# Generalized Heyting Algebras with a Unary Operator 

## Almudena Colacito

This is a Master Thesis project under the supervision of Marta Bílková and Dick de Jongh

$$
\text { June 16, } 2016
$$

## Master Thesis

Kripke Semantics
(Completeness, Finite Model Property, Applications)

## Master Thesis

Kripke Semantics
(Completeness, Finite Model Property, Applications)

Algebraic Semantics (Algebraic Completeness, Duality)

## Master Thesis

Kripke Semantics
(Completeness, Finite Model Property, Applications)

Algebraic Semantics (Algebraic Completeness, Duality)

Sequent Calculi
(Cut Elimination, Craig's Interpolation, Translation)

## Master Thesis

Kripke Semantics
(Completeness, Finite Model Property, Applications)

Algebraic Semantics (Algebraic Completeness, Duality)

Sequent Calculi
(Cut Elimination, Craig's Interpolation, Translation)

## Outline

Introduction

Kripke Semantics

Algebraic Semantics

Duality

Conclusions

## Outline

Introduction

Kripke Semantics

## Algebraic Semantics

## Duality

## Conclusions

## Introduction

Language: $\mathcal{L}^{\urcorner}=\mathcal{L}^{+} \cup\{\neg\}$, where $\mathcal{L}^{+}=\{\wedge, \vee, \rightarrow\}$

## Introduction

Language: $\mathcal{L}^{\urcorner}=\mathcal{L}^{+} \cup\{\neg\}$, where $\mathcal{L}^{+}=\{\wedge, \vee, \rightarrow\}$

Setting: Positive logic

Introduction

$$
\perp \rightarrow \varphi
$$

## Introduction



## Introduction

Basic System of a Unary Operator

## Introduction

Basic System of a Unary Operator

Basic Logic of Negation (N) $\quad \Rightarrow \quad(p \leftrightarrow q) \rightarrow(\neg p \leftrightarrow \neg q)$

## Introduction

Examples of Extensions of N

## Introduction

## Examples of Extensions of N

Negative ex Falso Logic (NeF) $\Rightarrow \mathrm{N}+\mathrm{p} \rightarrow(\neg \mathrm{p} \rightarrow \neg \mathrm{q})$

## Introduction

## Examples of Extensions of N

Negative ex Falso Logic (NeF) $\Rightarrow \mathrm{N}+\mathrm{p} \rightarrow(\neg \mathrm{p} \rightarrow \neg \mathrm{q})$

Contraposition Logic (CoPC) $\quad \Rightarrow \quad(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$

## Introduction

## Examples of Extensions of N

Negative ex Falso Logic (NeF) $\Rightarrow \mathrm{N}+\mathrm{p} \rightarrow(\neg \mathrm{p} \rightarrow \neg \mathrm{q})$

Contraposition Logic (CoPC) $\quad \Rightarrow \quad(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$

Minimal Logic (MPC)

$$
\Rightarrow \quad((p \rightarrow q) \wedge(p \rightarrow \neg q)) \rightarrow \neg p
$$

## Outline

## Introduction

Kripke Semantics

Algebraic Semantics

## Duality

## Conclusions

## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator

## - Intuitionistic frame

- A function $N$ between upsets
- A persistent propositional valuation $V$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator

- Intuitionistic frame
- A function $N$ between upsets
- A persistent propositional valuation $V$


## Kripke Semantics

## Semantics for the Basic Logic of a Unary Operator

- Intuitionistic frame
- A function $N$ between upsets
- A persistent propositional valuation $V$


## Kripke Semantics

## Semantics for the Basic Logic of a Unary Operator

- Intuitionistic frame
- A function $N$ between upsets
- A persistent propositional valuation $V$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator

$$
\llbracket \neg \varphi \rrbracket:=N(\llbracket \varphi \rrbracket)
$$

## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\langle W, R\rangle$

## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\mathfrak{F}=\langle W, R, N\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\mathfrak{F}=\langle W, R, N\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\mathfrak{F}=\langle W, R, N\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\mathfrak{F}=\langle W, R, N\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\langle W, R, N, V\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\langle W, R, N, V\rangle$


## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator $\langle W, R, N, V\rangle$

$\mathfrak{F}, w \vDash_{v} p \leftrightarrow q$ and $\mathfrak{M}, w \not \vDash v \neg q \rightarrow \neg p$

## Kripke Semantics

Semantics for the Basic Logic of a Unary Operator

## Kripke Semantics

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\mathfrak{F}, w \vDash_{V} p \leftrightarrow q
$$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w)
\end{aligned}
$$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w))
\end{aligned}
$$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w))
\end{aligned}
$$

## Kripke Semantics

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w)) \\
& w \in N(V(q) \cap R(w)) \Leftrightarrow w \in N(V(q))
\end{aligned}
$$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w)) \\
& w \in N(V(q) \cap R(w)) \Leftrightarrow w \in N(V(q))
\end{aligned}
$$

## Kripke Semantics

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w)) \\
& w \in N(V(q) \cap R(w)) \Leftrightarrow w \in N(V(q)) \\
& \mathfrak{F}, w \vDash_{V} \neg p \leftrightarrow \neg q
\end{aligned}
$$

## Kripke Semantics

## Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w)) \\
& w \in N(V(q) \cap R(w)) \Leftrightarrow w \in N(V(q)) \\
& \mathfrak{F}, w \vDash_{V} \neg p \leftrightarrow \neg q
\end{aligned}
$$

## Kripke Semantics

## Locality: $N(U) \cap V=N(U \cap V) \cap V$

$$
\begin{aligned}
& \mathfrak{F}, w \vDash_{V} p \leftrightarrow q \\
& V(p) \cap R(w)=V(q) \cap R(w) \\
& w \in N(V(p)) \Leftrightarrow w \in N(V(p) \cap R(w)) \\
& w \in N(V(p) \cap R(w)) \Leftrightarrow w \in N(V(q) \cap R(w)) \\
& w \in N(V(q) \cap R(w)) \Leftrightarrow w \in N(V(q)) \\
& \mathfrak{F}, w \vDash_{V} \neg p \leftrightarrow \neg q
\end{aligned}
$$

## Kripke Semantics

## Example

$$
(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)
$$

## Kripke Semantics

## Example

$$
(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)
$$

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$
Anti-monotonicity: $U \subseteq V$ implies $N(V) \subseteq N(U)$

## Kripke Semantics

## Example

$$
(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)
$$

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$
Anti-monotonicity: $V(p) \subseteq V(q)$ implies $N(V) \subseteq N(U)$

## Kripke Semantics

## Example

$$
(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)
$$

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$
Anti-monotonicity: $V(p) \subseteq V(q)$ implies $N(V(q)) \subseteq N(V(p))$

## Kripke Semantics

## Example

$$
(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)
$$

Locality: $w \in N(U)$ if and only if $w \in N(U \cap R(w))$
Anti-monotonicity: $U \subseteq V$ implies $N(V) \subseteq N(U)$

## Outline

## Introduction

## Kripke Semantics

Algebraic Semantics

## Duality

## Algebraic Semantics

gH-algebras A generalized Heyting algebra (gH-algebra for short) $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ is a lattice $\langle A, \wedge, \vee\rangle$ such that for every pair of elements $a, b \in A$, the element $a \rightarrow b$ defining the supremum of the set $\{c \in A \mid a \wedge c \leq b\}$ exists.

## Algebraic Semantics

gH -algebras A generalized Heyting algebra ( gH -algebra for short) $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ is a lattice $\langle A, \wedge, \vee\rangle$ such that for every pair of elements $a, b \in A$, the element $a \rightarrow b$ defining the supremum of the set $\{c \in A \mid a \wedge c \leq b\}$ exists.

## Algebraic Semantics

gH-algebras \& Heyting algebras
gH-algebra $\mathfrak{A}$
Heyting algebra $\mathfrak{A}_{\perp}$


## Algebraic Semantics

## gH-algebras \& Heyting algebras

gH-algebra $\mathfrak{A}$


Heyting algebra $\mathfrak{A}_{\perp}$


## Algebraic Semantics

From $g H$-algebras to $N$-algebras An $\mathbb{N}$-algebra $\langle A, \wedge, \vee, \rightarrow, \neg, 1\rangle$ is given by a gH-algebra $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ equipped with a unary operator $\neg$ such that

$$
(x \leftrightarrow y) \rightarrow(\neg x \leftrightarrow \neg y)=1
$$

## Algebraic Semantics

From gH -algebras to N -algebras $\mathrm{An} \mathbf{N}$-algebra $\langle\boldsymbol{A}, \wedge, \vee, \rightarrow, \neg, \mathbf{1}\rangle$ is given by a $g H$-algebra $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ equipped with a unary operator $\neg$ such that

$$
(x \leftrightarrow y) \rightarrow(\neg x \leftrightarrow \neg y)=1
$$

## Algebraic Semantics

From gH -algebras to N -algebras $\mathrm{An} \mathbf{N}$-algebra $\langle\boldsymbol{A}, \wedge, \vee, \rightarrow, \neg, \mathbf{1}\rangle$ is given by a $g H$-algebra $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ equipped with a unary operator $\neg$ such that

$$
(x \leftrightarrow y) \rightarrow(\neg x \leftrightarrow \neg y)=1
$$

## Algebraic Semantics

From gH-algebras to $\mathbf{N}$-algebras $\operatorname{An} \mathbf{N}$-algebra $\langle\boldsymbol{A}, \wedge, \vee, \rightarrow, \neg, \mathbf{1}\rangle$ is given by a $g H$-algebra $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ equipped with a unary operator $\neg$ such that

$$
\neg x \wedge y=\neg(x \wedge y) \wedge y
$$

## Algebraic Semantics

Algebraic Completeness $\checkmark$

## Outline

> Introduction

> Kripke Semantics

> Algebraic Semantics

Duality

## Conclusions

## Duality

General frames An $\mathbb{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, $\mathcal{P}$ is a set of upsets of $W$, containing $W$ and which is closed under $\cup$, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\}
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## Duality

General frames An $\mathbf{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, $\mathcal{P}$ is a set of upsets of $W$, containing $W$ and which is closed under $\cup$, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\},
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## Duality

General frames An $\mathbf{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\},
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## Duality

General frames An $\mathbf{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, $\mathcal{P}$ is a set of upsets of $W$, containing $W$ and which is closed under $\cup$, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\}
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## Duality

General frames An $\mathbf{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, $\mathcal{P}$ is a set of upsets of $W$, containing $W$ and which is closed under $\cup$, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\}
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## Duality

General frames An $\mathbf{N}$-general frame is a quadruple $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$, where $\langle W, R\rangle$ is an intuitionistic frame, $\mathcal{P}$ is a set of upsets of $W$, containing $W$ and which is closed under $\cup$, (finite) $\cap, \rightarrow$, where $\rightarrow$ is defined by

$$
U \rightarrow V:=\{w \in W \mid \forall v(w R v \wedge v \in U \rightarrow v \in V)\}
$$

and $N: \mathcal{P} \rightarrow \mathcal{P}$ which satisfies locality.

## We do not require $\emptyset$ to be in $\mathcal{P}$ !

## Duality

Descriptive frames Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be an $N$-general frame.

- We say that the frame $\mathfrak{F}$ is refined if, for every $w, v \in W$ : $\neg(w R v)$ implies the existence of an upset $U \in \mathcal{P}$ which contains $w$ and does not contain $v$, i.e., $w \in U$ and $v \notin U$.
- We say that the frame $\mathfrak{F}$ is compact if for every $\mathcal{X} \subseteq \mathcal{P}$ and $\mathcal{Y} \subseteq\{W \backslash U \mid U \in \mathcal{P}\}$, if $\mathcal{X} \cup \mathcal{Y}$ has the finite intersection property, then $\bigcap(\mathcal{X} \cup \mathcal{Y}) \neq \emptyset$.

An $\mathbf{N}$-descriptive frame is a refined and compact N -general frame $\mathfrak{F}$.

## Duality

Descriptive frames Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be an $N$-general frame.
$\square$ We say that the frame $\mathfrak{F}$ is refined if, for every $w, v \in W$ : $\neg(w R v)$ implies the existence of an upset $U \in \mathcal{P}$ which contains $w$ and does not contain $v$, i.e., $w \in U$ and $v \notin U$.


An $\mathbf{N}$-descriptive frame is a refined and compact N -general frame $\mathfrak{F}$.

## Duality

Descriptive frames Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be an $N$-general frame.
$\square$ We say that the frame $\mathfrak{F}$ is refined if, for every $w, v \in W$ : $\neg(w R v)$ implies the existence of an upset $U \in \mathcal{P}$ which contains $w$ and does not contain $v$, i.e., $w \in U$ and $v \notin U$.
■ We say that the frame $\mathfrak{F}$ is compact if for every $\mathcal{X} \subseteq \mathcal{P}$ and $\mathcal{Y} \subseteq\{W \backslash U \mid U \in \mathcal{P}\}$, if $\mathcal{X} \cup \mathcal{Y}$ has the finite intersection property, then $\bigcap(\mathcal{X} \cup \mathcal{Y}) \neq \emptyset$.

An $\mathbf{N}$-descriptive frame is a refined and compact N -general frame $\mathfrak{F}$.

## Duality

Descriptive frames Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be an $N$-general frame.
$\square$ We say that the frame $\mathfrak{F}$ is refined if, for every $w, v \in W$ : $\neg(w R v)$ implies the existence of an upset $U \in \mathcal{P}$ which contains $w$ and does not contain $v$, i.e., $w \in U$ and $v \notin U$.

- We say that the frame $\mathfrak{F}$ is compact if for every $\mathcal{X} \subseteq \mathcal{P}$ and $\mathcal{Y} \subseteq\{W \backslash U \mid U \in \mathcal{P}\}$, if $\mathcal{X} \cup \mathcal{Y}$ has the finite intersection property, then $\bigcap(\mathcal{X} \cup \mathcal{Y}) \neq \emptyset$.

An $\mathbf{N}$-descriptive frame is a refined and compact N -general frame $\mathfrak{F}$.

## Duality

Top Descriptive frames A top descriptive frame is a descriptive frame such that $\langle W, R\rangle$ has a greatest element $t$ such that, for every upset $U \in \mathcal{P}$, we have $t \in U$.

## Duality

Top Descriptive frames A top descriptive frame is a descriptive frame such that $\langle W, R\rangle$ has a greatest element $t$ such that, for every upset $U \in \mathcal{P}$, we have $t \in U$.

## Duality

Top Descriptive frames A top descriptive frame is a descriptive frame such that $\langle W, R\rangle$ has a greatest element $t$ such that, for every upset $U \in \mathcal{P}$, we have $t \in U$.

## $\emptyset$ cannot be in $\mathcal{P}$ !

## Duality

From frames to $N$-algebras Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be a top descriptive frame for N . Then, the structure

$$
\langle\mathcal{P}, \cap, \cup, \rightarrow, N, W\rangle
$$

is an N -algebra.

## Duality

From frames to N -algebras Let $\mathfrak{F}=\langle W, R, N, \mathcal{P}\rangle$ be a top descriptive frame for $N$. Then, the structure

$$
\langle\mathcal{P}, \cap, \cup, \rightarrow, N, W\rangle
$$

is an N -algebra.

## Duality

From frames to N -algebras


## Duality

## From frames to N -algebras



$$
N(U) \cap V=N(U \cap V) \cap V
$$

## Duality

## From frames to N -algebras



$$
N(U) \cap V=N(U \cap V) \cap V
$$

## Duality

From N -algebras to frames Let $\mathfrak{A}=\langle A, \wedge, V, \rightarrow, \neg, 1\rangle$ be an
N -algebra. A non-empty subset of A is called a filter if

- $a, b \in F$ implies $a \wedge b \in F$,
- $a \in F$ and $a \leq b$ imply $b \in F$.

Moreover, a filter $F$ is called a prime filter if

- $a \vee b \in F$ implies $a \in F$ or $b \in F$.


## Duality

From $N$-algebras to frames Let $\mathfrak{A}=\langle A, \wedge, \vee, \rightarrow, \neg, 1\rangle$ be an N -algebra. A non-empty subset of $A$ is called a filter if
$\square a, b \in F$ implies $a \wedge b \in F$,
$\square a \in F$ and $a \leq b$ imply $b \in F$.
Moreover, a filter $F$ is called a prime filter if
$\square a \vee b \in F$ implies $a \in F$ or $b \in F$.

## Duality

From $N$-algebras to frames Let $\mathfrak{A}=\langle A, \wedge, \vee, \rightarrow, \neg, 1\rangle$ be an N -algebra. A non-empty subset of $A$ is called a filter if
$\square a, b \in F$ implies $a \wedge b \in F$,
$\square a \in F$ and $a \leq b$ imply $b \in F$.
Moreover, a filter $F$ is called a prime filter if
$\square a \vee b \in F$ implies $a \in F$ or $b \in F$.

The improper filter $F=A$ is a prime filter!

## Duality

From N-algebras to frames

$$
\begin{aligned}
& W_{\mathfrak{A}}:=\{F \mid F \text { is a prime filter of } \mathfrak{A}\}, \\
& F R_{\mathfrak{A}} F^{\prime} \text { if and only if } F \subseteq F^{\prime}, \\
& \mathcal{P}:=\{\hat{a} \mid a \in A\}, \text { where } \hat{a}:=\left\{F \in W_{\mathfrak{A}} \mid a \in F\right\},
\end{aligned}
$$

## Duality

From N -algebras to frames
$W_{\mathfrak{A}}:=\{F \mid F$ is a prime filter of $\mathfrak{A}\}$,
$F R_{\mathfrak{A}} F^{\prime}$ if and only if $F \subseteq F^{\prime}$,
$\mathcal{P}:=\{\hat{a} \mid a \in A\}$, where $\hat{a}:=\left\{F \in W_{\mathfrak{A}} \mid a \in F\right\}$,
$N_{\mathfrak{A}}: \mathcal{P} \rightarrow \mathcal{P}$ defined as $N_{\mathfrak{R}( }(\hat{a}):=\overline{(\neg a)}$

## Duality

## From N-algebras to frames

$W_{\mathfrak{A}}:=\{F \mid F$ is a prime filter of $\mathfrak{A}\}$,
$F R_{\mathfrak{A}} F^{\prime}$ if and only if $F \subseteq F^{\prime}$,
$\mathcal{P}:=\{\hat{a} \mid a \in A\}$, where $\hat{a}:=\left\{F \in W_{\mathfrak{A}} \mid a \in F\right\}$,
$N_{\mathfrak{A}}: \mathcal{P} \rightarrow \mathcal{P}$ defined as $N_{\mathfrak{A}}(\hat{a}):=\widehat{(\neg a)}$

## Duality

From N-algebras to frames


## Duality

From N-algebras to frames


## Duality

From N -algebras to frames

$\{b, 1\} \bullet$

## Duality

From N-algebras to frames


$$
\{b, 1\} \bullet
$$

## Duality

From N-algebras to frames

$\{b, 1\} \bullet$

- $\{c, 1\}$


## Duality

From N-algebras to frames


$$
\{b, 1\} \bullet \quad \bullet\{c, 1\}
$$

## Duality

From N-algebras to frames


## Duality

## From N-algebras to frames



## Duality

From N-algebras to frames


## Duality

From N-algebras to frames


## Duality

From N-algebras to frames


## Duality

From N-algebras to frames


## Duality

From N-algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

## Duality

## From N-algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

## Duality

## From N -algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

$$
N_{\mathfrak{A}( }(\hat{a}) \cap \hat{b}=\{F \mid \neg a \in F \text { and } b \in F\}
$$

## Duality

## From N -algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
N_{\mathfrak{A}( }(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\}
\end{aligned}
$$

## Duality

## From N -algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{Z}( }(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
N_{\mathfrak{A}}(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\} \\
& =\{F \mid \neg(a \wedge b) \wedge b \in F\}, \text { since } \neg a \wedge b=\neg(a \wedge b) \wedge b
\end{aligned}
$$

## Duality

## From N -algebras to frames

Does locality hold for $N_{\mathfrak{Z}}$ defined as $N_{\mathfrak{Z}( }(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
\mathcal{N}_{\mathfrak{A}}(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\} \\
& =\{F \mid \neg(a \wedge b) \wedge b \in F\}, \text { since } \neg a \wedge b=\neg(a \wedge b) \wedge b \\
& =\{F \mid \neg(a \wedge b) \in F \text { and } b \in F\}
\end{aligned}
$$

## Duality

## From N-algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
N_{\mathfrak{A}}(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\} \\
& =\{F \mid \neg(a \wedge b) \wedge b \in F\}, \text { since } \neg a \wedge b=\neg(a \wedge b) \wedge b \\
& =\{F \mid \neg(a \wedge b) \in F \text { and } b \in F\} \\
& =N_{\mathfrak{A}}(\widehat{a \wedge b}) \cap \hat{b}
\end{aligned}
$$

## Duality

## From N-algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
N_{\mathfrak{A}}(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\} \\
& =\{F \mid \neg(a \wedge b) \wedge b \in F\}, \text { since } \neg a \wedge b=\neg(a \wedge b) \wedge b \\
& =\{F \mid \neg(a \wedge b) \in F \text { and } b \in F\} \\
& =N_{\mathfrak{A}}(\widehat{a \wedge b}) \cap \hat{b} \\
& =N_{\mathfrak{A}}(\hat{a} \cap \hat{b}) \cap \hat{b}
\end{aligned}
$$

## Duality

## From N-algebras to frames

Does locality hold for $N_{\mathfrak{A}}$ defined as $N_{\mathfrak{A}}(\hat{a})=\widehat{(\neg a)}$ ?

$$
\begin{aligned}
N_{\mathfrak{A}}(\hat{a}) \cap \hat{b} & =\{F \mid \neg a \in F \text { and } b \in F\} \\
& =\{F \mid \neg a \wedge b \in F\} \\
& =\{F \mid \neg(a \wedge b) \wedge b \in F\}, \text { since } \neg a \wedge b=\neg(a \wedge b) \wedge b \\
& =\{F \mid \neg(a \wedge b) \in F \text { and } b \in F\} \\
& =N_{\mathfrak{A}}(\widehat{a \wedge b}) \cap \hat{b} \\
& =N_{\mathfrak{A}}(\hat{a} \cap \hat{b}) \cap \hat{b}
\end{aligned}
$$

## Duality

Frame-based completeness

## Let $\mathfrak{A}$ be an N -algebra. Then,

$$
\langle\mathfrak{A}, v\rangle \vDash \varphi \Leftrightarrow\left\langle\mathfrak{A}_{*}, V\right\rangle \vDash \varphi,
$$

where $V(p)=v(p)$.

## Duality

Frame-based completeness
Let $\mathfrak{A}$ be an N -algebra. Then,

$$
\langle\mathfrak{A}, v\rangle \vDash \varphi \Leftrightarrow\left\langle\mathfrak{A}_{*}, V\right\rangle \vDash \varphi,
$$

where $V(p)=\widehat{v(p)}$.

## Duality

## Frame-based completeness

Every extension $\mathbf{L}$ of the basic logic of a unary operator $N$ is sound and complete with respect to the class of top descriptive frames $\left(\mathbf{V}_{\mathbf{L}}\right)_{*}$

## Duality

## Top descriptive frames \& Descriptive frames

Top Descriptive Frame $\mathfrak{F}_{T}$


## Duality

## Top descriptive frames \& Descriptive frames

Descriptive Frame $\mathfrak{F}$
$\emptyset$


Top Descriptive Frame $\mathfrak{F}_{T}$


## Duality

## Top descriptive frames \& Descriptive frames

Descriptive Frame $\mathfrak{F}$
$\emptyset$


Top Descriptive Frame $\mathfrak{F}_{T}$


## Duality

## Frame-based completeness

The basic logic of a unary operator N is sound and complete with respect to the class of descriptive frames.

## Outline

Introduction<br>Kripke Semantics<br>Algebraic Semantics<br>\section*{Duality}

Conclusions

## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we have done

- Kripke-style Semantics
- N-algebras
- Algebraic Completeness
- (Top) Descriptive Frames
- Frame-based Completeness


## Conclusions

What we want to do

## Conclusions

What we want to do

## Everything else!

## Conclusions

What we want to do

- Order-topological Duality
- Universal Models

■ Jankov-de Jongh Formulas

