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Part I: Instantial Neighborhood
Semantics
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Modal logic in topology

Box as interior:

[[�ϕ]]τV := I([[ϕ]]τV )

Globally valid formulas ⇔ equational theory of a space:

I(x ∩ y) = Ix ∩ Iy 7→ �(p ∧ q)↔ �p ∧�q
�p → p 7→ −I(x) ∪ x = 1

Theorem (McKinsey-Tarski)

S4 is the modal logic of the real line.
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Local satisfaction relation:

ϕ
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Local satisfaction relation:

ϕ

�ϕ true
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Neighborhood semantics

Definition

A neighborhood frame is a pair (X ,R) where R ⊆ X × PX . A
neighborhood model is a frame with a valuation.

s 
 �ϕ⇔ ∃Z : (s,Z ) ∈ R & ∀v ∈ Z : v 
 ϕ

Spaces to frames: (u,Z ) ∈ Rτ ⇔ Z ∈ τ & u ∈ Z .

Monotone modal logics:

�p → �(p ∨ q) X �p ∧�q → �(p ∧ q) X

Game logic.
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Neighborhood bisimulations
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Neighborhood bisimulations

∀
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Neighborhood bisimulations

∃
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Neighborhood bisimulations

∀
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Neighborhood bisimulations

∃
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Instantial neighborhood logic

Box has a quantifier pattern of the form ∃∀: only universal
quantifiers over individual neighborhoods

Idea: allow existential quantification over neighborhoods!

Grammar:

ϕ := p | > | ϕ ∧ ϕ | ¬ϕ | �(ψ1, ..., ψn;ϕ)
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Semantics

ϕ

ψ1

ψ2

�(ψ1, ψ2;ϕ) true
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Instantial neighborhood bisimulations
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Instantial neighborhood bisimulations

∀
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Instantial neighborhood bisimulations

∃
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Instantial neighborhood bisimulations

∀
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Instantial neighborhood bisimulations

∃
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Instantial neighborhood bisimulations

∀
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Instantial neighborhood bisimulations

∃
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Coalgebra

Neighborhood frames = coalgebras for I = P ◦ P, a w.p.b.
preserving functor!

Behavioural equivalence = instantial neighborhood bisimilarity

I-bisimulations = instantial neighborhood bisimulations

Instantial neighborhood modalities are predicate liftings!
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Instantial neighborhood modality on topological spaces

Proposition

Over topological spaces, INL has the same expressive power as
standard neighborhood + global modality.

Proof.

Eϕ 7→ �(ϕ,>)
�(ψ1, ..., ψn;ϕ) 7→ �ϕ ∧ E(ψ1 ∧�ϕ)... ∧ E(ψn ∧�ϕ)

�
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Basic results:

Restriction to n-existential fragment decreases expressive
power for all n ∈ ω!

n-existential fragment:

Formulas �(ψ1, ..., ψk ;ϕ) restricted so that k < n.

Bisimulation invariance + Hennessy-Milner theorem for finite
models

Satisfiability preserving translations into normal (bi-)modal
logic

Complexity = PSPACE-complete
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Axioms

(NW) �(γ1, ..., γj ;ψ)→ �(γ1, ..., γj ;ψ ∨ χ),

(SW) �(γ1, ..., γj , α;ψ)→ �(γ1, ..., γj , α ∨ β;ψ),

(SR) �(γ1, ..., γj , ϕ;ψ)→ �(γ1, ..., γj , ϕ ∧ ψ;ψ),

(SC) ¬�(⊥;ψ),

(NT) �(γ1, ..., γj ;ψ)→ �(γ1, ..., γj , δ;ψ) ∨�(γ1, ..., γj ;ψ ∧ ¬δ),

(AD) �(γ1, ..., γj , ϕ, δ1, ..., δn;ψ)→ �(γ1, ..., γj , δ1, ..., δn;ψ),

(AI) �(γ1, ..., γj , δ1, ..., δn;ψ)→ �(γ1, ..., γj , γj , δ1, ..., δn;ψ)
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The canonical model

Theorem

The axioms for INL are sound and strongly complete.

Proof is by a canonical model construction:

Definition

Let Γ be an MC set and Z a family of MC sets. Set (Γ,Z ) ∈ RC

iff: for all ψ1, ..., ψn, ϕ, if

ϕ ∈
⋂
Z and

for each i , ψi ∈
⋃
Z ,

then �(ψ1, ..., ψn;ϕ) ∈ Γ.
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Part II: Game Logic
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Games

A

B

B

C
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Powers

Definition

Let G be a game with outcomes in O. Then P ⊆ O is a power of
Player I in G if:

∃σ ∈ Strat(I)∀σ′ ∈ strat(II) : Out(σ, σ′) ∈ P

Same for Player II.

Definition

If NI (G1) = NI (G2) and NII (G1) = NII (G2), we say G1 and G2 are
power equivalent.
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A

B

B

C

{A,B} ∈ NI (G )
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A

B

B

C

�(A ∨ B)
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Game logic

Language (minus unrestricted dual):

ϕ := p | > | ¬ϕ | ϕ ∧ ϕ | (G )ϕ

G := g | G ∪ G | G ∩ G | G ◦ G | G ?
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Game logic is suitable for reasoning about powers, but does not
describe the individual strategies available in the game. Power
equivalent games can still have strategies that behave differently in
terms of possible outcomes of the game!
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Example

Cooperate Cheat

1 3

2

2 32 1

Cooperate Cheat

Set 2 ≺I 3 ≺I 1, and 2 ≺II 1 ≺II 3.
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Cooperate Cheat

1 3

2

2 32 1

Cooperate Cheat

�(1 ∨ 2) �(1 ∨ 2)

{1, 2} is a power in both games...
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Cooperate Cheat

1 3

2

2 32 1

Cooperate Cheat

�(1; 1 ∨ 2) ¬�(1; 1 ∨ 2)

...but can only be forced by a strictly dominated strategy in the
right game!
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Cooperate Cheat

1 3

2

2 32 1

Cooperate Cheat

�(1; 1 ∨ 2) ¬�(1; 1 ∨ 2)

By contrast, the left game has a Nash equilibrium in which Player I
plays a strategy forcing {1, 2}.
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Strategy equivalence

Definition

A set P ⊆ O is said to be an exact power of Player I in G if:

∃σ ∈ Strat(I) : P = {o ∈ O | ∃σ′ ∈ Strat(II) : o = Out(σ, σ′)}

Same for Player II. We say that G1 and G2 are strategy equivalent
if the exact powers of each player are the same in both games:
EI (G1) = EI (G2) and EII (G1) = EII (G2).

Make strategies first-class citizens in game logic:

Exact power = set of possible outcomes of playing one of the
available strategies. Strategy equivalence = every strategy in G1

has the same possible outcomes as some strategy in G2, and vice
versa.
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A

B

B

C

{A,B} ∈ E (G )
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A

B

B

C

�(A,B;A ∨ B)
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A

B

B

C

�(A,B,C ;A ∨ B ∨ C )
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Strategic normal form:

LL LR RL RR
L A A B C
R A A B B

Exact powers = rows in SNF.
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Exact powers as basis:

Proposition

For any game G:

N(G ) = {P ∈ O | P ′ ⊆ P for some P ′ ∈ E (G )}
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A step towards equilibria

Definition

Say that p ∈ O is a stable outcome of a strategy σ for Player I if p
is an outcome of some σ-guided match, and there is no σ-guided
outcome which is better for Player II.

p is a stable outcome:

�(p;
∧

p≺IIq

¬q)
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Proposition

Strategy equivalent games have the same stable outcomes for both
players.

Proposition

Every equilibrium has a stable outcome for each player. If p has
maximal payoff for either player, then it is a stable outcome in G
iff there is an equilibrium with outcome p.
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Instantial game logic

ϕ := p | > | ¬ϕ | ϕ ∧ ϕ | (G )(ψ1, ..., ψn;ϕ)

G := g | G ∪ G | G ∩ G | G ◦ G | G ?
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Semantics

Definition

A game frame is a pair (S ,R) where R associates with every
atomic game g a relation Rg ⊆ S × P+(S).

u 
 (G )(ψ1, ..., ψn;ϕ) ⇔ ∃Z ∈ RG [u] : Z ⊆ [[ϕ]] & Z ∩ [[ψi ]] 6= ∅
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Angelic choice

RG1∪G2 = RG1 ∪ RG2
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Demonic choice

Only slightly more complicated:

RG1∩G2 = {(u,Z1 ∪ Z2) | (u,Z1) ∈ RG1 & (u,Z2) ∈ RG2}
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Composition

G2

G1

G1◦G2
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Kleene star

(u,Z ) ∈ RG0 iff Z = {u}
Gn+1 = Gn ∪ G◦Gn

(u,Z ) ∈ RG? iff (u,Z ) ∈ RGn for some n ∈ ω
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Basic properties

Dual-free game logic as a fragment

Bisimulation invariance

Proof.

Game operations are safe for instantial neighborhood
bisimulation. �

Complexity ∈ 2EXPTIME

Proof.

Satisfiability preserving translation into modal mu-calculus
(exponential growth in formula size). �

Admits a variant of filtration.
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Axioms

52/75



Angelic choice

(G1 ∪ G2)(~ψ;ϕ)↔ (G1)(~ψ;ϕ) ∨ (G2)(~ψ;ϕ)
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Demonic choice

Definition

If ~ψ = ψ1, ..., ψn, then let Split(G1,G2, ~ψ, ϕ) be the disjunction of
all formulas

(G1)(θ1, ..., θk ;ϕ) ∧ (G2)(θk+1, ..., θm;ϕ)

such that {ψ1, ..., ψn} = {θ1, ..., θm}.
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Demonic choice

(G1 ∩ G2)(~ψ;ϕ)↔ Split(G1,G2, ~ψ, ϕ)
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The Composition Law

Definition

Given game terms G1,G2, and finite tuple of formulas ~ψ, ϕ: let
δ(G1,G2, ~ψ, ϕ) be the disjunction of all formulas

(G1)((G2)(~θ1;ϕ), ..., (G2)(~θn;ϕ); (G2)ϕ)

where:

1 ~θ1 · ... · ~θn = ~ψ and

2 |~θi | < |~ψ| for each i .

Note that if ~ψ is a singleton or empty, δ(G1,G2, ~ψ, ϕ) = ⊥.
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Composition law

(G1◦G2)(~ψ;ϕ)↔ δ(G1,G2, ~ψ, ϕ) ∨ (G1)((G2)(~ψ;ϕ); (G2)ϕ)
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Example:

G2

G1

G1◦G2

(G1)((G2)(ψ1;ϕ), (G2)(ψ2;ϕ); (G2)ϕ) (G1◦G2)(ψ1, ψ2;ϕ)

ψ1
ψ2 ψ1

ψ2
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Dealing with the Kleene star

The Kleene star is a least fixpoint construction.

Axiomatizing least fixpoints: fixpoint axiom + induction rule.
(cf. Kozen’s axioms for the µ-calculus)

Fixpoint axiom:
(G ?)(ψ1, ..., ψn;ϕ)↔ (ψ1∧...∧ψn∧ϕ)∨(G◦G ?)(ψ1, ..., ψn;ϕ)

This leaves the problem of finding the right induction rules!
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First induction principle

ϕ→ γ (G )γ → γ

(G ?)ϕ→ γ
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By the composition law:

If γ = (G ?)(~ψ;ϕ) then:

γ ≡
(
∧ ~ψ ∧ ϕ) ∨ (G◦G ?)(~ψ;ϕ) ≡

(
∧ ~ψ ∧ ϕ) ∨ δ(G ,G ?, ~ψ, ϕ) ∨ (G )((G ?)(~ψ;ϕ); (G ?)ϕ) =

(
∧ ~ψ ∧ ϕ) ∨ δ(G ,G ?, ~ψ, ϕ) ∨ (G )(γ; (G ?)ϕ)
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Second induction principle

∧ ~ψ ∧ ϕ→ γ δ(G ,G ?, ~ψ, ϕ)→ γ (G )(γ; (G ?)ϕ)→ γ

(G ?)(~ψ;ϕ)→ γ
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Special case for a single instantial formula:

ψ ∧ ϕ→ γ (G )(γ; (G ?)ϕ)→ γ

(G ?)(ψ;ϕ)→ γ
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An axiom system for IGL

1 All axioms and rules for INL

2 Angelic and demonic choice axioms

3 Composition law

4 Fixpoint axiom for Kleene star

5 Both induction rules
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Completeness

Theorem

The axiom system for IGL is sound and weakly complete for
validity on game frames.
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Ongoing and future work
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Unrestricted dual

Definition

Write G1 'I G2 if Player I has the same exact powers in G1,G2.

Problem:

The equivalence 'I is not a congruence for game dual, even with
determinacy!

67/75



Example

G1 and G1:

A B
A B B

A B A

G ∂
1 and G ∂

2 :

A

B

A A

B B

B A
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Representation theorem for exact powers

Let FI ,FII ⊆ P(O). Consider the following conditions:

(Non-emptiness) FI 6= ∅ and FII 6= ∅.
(Forth) Given P ∈ FI (P ∈ FII ): for any x ∈ P, there is some
P ′ ∈ FII (P ′ ∈ FI ) with x ∈ P ′.

(Back) For any P ∈ FI and P ′ ∈ FII we have P ∩ P ′ 6= ∅.
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Theorem

Suppose FI ,FII ⊆ P(O). Then the pair (FI ,FII ) satisfies the
Non-emptiness, Back and Forth conditions if, and only if, there
exists a game G such that FI = EI (G ) and FII = EII (G ).
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Game algebra

Let G the set of all games with outcomes in O, with
operations ∪ and dual (−)∂ .

Strong power equivalence ∼ is a congruence for dual and
choice.

Definition

The strong algebra of games is the quotient G/∼.
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Failure of idempotent laws

Proposition

The equation x ∩ x = x is not valid on the strong game algebra.

Proof.

G =
A

B
G ∩ G =

A A

A B

B A

B B

�
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Modularity... sort of

Proposition

The following quasi-equation is valid on the strong game algebra:

x ∩ z = x x ∪ z = z ⇒ x ∪ (y ∩ z) = (x ∪ y) ∩ z

Because of the failure of idempotent laws, this does not seem to
reduce to an equation.
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More problems

What game operations are safe for instantial neighborhood
bisimulations?

Precise complexity?

Axiomatize strong game algebra!

Instantial semantics for ATL?

Applications!
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Thank you!
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