Instantial neighborhood semantics with an application to game logic

Johan van Benthem Nick Bezhanishvili Sebastian Enqvist

Institute for Logic, Language and Computation University of Amsterdam

June 14, 2016

Part I: Instantial Neighborhood Semantics

ヘロト ヘロト ヘヨト ヘヨト

э

Modal logic in topology

• Box as interior:

$$\llbracket \Box \varphi \rrbracket_V^\tau := \mathcal{I}(\llbracket \varphi \rrbracket_V^\tau)$$

● *Globally valid* formulas ⇔ equational theory of a space:

$$egin{aligned} \mathcal{I}(x \cap y) &= \mathcal{I}x \cap \mathcal{I}y &\mapsto & \Box(p \wedge q) \leftrightarrow \Box p \wedge \Box q \ \Box p o p &\mapsto & -\mathcal{I}(x) \cup x = 1 \end{aligned}$$

・ロト ・ 雪 ト ・ ヨ ト

Theorem (McKinsey-Tarski)

S4 is the modal logic of the real line.

Local satisfaction relation:

Local satisfaction relation:

Neighborhood semantics

Definition

A neighborhood frame is a pair (X, R) where $R \subseteq X \times \mathcal{P}X$. A neighborhood model is a frame with a valuation.

$$s \Vdash \Box \varphi \Leftrightarrow \exists Z : (s, Z) \in R \& \forall v \in Z : v \Vdash \varphi$$

- Spaces to frames: $(u, Z) \in R_{\tau} \Leftrightarrow Z \in \tau \& u \in Z$.
- Monotone modal logics:

$$\Box p
ightarrow \Box (p \lor q) \checkmark \qquad \Box p \land \Box q
ightarrow \Box (p \land q) imes$$

• Game logic.

•----•

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

11/75

Instantial neighborhood logic

- Box has a quantifier pattern of the form ∃∀: only universal quantifiers over individual neighborhoods
- Idea: allow existential quantification over neighborhoods!

Grammar:

$$\varphi := \mathbf{p} \mid \top \mid \varphi \land \varphi \mid \neg \varphi \mid \Box(\psi_1, ..., \psi_n; \varphi)$$

Semantics

•----•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

・ロ> ・目> ・目> ・目> ・<
 ・<

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Coalgebra

- Neighborhood frames = coalgebras for $\mathcal{I} = \mathcal{P} \circ \mathcal{P}$, a w.p.b. preserving functor!
- Behavioural equivalence = instantial neighborhood bisimilarity
- $\overline{\mathcal{I}}$ -bisimulations = instantial neighborhood bisimulations
- Instantial neighborhood modalities are predicate liftings!

Instantial neighborhood modality on topological spaces

Proposition

Over topological spaces, INL has the same expressive power as standard neighborhood + global modality.

Proof.

$$\begin{array}{lll} \mathsf{E}\varphi & \mapsto & \Box(\varphi,\top) \\ \Box(\psi_1,...,\psi_n;\varphi) & \mapsto & \Box\varphi \wedge \mathsf{E}(\psi_1 \wedge \Box\varphi)... \wedge \mathsf{E}(\psi_n \wedge \Box\varphi) \end{array}$$

(日)

Basic results:

• Restriction to *n*-existential fragment decreases expressive power for all $n \in \omega$!

n-existential fragment:

Formulas $\Box(\psi_1, ..., \psi_k; \varphi)$ restricted so that k < n.

- Bisimulation invariance + Hennessy-Milner theorem for finite models
- Satisfiability preserving translations into normal (bi-)modal logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Complexity = PSPACE-complete

Axioms

(NW) $\Box(\gamma_1, ..., \gamma_i; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i; \psi \lor \chi),$ (SW) $\Box(\gamma_1, ..., \gamma_i, \alpha; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i, \alpha \lor \beta; \psi),$ (SR) $\Box(\gamma_1, ..., \gamma_i, \varphi; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i, \varphi \land \psi; \psi),$ (SC) $\neg \Box(\bot; \psi)$, (NT) $\Box(\gamma_1, ..., \gamma_i; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i, \delta; \psi) \vee \Box(\gamma_1, ..., \gamma_i; \psi \wedge \neg \delta),$ (AD) $\Box(\gamma_1, ..., \gamma_i, \varphi, \delta_1, ..., \delta_n; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i, \delta_1, ..., \delta_n; \psi),$ (AI) $\Box(\gamma_1, ..., \gamma_i, \delta_1, ..., \delta_n; \psi) \rightarrow \Box(\gamma_1, ..., \gamma_i, \gamma_i, \delta_1, ..., \delta_n; \psi)$

The canonical model

Theorem

The axioms for INL are sound and strongly complete.

Proof is by a canonical model construction:

Definition

Let Γ be an MC set and Z a family of MC sets. Set $(\Gamma, Z) \in R_C$ iff: for all $\psi_1, ..., \psi_n, \varphi$, if

- $\varphi \in \bigcap Z$ and
- for each $i, \psi_i \in \bigcup Z$,

then $\Box(\psi_1, ..., \psi_n; \varphi) \in \Gamma$.

Part II: Game Logic

★ロト ★課 ト ★注 ト ★注 ト 一注

Games

Powers

Definition

Let G be a game with outcomes in O. Then $P \subseteq O$ is a *power* of Player I in G if:

```
\exists \sigma \in \mathsf{Strat}(\mathsf{I}) \forall \sigma' \in \mathsf{strat}(\mathsf{II}) : \mathsf{Out}(\sigma, \sigma') \in \mathsf{P}
```

Same for Player II.

Definition

If $N_I(G_1) = N_I(G_2)$ and $N_{II}(G_1) = N_{II}(G_2)$, we say G_1 and G_2 are power equivalent.

Game logic

Language (minus unrestricted dual):

$$\varphi := p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid (G)\varphi$$
$$G := g \mid G \cup G \mid G \cap G \mid G \circ G \mid G^{\star}$$

Game logic is suitable for reasoning about *powers*, but does not describe the *individual strategies* available in the game. Power equivalent games can still have strategies that behave differently in terms of possible outcomes of the game!

Example

Set
$$2 \prec_I 3 \prec_I 1$$
, and $2 \prec_{II} 1 \prec_{II} 3$.

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

500

 $\{1,2\}$ is a power in both games...

...but can only be forced by a *strictly dominated strategy* in the right game!

By contrast, the left game has a Nash equilibrium in which Player I plays a strategy forcing $\{1, 2\}$.
Strategy equivalence

Definition

A set $P \subseteq O$ is said to be an *exact power* of Player I in G if:

 $\exists \sigma \in \mathsf{Strat}(\mathsf{I}): \ P = \{ o \in O \mid \exists \sigma' \in \mathsf{Strat}(\mathsf{II}): \ o = \mathsf{Out}(\sigma, \sigma') \}$

Same for Player II. We say that G_1 and G_2 are strategy equivalent if the exact powers of each player are the same in both games: $E_I(G_1) = E_I(G_2)$ and $E_{II}(G_1) = E_{II}(G_2)$.

Make strategies first-class citizens in game logic:

Exact power = set of possible outcomes of playing one of the available strategies. Strategy equivalence = every strategy in G_1 has the same possible outcomes as some strategy in G_2 , and vice versa.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

æ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくぐ

Strategic normal form:

イロト イポト イヨト イヨト

Exact powers = rows in SNF.

Exact powers as basis:

Proposition

For any game G:

$$N(G) = \{P \in O \mid P' \subseteq P \text{ for some } P' \in E(G)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

A step towards equilibria

Definition

Say that $p \in O$ is a *stable outcome* of a strategy σ for Player I if p is an outcome of some σ -guided match, and there is no σ -guided outcome which is better for Player II.

p is a stable outcome:

$$\Box(p;\bigwedge_{p\prec_{II}q}\neg q)$$

Proposition

Strategy equivalent games have the same stable outcomes for both players.

Proposition

Every equilibrium has a stable outcome for each player. If p has maximal payoff for either player, then it is a stable outcome in G iff there is an equilibrium with outcome p.

(4 同) (4 回)

Instantial game logic

$\varphi := p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid (G)(\psi_1, ..., \psi_n; \varphi)$ $G := g \mid G \cup G \mid G \cap G \mid G \circ G \mid G^*$

Semantics

Definition

A game frame is a pair (S, R) where R associates with every atomic game g a relation $R_g \subseteq S \times \mathcal{P}^+(S)$.

$u \Vdash (G)(\psi_1, ..., \psi_n; \varphi) \Leftrightarrow \exists Z \in R_G[u] : Z \subseteq \llbracket \varphi \rrbracket \& Z \cap \llbracket \psi_i \rrbracket \neq \emptyset$

Angelic choice

$$R_{G_1\cup G_2}=R_{G_1}\cup R_{G_2}$$

◆□> <四> < Ξ> < Ξ> < Ξ> < Ξ</p>

Demonic choice

Only slightly more complicated:

$$R_{G_1 \cap G_2} = \{(u, Z_1 \cup Z_2) \mid (u, Z_1) \in R_{G_1} \& (u, Z_2) \in R_{G_2}\}$$

Composition

Kleene star

- $(u, Z) \in R_{G^0}$ iff $Z = \{u\}$
- $G^{n+1} = G^n \cup G \circ G^n$
- $(u, Z) \in R_{G^{\star}}$ iff $(u, Z) \in R_{G^n}$ for some $n \in \omega$

Basic properties

- Dual-free game logic as a fragment
- Bisimulation invariance

Proof.

Game operations are safe for instantial neighborhood bisimulation.

• Complexity $\in 2EXPTIME$

Proof.

Satisfiability preserving translation into modal mu-calculus (exponential growth in formula size).

• Admits a variant of filtration.

Axioms

Angelic choice

$(G_1 \cup G_2)(ec{\psi}; arphi) \leftrightarrow (G_1)(ec{\psi}; arphi) \lor (G_2)(ec{\psi}; arphi)$

Demonic choice

Definition

If $\vec{\psi} = \psi_1, ..., \psi_n$, then let Split($G_1, G_2, \vec{\psi}, \varphi$) be the disjunction of all formulas

$$(G_1)(\theta_1,...,\theta_k;\varphi) \wedge (G_2)(\theta_{k+1},...,\theta_m;\varphi)$$

such that $\{\psi_1, ..., \psi_n\} = \{\theta_1, ..., \theta_m\}.$

Demonic choice

$(G_1 \cap G_2)(\vec{\psi}; \varphi) \leftrightarrow \mathsf{Split}(G_1, G_2, \vec{\psi}, \varphi)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Composition Law

Definition

Given game terms G_1, G_2 , and finite tuple of formulas $\vec{\psi}, \varphi$: let $\delta(G_1, G_2, \vec{\psi}, \varphi)$ be the disjunction of all formulas

$$(G_1)((G_2)(\vec{\theta}_1;\varphi),...,(G_2)(\vec{\theta}_n;\varphi);(G_2)\varphi)$$

・ロン ・雪 と ・ ヨ と ・ ヨ と

-

where:

•
$$\vec{\theta}_1 \cdot \ldots \cdot \vec{\theta}_n = \vec{\psi}$$
 and
• $|\vec{\theta}_i| < |\vec{\psi}|$ for each *i*.
Note that if $\vec{\psi}$ is a singleton or empty, $\delta(G_1, G_2, \vec{\psi}, \varphi) = \bot$.

Composition law

$(G_1 \circ G_2)(\vec{\psi}; \varphi) \leftrightarrow \delta(G_1, G_2, \vec{\psi}, \varphi) \vee (G_1)((G_2)(\vec{\psi}; \varphi); (G_2)\varphi)$

Example:

 $(G_1)((G_2)(\psi_1;\varphi),(G_2)(\psi_2;\varphi);(G_2)\varphi)$

 $(G_1 \circ G_2)(\psi_1, \psi_2; \varphi)$

< 17 ▶

≣⇒

500

Dealing with the Kleene star

- The Kleene star is a least fixpoint construction.
- Axiomatizing least fixpoints: fixpoint axiom + induction rule. (cf. Kozen's axioms for the μ-calculus)
- Fixpoint axiom:

 $(G^{\star})(\psi_{1},...,\psi_{n};\varphi) \leftrightarrow (\psi_{1}\wedge...\wedge\psi_{n}\wedge\varphi) \vee (G\circ G^{\star})(\psi_{1},...,\psi_{n};\varphi)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• This leaves the problem of finding the right induction rules!

First induction principle

$$\frac{\varphi \to \gamma \quad (G)\gamma \to \gamma}{(G^{\star})\varphi \to \gamma}$$

By the composition law: If $\gamma = (G^*)(\vec{\psi}; \varphi)$ then: $\gamma \equiv$ $(\land \vec{\psi} \land \varphi) \lor (G \circ G^*)(\vec{\psi}; \varphi) \equiv$ $(\land \vec{\psi} \land \varphi) \lor \delta(G, G^*, \vec{\psi}, \varphi) \lor (G)((G^*)(\vec{\psi}; \varphi); (G^*)\varphi) =$ $(\land \vec{\psi} \land \varphi) \lor \delta(G, G^*, \vec{\psi}, \varphi) \lor (G)(\gamma; (G^*)\varphi)$

(日)

Second induction principle

$$\frac{\bigwedge \vec{\psi} \land \varphi \to \gamma \qquad \delta(G, G^{\star}, \vec{\psi}, \varphi) \to \gamma \qquad (G)(\gamma; (G^{\star})\varphi) \to \gamma}{(G^{\star})(\vec{\psi}; \varphi) \to \gamma}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで

62/75

Special case for a single instantial formula:

$$\frac{\psi \land \varphi \to \gamma \quad (G)(\gamma; (G^*)\varphi) \to \gamma}{(G^*)(\psi; \varphi) \to \gamma}$$

An axiom system for IGL

- All axioms and rules for INL
- 2 Angelic and demonic choice axioms
- Composition law
- Fixpoint axiom for Kleene star
- Soth induction rules

Completeness

Theorem

The axiom system for IGL is sound and weakly complete for validity on game frames.

Ongoing and future work

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

Unrestricted dual

Definition

Write $G_1 \simeq_I G_2$ if Player I has the same exact powers in G_1, G_2 .

Problem:

The equivalence \simeq_I is not a congruence for game dual, even with determinacy!

<ロ> (四) (四) (三) (三) (三)

Example

Representation theorem for exact powers

Let $F_I, F_{II} \subseteq \mathcal{P}(O)$. Consider the following conditions:

- (Non-emptiness) $F_I \neq \emptyset$ and $F_{II} \neq \emptyset$.
- (Forth) Given $P \in F_I$ ($P \in F_{II}$): for any $x \in P$, there is some $P' \in F_{II}$ ($P' \in F_I$) with $x \in P'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• (Back) For any $P \in F_I$ and $P' \in F_{II}$ we have $P \cap P' \neq \emptyset$.

Theorem

Suppose $F_I, F_{II} \subseteq \mathcal{P}(O)$. Then the pair (F_I, F_{II}) satisfies the Non-emptiness, Back and Forth conditions if, and only if, there exists a game G such that $F_I = E_I(G)$ and $F_{II} = E_{II}(G)$.

(日)、

Game algebra

- Let G the set of all games with outcomes in O, with operations ∪ and dual (−)[∂].
- $\bullet\,$ Strong power equivalence $\sim\,$ is a congruence for dual and choice.

Definition

The strong algebra of games is the quotient \mathcal{G}/\sim .

Failure of idempotent laws

Proposition

The equation $x \cap x = x$ is not valid on the strong game algebra.

(日)
Modularity... sort of

Proposition

The following quasi-equation is valid on the strong game algebra:

$$x \cap z = x$$
 $x \cup z = z$ \Rightarrow $x \cup (y \cap z) = (x \cup y) \cap z$

Because of the failure of idempotent laws, this does not seem to reduce to an equation.

・ロト ・ 理 ・ ・ ヨ ・ ・

 $\Xi \rightarrow$

More problems

• What game operations are safe for instantial neighborhood bisimulations?

- Precise complexity?
- Axiomatize strong game algebra!
- Instantial semantics for ATL?
- Applications!

Thank you!