On skew Heyting algebras

Karin Cvetko-Vah

University of Ljubljana

Workshop on Topological Methods in Logic V June 13–17, 2016 Tbilisi, Georgia

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Motivation

Skew lattices: noncommutative lattices.

"Nice" distributive skew lattices are dual to sheaves over Priestley spaces:

 Andrej Bauer, KCV, Mai Gehrke, Sam Van Gool and Ganna Kudryavtseva: A non-commutative Priestley duality, preprint.

(ロ) (同) (三) (三) (三) (○) (○)

Is there a notion of a skew Heyting algebra?

Skew lattices

Pascual Jordan 1940's and 1960's (classified report) Jonathan Leech 1980's

A *skew lattice* is an algebra $(S; \land, \lor)$ such that \land and \lor are both idempotent and associative, and they dualize each other in that

 $x \wedge y = x$ iff $x \vee y = y$ and $x \wedge y = y$ iff $x \vee y = x$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Skew lattices

Pascual Jordan 1940's and 1960's (classified report) Jonathan Leech 1980's

A *skew lattice* is an algebra $(S; \land, \lor)$ such that \land and \lor are both idempotent and associative, and they dualize each other in that

 $x \wedge y = x$ iff $x \vee y = y$ and $x \wedge y = y$ iff $x \vee y = x$.

A *skew lattice with zero* is an algebra $(S; \land, \lor, 0)$ such that $(S; \land, \lor)$ is a skew lattice and $x \land 0 = 0 = 0 \land x$ for all $x \in S$.

Rectangular algebras

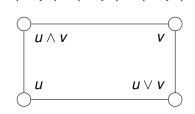
- A rectangular band (A, \wedge) :
 - $\blacktriangleright\ \land$ is idempotent and associative
 - $x \wedge y \wedge z = x \wedge z$

• It becomes a skew lattice if we define $x \lor y = y \land x$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Rectangular algebras

- A rectangular band (A, \wedge) :
 - \lambda is idempotent and associative
 - $\land x \land y \land z = x \land z$
- It becomes a skew lattice if we define $x \lor y = y \land x$.
- For sets X and Y define \land on X \times Y:



 $(x_1, y_1) \land (x_2, y_2) = (x_1, y_2)$

 $(X \times Y, \wedge)$ is a rectangular algebra.

Every rectangular algebra is isomorphic to one such.

The order and Green's relation $\ensuremath{\mathcal{D}}$

S a skew lattice.

Natural preorder: $x \leq y$ iff $x \wedge y \wedge x = x$ (and dually $y \vee x \vee y = y$).

Natural partial order: $x \le y$ iff $x \land y = x = y \land x$ (and dually $y \lor x = y = x \lor y$).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The order and Green's relation $\ensuremath{\mathcal{D}}$

S a skew lattice.

Natural preorder: $x \preceq y$ iff $x \land y \land x = x$ (and dually $y \lor x \lor y = y$).

Natural partial order: $x \le y$ iff $x \land y = x = y \land x$ (and dually $y \lor x = y = x \lor y$).

Green's relation \mathcal{D} is defined by

$$x\mathcal{D}y \Leftrightarrow (x \preceq y \text{ and } y \preceq x).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The first decomposition theorem

Theorem (Leech, 1989)

- \mathcal{D} is a congruence;
- S/D is a lattice: the maximal lattice image of S, and

(日) (日) (日) (日) (日) (日) (日)

▶ each *D*-class is a rectangular band.

So: a skew lattice is a lattice of rectangular bands.

The first decomposition theorem

Theorem (Leech, 1989)

- D is a congruence;
- S/D is a lattice: the maximal lattice image of S, and

(日) (日) (日) (日) (日) (日) (日)

▶ each *D*-class is a rectangular band.

So: a skew lattice is a lattice of rectangular bands.

Fact: $x \leq y$ in *S* iff $\mathcal{D}_x \leq \mathcal{D}_y$ in S/\mathcal{D} .

The second decomposition theorem

A SL S is:

- *left handed* if it satisfies $x \land y \land x = x \land y$ and $x \lor y \lor x = y \lor x$.
- right handed if it satisfies $x \land y \land x = y \land x$ and $x \lor y \lor x = x \lor y$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The second decomposition theorem

A SL S is:

- *left handed* if it satisfies $x \land y \land x = x \land y$ and $x \lor y \lor x = y \lor x$.
- right handed if it satisfies $x \land y \land x = y \land x$ and $x \lor y \lor x = x \lor y$.

Most natural examples of SLs are either left or right handed.

Leech, 1989: Any SL factors as a fiber product of a left handed SL by a right handed SL over their common maximal lattice image. (Pullback.)

Strongly distributive lattices

A *strongly distributive lattice* is a skew lattice *S* which satisfies the identities

$$\begin{array}{l} x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z), \\ (x \lor y) \wedge z = (x \wedge z) \lor (y \wedge z). \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Strongly distributive lattices

A *strongly distributive lattice* is a skew lattice *S* which satisfies the identities

$$\begin{array}{l} x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z), \\ (x \lor y) \wedge z = (x \wedge z) \lor (y \wedge z). \end{array}$$

S a skew distributive lattice $\Rightarrow S/D$ is a distributive lattice.

Given any $x \in S$: $x \downarrow = \{y \in S \mid y \le x\}$ is a distributive lattice.

If *S* has a top \mathcal{D} -class *T*, $t \in T$. Then: $t \downarrow \cong S/\mathcal{D}$.

Skew Boolean algebras

A skew Boolean algebra is an algebra $(S;\wedge,\vee,\backslash,0)$ of type (2,2,2,0) where

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• (S; \land , \lor , 0) is a skew distributive lattice with 0,

Skew Boolean algebras

A skew Boolean algebra is an algebra $(S;\wedge,\vee,\backslash,0)$ of type (2,2,2,0) where

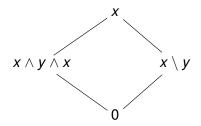
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $(S; \land, \lor, 0)$ is a skew distributive lattice with 0,
- $x \downarrow$ is a Boolean lattice for all x, and

Skew Boolean algebras

A skew Boolean algebra is an algebra $(S;\wedge,\vee,\backslash,0)$ of type (2,2,2,0) where

- $(S; \land, \lor, 0)$ is a skew distributive lattice with 0,
- $x \downarrow$ is a Boolean lattice for all x, and
- $x \setminus y$ is the complement of $x \wedge y \wedge x$ in $x \downarrow$.



・ コット (雪) (小田) (コット 日)

Example of a skew Boolean algebra: $X \rightarrow Y$

For partial maps $f, g: X \rightarrow Y$ define:

$$0 = \emptyset$$

$$f \land g = f \upharpoonright_{\text{dom} f \cap \text{dom} g}$$

$$f \lor g = f \upharpoonright_{\text{dom} f \setminus \text{dom} g} \cup g$$

$$f \setminus g = f \upharpoonright_{\text{dom} f \setminus \text{dom} g}$$

With these operations $X \rightarrow Y$ is a skew Boolean algebra.

- The maximal lattice image: $(X \rightarrow Y)/\mathcal{D} = \mathcal{P}(X)$.
- $X \rightarrow Y$ is left-handed: $f \wedge g \wedge f = f \wedge g$.

Duality for skew Boolean algebras

Bauer, CV, Kudryavtseva:

- A Boolean space is a locally compact zero-dimensional Hausdorff space.
- A Boolean sheaf is a local homeomorphism p : E → B where B is a Boolean space.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Duality for skew Boolean algebras

Bauer, CV, Kudryavtseva:

- A Boolean space is a locally compact zero-dimensional Hausdorff space.
- A Boolean sheaf is a local homeomorphism p : E → B where B is a Boolean space.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We only consider sheaves for which p : E → B is surjective.

Duality for skew Boolean algebras

Bauer, CV, Kudryavtseva:

- A Boolean space is a locally compact zero-dimensional Hausdorff space.
- A Boolean sheaf is a local homeomorphism p : E → B where B is a Boolean space.
- We only consider sheaves for which p : E → B is surjective.

Theorem:

Boolean sheaves are dual to left-handed skew Boolean algebras.

(ロ) (同) (三) (三) (三) (○) (○)

Duality for strongly distributive skew lattices

A skew lattice is *strongly distributive* if it satisfies:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$$

 $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bauer, CV, Gehrke, Van Gool, Kudryavtseva: *Left-handed* strongly distributive skew lattices are dual to sheaves over *Priestley spaces.*

Heyting algebras

A *Heyting algebra* is an algebra $\mathbf{H} = (H; \land, \lor, \rightarrow, 1, 0)$ such that $(H, \land, \lor, 1, 0)$ is a bounded distributive lattice that satisfies the condition:

(HA)
$$x \wedge y \leq z$$
 iff $x \leq y \rightarrow z$.

Equivalently, (HA) can be replaced by the following set of identities:

(H1)
$$(x \rightarrow x) = 1$$
,
(H2) $x \wedge (x \rightarrow y) = x \wedge y$,
(H3) $y \wedge (x \rightarrow y) = y$,
(H4) $x \rightarrow (y \wedge z) = (x \rightarrow y) \wedge (x \rightarrow z)$.

(ロ) (同) (三) (三) (三) (○) (○)

Skew Heyting algebras - motivation

We want a skew notion of \rightarrow s. t.:

- \rightarrow satisfies a "skew version" of (H1)–(H4)
- \rightarrow compatible with \mathcal{D} , S/\mathcal{D} Heyting algebra
- ightarrow ightarrow is the Heyting implication when S commutative

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Skew Heyting algebras - problem

 $(S, \land, \lor, 0)$ a strongly distributive SL with 0 If *S* has a top element then it is commutative.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Skew Heyting algebras - problem

 $(S, \land, \lor, 0)$ a strongly distributive SL with 0 If *S* has a top element then it is commutative.

Moreover:

- $(S, \land, \lor, 0)$ a strongly distributive SL with 0
- S has a top \mathcal{D} -class $T, t \in T$ fixed

Operation \rightarrow defined on S s.t.:

(A1)
$$x \to x = x \lor t \lor x$$

(A2) $x \land (x \to y) \land x = x \land y \land x$
(A3) $y \land (x \to y) = y$ and $(x \to y) \land y = y$
(A4) $x \to (y \land z) = (x \to y) \land (x \to z)$
Then: S commutative

Then: *S* commutative.

Skew Heyting algebras - definition

A skew lattice is *co-strongly distributive* if it satisfies:

$$\begin{array}{l} x \lor (y \land z) = (x \lor y) \land (x \lor z), \\ (x \land y) \lor z = (x \lor z) \land (y \lor z). \end{array}$$

A skew Heyting lattice is an algebra $(S; \land, \lor, 1)$ such that:

- (S; ∧, ∨, 1) is a co-strongly distributive skew lattice with top 1. Thus: Each upset u↑ = {x ∈ S | x ≥ u} is a bounded distributive lattice.
- →_u can be defined on u↑ such that (u↑; ∧, ∨, →_u, 1, u) is a Heyting algebra with top 1 and bottom u.

Define \rightarrow on a skew Heyting lattice *S* by setting:

$$x \rightarrow y = (y \lor x \lor y) \rightarrow_y y.$$

Skew Heyting algebras - axiomatization

Theorem

 $(S; \land, \lor, \rightarrow, 1)$ is a skew Heyting algebra if and only if \rightarrow satisfies the following axioms:

$$\begin{array}{l} (\mathsf{SH0}) \ x \to y = (y \lor x \lor y) \to y. \\ (\mathsf{SH1}) \ x \to x = 1, \\ (\mathsf{SH2}) \ x \land (x \to y) \land x = x \land y \land x, \\ (\mathsf{SH3}) \ y \land (x \to y) = y \ and \ (x \to y) \land y = y, \\ (\mathsf{SH4}) \ x \to (u \lor (y \land z) \lor u) = (x \to (u \lor y \lor u)) \land (x \to (u \lor z \lor u)). \end{array}$$

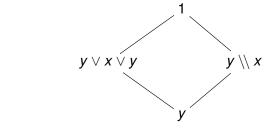
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Skew Heyting algebras - examples

- All finite co-strongly distributive skew lattices with a top 1.
- Co-strongly distributive skew chins with 1 (S/D chain). We set:

$$x \to y = \begin{cases} 1; & \text{if } x \preceq y. \\ y; & \text{otherwise.} \end{cases}$$

► (S; ∧, ∨, \\, 1) is a dual skew Boolean algebra if (S; ∧, ∨, 1) and



 $x \rightarrow y = y \setminus x = y \setminus (y \lor x \lor y)$ in $y \uparrow$.

The partial functions example

$X \rightarrow Y$ all partial functions from X to Y

skew Heyting operation	description	skew Boolean op.
$f \wedge g$	$g \cup (f _{\mathrm{dom} f - \mathrm{dom} g})$	$f \lor g$
$f \lor g$	$f _{\mathrm{dom}g\cap\mathrm{dom}f}$	$f \wedge g$
f ightarrow g	$g _{\mathrm{dom}g-\mathrm{dom}f}$	$oldsymbol{g}\setminus f$
1	Ø	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ