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NA(â) ∩ b̂ = {F|¬a ∈ F and b ∈ F}
= {F|¬a ∧ b ∈ F}
= {F|¬(a ∧ b) ∧ b ∈ F} since ¬a ∧ b = ¬(a ∧ b) ∧ b
= {F|¬(a ∧ b) ∈ F and b ∈ F}
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= NA(â ∧ b) ∩ b̂
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Frame-based completeness

Every extension L of the basic logic of a unary operator N is
sound and complete with respect to the class of top
descriptive frames (VL)∗
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Duality

Frame-based completeness

The basic logic of a unary operator N is sound and complete
with respect to the class of descriptive frames.
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What we want to do
Order-topological Duality
Universal Models
Jankov-de Jongh Formulas
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