measurable set $X \subset \mathbb{R}^{n}$. These functions are valuations on $\mathscr{B}(X)$ :

- Lebesgue measure on $\mathscr{B}(X)$
- $p(A):=\#\left(A \cap \mathbb{Z}^{n}\right), \quad A \in \mathscr{B}(X)$


## Geometry

## Example

Let $\mathscr{B}(X)$ be the Borel $\sigma$-algebra over a bounded measurable set $X \subset \mathbb{R}^{n}$. These functions are valuations on $\mathscr{B}(X)$ :

- Lebesgue measure on $\mathscr{B}(X)$
- $p(A):=\#\left(A \cap \mathbb{Z}^{n}\right), \quad A \in \mathscr{B}(X)$

Theorem (Hadwiger, 1955)
Let $\mathcal{C}$ be the family of compact convex sets in $\mathbb{R}^{n}$ and $\mathcal{U}$ be the lattice of polyconvex sets. Then there is a unique valuation $\chi$ on $\mathcal{U}$ such that $\chi(C)=1$ for each nonempty $C \in \mathcal{C}$.

## Probability

Every probability on a Boolean algebra is a valuation. Probability functions are often extended to non-classical setting:

- Heyting algebras and MV-algebras have distributive lattice reducts.
- Virtually any probability-like functional studied on those algebras thus becomes a valution.


## Probability

Every probability on a Boolean algebra is a valuation. Probability functions are often extended to non-classical setting:

- Heyting algebras and MV-algebras have distributive lattice reducts.
- Virtually any probability-like functional studied on those algebras thus becomes a valution.


## Example (Mundici)

Let $M$ be an MV-algebra and $s: M \rightarrow[0,1]$ be a state: $s(T)=1$ and

$$
s(a \oplus b)=s(a)+s(b), \quad a, b, \in M \text { with } a \odot b=\perp
$$

Then $s$ is a valuation.

## Riesz theorem

Let $X$ be a compact Hausdorff space and $C(X)$ be the Banach space of continuous functions $X \rightarrow \mathbb{R}$. There is a bijection between

1. bounded linear functionals $L$ on $C(X)$ and
2. signed Baire measures $\mu$ on $X$
such that

$$
L(f)=\int_{X} f \mathrm{~d} \mu \quad f \in C(X)
$$

## Riesz theorem

Let $X$ be a compact Hausdorff space and $C(X)$ be the Banach space of continuous functions $X \rightarrow \mathbb{R}$. There is a bijection between

1. bounded linear functionals $L$ on $C(X)$ and
2. signed Baire measures $\mu$ on $X$
such that

$$
L(f)=\int_{X} f \mathrm{~d} \mu \quad f \in C(X)
$$

## Note

Here we can think of $X$ as the dual topological space to $C(X)$ on which the linear functional $L$ is represented by $\mu$.

## Our goal

- We will look at valuations from the perspective of Stone duality for distributive lattices.
- The mirror image of a valuation will be a measure over a certain family of subsets of the spectral space.
- Our main result is a representation theorem for valuations by measures named spectral Baire measures.


## Outline

From valuations to charges

From charges to measures

## From valuations to charges

## Terminology

## Definition

Let $v$ be a valuation on a bounded distributive lattice $D$. We call $v$

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(T)=1$


## Terminology

## Definition

Let $v$ be a valuation on a bounded distributive lattice $D$. We call $v$

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(T)=1$

A real function $c$ on a Boolean algebra $B$ is a charge if $c(\perp)=0$ and $c(x \vee y)=c(x)+c(y)$ whenever $x \wedge y=\perp$. A charge $c$ is positive if $c(x) \geq 0$ for any $x \in B$.

## Terminology

## Definition

Let $v$ be a valuation on a bounded distributive lattice $D$. We call $v$

- monotone if $x \leq y$ implies $v(x) \leq v(y)$
- normalised if $v(T)=1$

A real function $c$ on a Boolean algebra $B$ is a charge if $c(\perp)=0$ and $c(x \vee y)=c(x)+c(y)$ whenever $x \wedge y=\perp$. A charge $c$ is positive if $c(x) \geq 0$ for any $x \in B$.

## Lemma

The valuations on a Boolean algebra $B$ are exactly the charges on $B$. The monotone valuations on $B$ are exactly the positive charges on $B$.

## Extending valuations to charges (1)

We will pass from $D$ to the Boolean algebra $F(D)$ freely generated by $D$.

## Definition

The free Boolean extension of a distributive lattice $D$ is a pair $\left(F(D), \iota_{D}\right)$ where $\iota_{D}: D \rightarrow F(D)$ is a homomorphism such that the following diagram commutes for any Boolean algebra $B$ and a homomorphism $h: D \rightarrow B$ :


## Extending valuations to charges (2)

## Theorem

Any valuation $v$ on $D$ extends uniquely to a valuation $v^{\prime}$ on $F(D)$. Moreover, $v^{\prime}$ is monotone normalised iff $v$ is monotone normalised.

## Extending valuations to charges (2)

## Theorem

Any valuation v on $D$ extends uniquely to a valuation $v^{\prime}$ on $F(D)$. Moreover, $v^{\prime}$ is monotone normalised iff $v$ is monotone normalised.

## Hint

Let $w$ be a valuation on $F(D)$ extending $v$. Then

$$
v(x)=w(x)=w(x \wedge y)+w(x \wedge \neg y)=v(x \wedge y)+w(x \wedge \neg y) .
$$

## Extending valuations to charges (2)

## Theorem

Any valuation $v$ on $D$ extends uniquely to a valuation $v^{\prime}$ on $F(D)$.
Moreover, $v^{\prime}$ is monotone normalised iff $v$ is monotone normalised.

## Hint

Let $w$ be a valuation on $F(D)$ extending $v$. Then

$$
v(x)=w(x)=w(x \wedge y)+w(x \wedge \neg y)=v(x \wedge y)+w(x \wedge \neg y) .
$$

Then

$$
w(x \wedge \neg y)=v(x)-v(x \wedge y) .
$$

The general formula for $v^{\prime}$ is derived using DNF of elements in $F(D)$.

## Finite case

If $D$ is a finite distributive lattice, then valuations are determined by their values on the join-irreducible elements $\mathcal{J I}(D)$ of $D$ (Rota).

## Lemma

Let $D$ be a finite distributive lattice. Then there is a bijection between

- valuations on $D$ and
- functions $p: \mathcal{J I}(D) \rightarrow \mathbb{R}$.


## Finite case

If $D$ is a finite distributive lattice, then valuations are determined by their values on the join-irreducible elements $\mathcal{J I}(D)$ of $D$ (Rota).

## Lemma

Let $D$ be a finite distributive lattice. Then there is a bijection between

- valuations on $D$ and
- functions $p: \mathcal{J I}(D) \rightarrow \mathbb{R}$.

In the case of infinite $D$ we need to work with valuations over lattices of sets in the Stone space of $D$.

## Dual space

Let $D$ be a bounded distributive lattice:

- $X:=\operatorname{Spec} D$ is its Stone space
- $\operatorname{Kn}(X)$ is the lattice of compact open sets
- Stone map $x \in D \mapsto \hat{x} \in \operatorname{Kn}(X)$


## Dual space

Let $D$ be a bounded distributive lattice:

- $X:=\operatorname{Spec} D$ is its Stone space
- $\operatorname{Kn}(X)$ is the lattice of compact open sets
- Stone map $x \in D \mapsto \hat{x} \in \operatorname{Kn}(X)$

We construct the free Boolean extension of the lattice $\operatorname{Kn}(X) \cong D$ :

- Let $\pi$ be the patch topology on $X$, which is generated by

$$
\{A \mid A \in \operatorname{Kn}(X)\} \cup\left\{A^{C} \mid A \in \operatorname{Kn}(X)\right\}
$$

- Then $\operatorname{Clop}(X, \pi)=$ the free Boolean extension of $\operatorname{Kn}(X)$.


## Representation of valuations by charges

## Lemma

Let $\mu$ be a charge on $\operatorname{Clop}(X, \pi)$. Define a function $v_{\mu}: D \rightarrow \mathbb{R}$ by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between charges on $\operatorname{Clop}(X, \pi)$ and valuations on $D$.

$$
\begin{aligned}
& D \longrightarrow \mathrm{Kn}(X) \\
& { }^{\iota_{D}} \downarrow \quad \downarrow^{\iota \mathrm{Kn}(X)} \\
& F(D) \xrightarrow{\cong} \operatorname{Clop}(X, \pi)
\end{aligned}
$$

## Representation of valuations by charges

## Lemma

Let $\mu$ be a charge on $\operatorname{Clop}(X, \pi)$. Define a function $v_{\mu}: D \rightarrow \mathbb{R}$ by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between charges on $\operatorname{Clop}(X, \pi)$ and valuations on $D$.

$$
\begin{aligned}
& D \longrightarrow \mathrm{Kn}(X) \\
& { }^{\iota} \downarrow \quad \downarrow^{\iota_{\mathrm{Kn}( }(X)} \\
& F(D) \xrightarrow{\cong} \operatorname{Clop}(X, \pi)
\end{aligned}
$$

We will further extend the charges to measures.

From charges to measures

## Measures and pre-measures

## Definition

Let $\Sigma$ be a $\sigma$-complete Boolean algebra. A function $\mu: \Sigma \rightarrow \mathbb{R}^{+}$is a measure if $\mu(\perp)=0$ and

$$
\mu\left(\bigvee_{i \in \mathbb{N}} x_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(x_{i}\right)
$$

for any countable subset $\left\{x_{i} \mid i \in \mathbb{N}\right\} \subseteq \Sigma$ such that $x_{i} \wedge x_{j}=\perp, i \neq j$.

## Measures and pre-measures

## Definition

Let $\Sigma$ be a $\sigma$-complete Boolean algebra. A function $\mu: \Sigma \rightarrow \mathbb{R}^{+}$is a measure if $\mu(\perp)=0$ and

$$
\mu\left(\bigvee_{i \in \mathbb{N}} x_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(x_{i}\right)
$$

for any countable subset $\left\{x_{i} \mid i \in \mathbb{N}\right\} \subseteq \Sigma$ such that $x_{i} \wedge x_{j}=\perp, i \neq j$.

## Definition

Let $B$ be a Boolean algebra. A function $\mu: B \rightarrow \mathbb{R}^{+}$is a pre-measure if $\mu(\perp)=0$ and

$$
\mu\left(\bigvee_{i \in \mathbb{N}} x_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(x_{i}\right)
$$

for any countable subset $\left\{x_{i} \mid i \in \mathbb{N}\right\} \subseteq B$ such that $x_{i} \wedge x_{j}=\perp, i \neq j$, whenever $\bigvee_{i \in \mathbb{N}} x_{i} \in B$.

## Hahn-Kolmogorov theorem

Let $B$ be a Boolean algebra of subsets of a set $X$ and $\Sigma$ be the Boolean $\sigma$-algebra generated by $B$ in $2^{X}$. Then any pre-measure on $B$ uniquely extends to a measure on $\Sigma$.

## Borel and Baire

## Definition

Let $X$ be a topological space.

- The Borel algebra $\mathscr{B}(X)$ is the $\sigma$-algebra generated by the open sets.
- The Baire algebra $\mathscr{B}_{c}(X)$ is the smallest $\sigma$-algebra making all continuous functions $X \rightarrow \mathbb{R}$ measurable.

For every compact Hausdorff space $X$,

$$
\mathscr{B}_{c}(X) \subseteq \mathscr{B}(X)
$$

## Borel and Baire

## Definition

Let $X$ be a topological space.

- The Borel algebra $\mathscr{B}(X)$ is the $\sigma$-algebra generated by the open sets.
- The Baire algebra $\mathscr{B}_{c}(X)$ is the smallest $\sigma$-algebra making all continuous functions $X \rightarrow \mathbb{R}$ measurable.

For every compact Hausdorff space $X$,

$$
\mathscr{B}_{c}(X) \subseteq \mathscr{B}(X) .
$$

However, we are working with spectral spaces.

## Spectral spaces

## Definition

We say that a topological space $X$ is spectral if

- $X$ is compact, $T_{0}$, sober and
- $\mathrm{Kn}(X)$ is a lattice and a basis for the topology.


## Spectral spaces

## Definition

We say that a topological space $X$ is spectral if

- $X$ is compact, $T_{0}$, sober and
- $\mathrm{Kn}(X)$ is a lattice and a basis for the topology.

A continuous map $f: X \rightarrow Y$ between spectral spaces $X$ and $Y$ is called spectral when

$$
f^{-1}(A) \in \operatorname{Kn}(X) \quad \text { for every } A \in \operatorname{Kn}(Y)
$$

## Indicator functions into Sierpiński space

We will present the Borel algebra of $X$ in analogy with the Baire algebra.

## Definition

The Sierpiński space is a space $2:=\{0,1\}$ with the collection of open sets $\{\emptyset,\{0\},\{0,1\}\}$.

## Indicator functions into Sierpiński space

We will present the Borel algebra of $X$ in analogy with the Baire algebra.

## Definition

The Sierpiński space is a space $2:=\{0,1\}$ with the collection of open sets $\{\emptyset,\{0\},\{0,1\}\}$.

## Lemma

For any space $X$, the Borel algebra $\mathscr{B}(X)$ coincides with the smallest $\sigma$-algebra making all the continuous functions $X \rightarrow \mathbf{2}$ measurable.

## Spectral Baire algebra

## Definition

Let $X$ be a spectral space. The spectral Baire algebra $\mathscr{S}(X)$ is the smallest $\sigma$-algebra making all the spectral maps $X \rightarrow \mathbf{2}$ measurable.

## Lemma

Let $X$ be a spectral space. Then $\mathscr{S}(X)$ is generated by the compact open sets $\mathrm{Kn}(X)$.

## Spectral Baire algebra

## Definition

Let $X$ be a spectral space. The spectral Baire algebra $\mathscr{S}(X)$ is the smallest $\sigma$-algebra making all the spectral maps $X \rightarrow \mathbf{2}$ measurable.

## Lemma

Let $X$ be a spectral space. Then $\mathscr{S}(X)$ is generated by the compact open sets $\operatorname{Kn}(X)$.

Now we have almost all ingredients.

## From charges to measures

Recall what we have already proved:

## Lemma

Let $\mu$ be a charge on $\operatorname{Clop}(X, \pi)$. Define a function $v_{\mu}: D \rightarrow \mathbb{R}$ by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between charges on $\operatorname{Clop}(X, \pi)$ and valuations on $D$.

## From charges to measures

Recall what we have already proved:

## Lemma

Let $\mu$ be a charge on $\operatorname{Clop}(X, \pi)$. Define a function $v_{\mu}: D \rightarrow \mathbb{R}$ by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between charges on $\operatorname{Clop}(X, \pi)$ and valuations on $D$.

We want to extend $\mu$ onto the spectral Baire algebra $\mathscr{S}(X)$ by applying Hahn-Kolmogorov theorem:

Is $\mu$ a pre-measure on $\operatorname{Clop}(X, \pi)$ ?

## Diagram

$$
\begin{aligned}
& D \xrightarrow{\cong} \mathrm{Kn}(X) \\
& { }^{\iota_{D}} \downarrow \quad \downarrow^{\iota_{\mathrm{Kn}( }(X)} \\
& F(D) \xrightarrow{\cong} \operatorname{Clop}(X, \pi) \\
& \mathscr{S}(X)
\end{aligned}
$$

## Infinite joins never exist

$\mu$ is indeed a pre-measure on $\operatorname{Clop}(X, \pi)$ as a consequence of the following observation.

## Lemma

Let $X$ be a spectral space and $\mathrm{Kn}(X)$ be the lattice of compact open sets. Suppose that $\left\{A_{i} \mid i \in \mathcal{I}\right\} \subseteq \operatorname{Kn}(X)$ is a family such that the following conditions hold:

- $A_{i} \neq \emptyset$ for each $i \in \mathcal{I}$.
- $A_{i} \cap A_{j}=\emptyset$ for each $i \neq j$.
- $U \in \operatorname{Kn}(X)$. $i \in \mathcal{I}$


## Infinite joins never exist

$\mu$ is indeed a pre-measure on $\operatorname{Clop}(X, \pi)$ as a consequence of the following observation.

## Lemma

Let $X$ be a spectral space and $\mathrm{Kn}(X)$ be the lattice of compact open sets. Suppose that $\left\{A_{i} \mid i \in \mathcal{I}\right\} \subseteq \operatorname{Kn}(X)$ is a family such that the following conditions hold:

- $A_{i} \neq \emptyset$ for each $i \in \mathcal{I}$.
- $A_{i} \cap A_{j}=\emptyset$ for each $i \neq j$.
- $\bigcup \in \operatorname{Kn}(X)$.
$i \in \mathcal{I}$
Then $\mathcal{I}$ is finite.


## Representation theorem

## Theorem

Let $D$ be a bounded distributive lattice, $X:=\operatorname{Spec} D$ be its spectral space and $\mu: \mathscr{S}(X) \rightarrow \mathbb{R}^{+}$be a spectral measure. Define a function $v_{\mu}: D \rightarrow \mathbb{R}^{+}$by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between

- spectral measures on $\mathscr{S}(X)$ and
- monotone valuations on $D$.


## Representation theorem

## Theorem

Let $D$ be a bounded distributive lattice, $X:=\operatorname{Spec} D$ be its spectral space and $\mu: \mathscr{S}(X) \rightarrow \mathbb{R}^{+}$be a spectral measure. Define a function $v_{\mu}: D \rightarrow \mathbb{R}^{+}$by setting

$$
v_{\mu}(x):=\mu(\hat{x}) \quad x \in D .
$$

Then

$$
\mu \mapsto v_{\mu}
$$

is a bijection between

- spectral measures on $\mathscr{S}(X)$ and
- monotone valuations on $D$.

We can extend the theorem to the bijection between signed spectral measures and bounded valuations.

## Applications

## Theorem

Any probability charge on a Boolean algebra $B$ induces a unique Baire probability measure on the Stone space of $B$.

## Applications

## Theorem

Any probability charge on a Boolean algebra $B$ induces a unique Baire probability measure on the Stone space of $B$.

## Riesz theorem for spectral spaces

Let $X$ be a spectral space and $C(X)$ be the Banach space of continuous functions $X \rightarrow \mathbb{R}$. There is a bijection between

1. bounded linear functionals $L$ on $C(X)$ and
2. signed Baire measures $\mu$
such that $L(f)=\int_{X} f \mathrm{~d} \mu$ for every $f \in C(X)$.

## Items for future research

- Reproving the classical Riesz theorem by our results for spectral spaces.
- Development of measure theory for spectral spaces.


## Questions?

