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Spectra of compact regular frames

The prime spectrum of a distributive lattice L
= the set of prime filters of L

(≈ [prime ideals] ≈ [lattice homomorphisms L → 2])

with enough additional structure to recover L back

-

topology generated by open sets
φ(a) ∶= { p ∣ a ∈ p } for a ∈ L

spectral space Spec(L)

, or

topology generated by both φ(a) and their complements,
and partial order determined by inclusion
(p ⩽ q means p ⊆ q)

Priestley space Spec(L)

.

Sets of the form φ(a) — precisely those clopens
which are upsets (w. r. t. ⩽).
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Spectra of compact regular frames

Distributive lattice L is a frame if it is complete and infinite
join-distributive

Think of L = O(X), all open sets of a topological space.

(There are lots of others, but not in this talk).
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Spectra of compact regular frames

In fact, every compact regular frame is isomorphic to the frame of all
open sets of some compact Hausdorff space (Isbell duality).
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Spectra of compact regular frames

In fact, every compact regular frame is isomorphic to the frame of all
open sets of some compact Hausdorff space (Isbell duality).

Main thing for that: it has enough points.
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Points

Consider (meet-)prime elements p ∈ L:

(p = x ∧ y only when x = p or y = p; makes sense in any
meet-semilattice).

At any rate, there is an embedding

pt(L)↪ Spec(L).
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p ∈ Spec(L) is in the image of pt(L)↪ Spec(L)
iff ↓ p is clopen
(this clopen downset is the complement of φ(p)
for the corresponding prime element p ∈ L).

At any rate, there is an embedding
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Spectra of compact regular frames

L is a Heyting algebra iff Spec(L) is an Esakia space,
C clopen ⇒ ↓C clopen.

L is moreover a frame (i. e. is complete)
iff Spec(L) is extremally order-disconnected, —
closure CU of an open upset U is clopen.

To an open upset U ⊆ Spec(L) corresponds the ideal

IU ∶= { a ∈ L ∣ φ(a) ⊆ U }

of L, and its join is determined by

φ(⋁IU) = CU .
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Spectra of compact regular frames

Let Min(L) ⊆ Spec(L) be the subset of all minimal
(w.r.t. ⩽) points

(minimal prime filters, maximal ideals, ...)
(in Spec(L) these are the closed points)

The frame L is compact iff Min(L) consists of isolated points of
Spec(L).
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and by the previous slide φ(⋁IU) = CU .
Since L is compact, ⋁IU = 1 would imply 1 ∈ IU ,
which cannot be since U is not everything.
Thus CU is not everything either, and then it is U .
So m is isolated.

Converse goes through another equivalent condition —
L does not have any nontrivial dense open upsets.
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(in Spec(L) these are the closed points)

The frame L is compact iff Min(L) consists of isolated points of
Spec(L).

It follows that for L compact,
Min(L) lies in the image of pt(L)↪ Spec(L)
(we saw that the latter image consists of those p with ↓ p clopen).
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Spectra of compact regular frames

Key fact for regularity:

¬b ∨ a = 1 ⇐⇒ ↓φ(b) ⊆ φ(a)

For a clopen upset U of Spec(L), let

RU ∶=⋃{ φ(b) ∣ ↓φ(b) ⊆ U } .

Then L is regular iff Rφ(a) is dense in φ(a) for every a ∈ L.

One of many consequences:
every clopen downset D of Spec(L) is determined by D ∩Min(L).
Namely,

D = I ↓ ↑(D ∩Min(L)).

It also follows that the image of pt(L)↪ Spec(L) lies in Min(L).
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Spectra of compact regular frames

Putting the two together:
For L compact, pt(L)↪ Spec(L) is inside Min(L);
for L regular, reverse inclusion holds.
Thus for compact regular frames one may identify pt(L) with Min(L).

More is true: for L = O(X) with a compact Hausdorff X ,
the composite X ≈ pt(O(X)) ≈Min(L) ⊆ Spec(O(X))
is a homeomorphism onto Min(L) with the subspace topology.
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Max(L)

Consider now Max(L) ⊆ Spec(L), the subset of ⩽-maximal elements.

Whenever L is a Heyting algebra, this can be identified with
Spec(L¬¬).

There is the Booleanization map ¬¬ ∶ L ↠ L¬¬

onto the Boolean algebra of regular elements of L
(those r ∈ L with ¬¬r = r).

The reverse map (¬¬)−1 ∶ Spec(L¬¬)↪ Spec(L) is a homeomorphism
onto Max(L) ⊆ Spec(L).
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Max(L) and the Gleason cover

The Gleason cover γX ∶ X̃ ↠ X of a
compact Hausdorff space X
is the unique up to homeomorphism irreducible map
from an extremally disconnected compact Hausdorff space X̃ onto X .

One of several constructions: X̃ = Spec(O(X)¬¬),
the Stone space of the complete Boolean algebra
of regular opens of X .

The map γX sends an ultrafilter U of O(X)¬¬ to
⋂{ CU ∣ U ∈ U }, which happens to consist of a single point.

Thus X̃ is homeomorphic to Max(O(X));
and we saw that X itself is homeomorphic to Min(O(X)).
The map γX can be also naturally realized in these terms.
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Normality

Every compact Hausdorff space is not just regular but normal:
disjoint closed sets can be separated by disjoint open sets.

Normality is even easier to translate into the frame language
than regularity.
In fact it makes sense for any distributive lattice L.

L is normal if for any a,b ∈ L with a ∨ b = 1
there are a′,b′ ∈ L with a ∨ a′ = b ∨ b′ = 1 and a′ ∧ b′ = 0.

A space X is normal iff O(X) is normal in this sense
(given disjoint closed sets, let a and b be their complements,
then a′ and b′ will be the required separating disjoint opens).
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Normality in terms of Spec

From II.3.7 of Johnstone’s “Stone Spaces” one finds:
a distributive lattice L is normal iff for any p ∈ Spec(L)
there is a unique m ∈Min(L) with p ⩾ m.

This gives a canonical retraction Spec(L)↠Min(L)
for the inclusion Min(L)↪ Spec(L) which is actually continuous.

In particular, we get a well-defined continuous map

πX ∶ Max(L)↪ Spec(L)↠Min(L).
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Gleason cover in terms of Spec

Using uniqueness involved in the definition of πX

one shows easily that for L = O(X) the diagram

Spec(L¬¬) Max(L)

pt(L) Min(L)

≈

πXγX

≈

commutes.
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Zero-dimensionality in terms of Spec

An element c ∈ L of a lattice L is complemented
if c ∧ c′ = 0, c ∨ c′ = 1 for some c′ ∈ L.

A frame L is zero-dimensional if every element is a join of
complemented ones.

An element c ∈ L is complemented iff φ(c) is a biset —
(not only an upset but also) a downset in Spec(L).

For any clopen upset U of Spec(L), let

ZU ∶=⋃{ φ(c) ⊆ U ∣ c ∈ L complemented } .

In other words, ZU is the union of all clopen bisets contained in U .

It is then straightforward to show that L is zero-dimensional
iff Zφ(a) is dense in φ(a) for every a ∈ L.
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Extremal disconnectedness

Call a frame L extremally disconnected if ¬a ∨ ¬¬a = 1 for every a ∈ L.
Equivalently, if every regular element is complemented.
It is then more or less clear that O(X)
is extremally disconnected in this sense iff X is.

A compact regular frame L is extremally disconnected
iff for every p ∈ Spec(L) there is a unique q ∈Max(L) with q ⩾ p.
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Scatteredness

Recall that a space X is scattered if every nonempty subspace of X
contains an isolated point.

Scatteredness can be characterized in terms of the
Cantor-Bendixson derivative δ.
For a subset S ⊆ X , δ(S) is the set of limit points of S.

To capture scatteredness in terms of the frame of opens, one
considers the dual operator τ = X ∖ δ(∖ ) restricted to open sets.

This can be done “pointlessly”: for a frame L, define for a ∈ L

τ(a) =⋀Da ,

where
Da = { b ⩾ a ∣ b → a = a } .

Call L scattered, if τ(a) ∈ Da for all a ∈ L, i. e. each Da is a principal
filter.

A T0 space X is scattered iff O(X) is scattered in this sense.
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Scatteredness in terms of Spec

A frame L is scattered
iff the maximum of any clopen downset of Spec(L) is clopen,
iff the maximum of any clopen subset of Spec(L) is clopen.

The key observation here is that b ∈ Da is equivalent to

Max(X ∖ φ(a)) ⊆ φ(b).
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Rank and height

A scattered space X has finite Cantor-Bendixson rank n if
δn+1(X) = ∅ and δn(X) ≠ ∅
(equivalently, τn+1(0) = 1 and τn(0) ≠ 1 in L = O(X)).

A scattered frame L has rank n iff Spec(L) is of height n

(that is, maximal length of a chain in (Spec(L),⩽) is n).
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Infinite height

In fact for any compact regular frame L which is not scattered,
Spec(L) has infinite height.

Essentially this boils down to the fact that
a compact Hausdorff space X is not scattered
iff it admits a continuous surjection X ↠ [0,1].

It is easy to show that Spec(O([0,1])) has infinite height.
Then one uses the fact that for a continuous surjection X ↠ Y
between compact Hausdorff spaces
height of Spec(O(X)) is no less than that of Spec(O(Y )).

This in turn depends on the “pointless” version of the fact that
any continuous map X → Y with X compact and Y regular is closed.
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Morphisms

For any frame homomorphism h ∶ L →M with L regular and M compact,
the induced map h−1 ∶ Spec(M)→ Spec(L) is a co-p-morphism.
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Pictures
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