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Background

Initial question: “how well” can one embed a lattice L into a
complete Boolean algebra?

DEFINITION. Say that a lattice L satisfies join-infinite
distributive law (JID) if for any a ∈ L the map a ∧ from L to
itself preserves all joins which happen to exist in L.

Complete lattices satisfying JID are nothing but frames.

Following Banaschewski’s suggestion, we call (not necessarily
complete) lattices satisfying JID conditional frames.

There are obvious dual notions of meet-infinite distributive law
(MID), coframe and conditional coframe.

2 / 21



Background

Initial question: “how well” can one embed a lattice L into a
complete Boolean algebra?

DEFINITION. Say that a lattice L satisfies join-infinite
distributive law (JID) if for any a ∈ L the map a ∧ from L to
itself preserves all joins which happen to exist in L.

Complete lattices satisfying JID are nothing but frames.

Following Banaschewski’s suggestion, we call (not necessarily
complete) lattices satisfying JID conditional frames.

There are obvious dual notions of meet-infinite distributive law
(MID), coframe and conditional coframe.

2 / 21



Background

Initial question: “how well” can one embed a lattice L into a
complete Boolean algebra?

DEFINITION. Say that a lattice L satisfies join-infinite
distributive law (JID) if for any a ∈ L the map a ∧ from L to
itself preserves all joins which happen to exist in L.

Complete lattices satisfying JID are nothing but frames.

Following Banaschewski’s suggestion, we call (not necessarily
complete) lattices satisfying JID conditional frames.

There are obvious dual notions of meet-infinite distributive law
(MID), coframe and conditional coframe.

2 / 21



Background

Initial question: “how well” can one embed a lattice L into a
complete Boolean algebra?

DEFINITION. Say that a lattice L satisfies join-infinite
distributive law (JID) if for any a ∈ L the map a ∧ from L to
itself preserves all joins which happen to exist in L.

Complete lattices satisfying JID are nothing but frames.

Following Banaschewski’s suggestion, we call (not necessarily
complete) lattices satisfying JID conditional frames.

There are obvious dual notions of meet-infinite distributive law
(MID), coframe and conditional coframe.

2 / 21



Background

Initial question: “how well” can one embed a lattice L into a
complete Boolean algebra?

DEFINITION. Say that a lattice L satisfies join-infinite
distributive law (JID) if for any a ∈ L the map a ∧ from L to
itself preserves all joins which happen to exist in L.

Complete lattices satisfying JID are nothing but frames.

Following Banaschewski’s suggestion, we call (not necessarily
complete) lattices satisfying JID conditional frames.

There are obvious dual notions of meet-infinite distributive law
(MID), coframe and conditional coframe.

2 / 21



Background

– Funayama

History:

Funayama (1959) constructs an embedding preserving all
existing joins and meets provided L is both a conditional frame
and a conditional coframe.

This is clearly necessary for such an embedding to exist.

Funayama’s construction — quite involved; inverse limit over
the maps

L → (a1]× [a1, a2]× · · · × [an−1, an]× [an),

x 7→ ⟨x ∧ a1, a1 ∨ x ∧ a2, ..., an−1 ∨ x ∧ an, an ∨ x⟩

where a1 < · · · < an runs over all finite chains in L.

For L complete, there were two more simple constructions.
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Background – Grätzer

Grätzer (in his 1978 book, but the construction must be earlier)
— use the MacNeille completion M(B(L)) of the free Boolean
envelope B(L) of L.

Note that the embedding L � B(L) preserves all joins provided
L is a frame.

(Dually it preserves all meets provided L is a coframe.)

Moreover the MacNeille completion always preserves all
existing joins and meets.

In particular, a frame acquires an embedding into a complete
Boolean algebra with preservation of all joins.
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Background – Isbell

Isbell (1972) — use the frame N(L) of nuclei of L.

Recall that a nucleus on L is a map j : L → L satisfying
1 a 6 ja
2 jja = ja
3 j(a ∧ b) = ja ∧ jb

for all a, b ∈ L.

When L is a frame, the set N(L) of all nuclei on L, with pointwise
ordering, is a frame too.

There is a frame embedding L � N(L) sending a ∈ L to the
nucleus a ∨ .

Each a ∨ has a complement a → in N(L); moreover the
embedding L � N(L) is universal among all frame maps L → F
whose images consist of complemented elements of F.
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Background – Isbell

An element a of a frame L is regular if ¬¬a = a, where
¬a =

∨
{x ∈ L|x ∧ a = 0} is the pseudocomplement of a.

It is well known that the set L¬¬ of all regular elements of a
frame L is a Boolean frame, called the Booleanization of L by
Banaschewski and Pultr.

L¬¬ is a quotient frame of L via the map ¬¬ : L � L¬¬.

Isbell shows that the composite L � N(L) � N(L)¬¬ to regular
elements of N(L) remains an embedding.

It follows that the embedding L � N(L)¬¬ preserves arbitrary
joins.
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Background – B-G-J (2013)

Around 1990, Esakia conjectured that the constructions of
Grätzer and Isbell yield isomorphic results.

We found two proofs of this — an algebraic and a topological
one, using Esakia duality.

For the first proof, we extend the Isbell embedding L � N(L)¬¬
along L � B(L) to obtain an embedding B(L) � N(L)¬¬.

It turns out that the image of B(L) is join-dense in N(L)¬¬, hence
by the universal property of the MacNeille completion, N(L)¬¬
must be isomorphic to M B(L).
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Background – B-G-J (2013)

For the second proof, we employed Esakia duality to give
topological descriptions of the Grätzer and Isbell constructions,
which yielded an isomorphism between M(B(L)) and N(L)¬¬
restricting to the identity of L with respect to the above
embeddings.

In a nutshell — both M(B(L)) and N(L)¬¬ are isomorphic to the
Boolean algebra of regular closed subsets of the Esakia dual XL
of L.
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Background – B-G-J (2013)

Grätzer’s construction has an obvious generalization to the
non-complete case.

We did not know whether there is any analog of the Isbell
construction in the non-complete case.
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Enter Banaschewski

We presented our results in Nashville (TACL 2013). Bernhard
Banaschewski, who attended the talk, recently (April 2014)
communicated to Guram very transparent and elegant
generalization of Isbell’s construction.

His key

Proposition. A (bounded distributive) lattice is a conditional
frame iff it embeds into a frame with preservation of all existing
joins.

The ‘if’ part is clear; the main thing is the beautiful embedding
of a conditional frame into a frame.
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Embedding conditional frames into frames

Banaschewski calls an ideal I of L join-closed provided for any
S ⊆ I, if the join

∨
S exists in L, then

∨
S ∈ I.

For a conditional frame L letFL be the set of join-closed ideals
of L.

Then the embedding ↓ : L �FL defined by a 7→ ↓ a preserves
all existing joins. As simple as that!
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Embedding conditional frames into frames

But moreover the embedding L �FL is universal among
appropriate morphisms of L into frames.

The most appropriate morphisms for a category of conditional
frames are lattice homomorphisms preserving all existing joins.

One then has

Theorem (Banaschewski). For any conditional frame morphism
f : L → F to a frame F there is a unique frame homomorphism
f ′ :FL → F with f ′ ◦ ↓ = f .
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Embedding conditional frames into Boolean frames

We now can apply the Isbell construction to the frameFL and
obtain

L �FL � NFL � (NFL)¬¬.

Recall that
FL � NFL � (NFL)¬¬

is a join-preserving embedding, so we obtain a conditional
frame morphism

L � (NFL)¬¬.

into a complete Boolean algebra.
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Uniqueness

Now comes the nicest part — using all this Banaschewski
extends our result to the incomplete case.

Proposition (Banaschewski). For a conditional frame L, any
join-preserving embedding µ : L � B into a Boolean frame B
which is frame-generated by the elements µ(a) and ¬µ(a), a ∈ L,
is equivalent to L � (NFL)¬¬.

Here equivalent means there is an isomorphism between
(NFL)¬¬ and B which carries the embeddings of L to each other.
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Uniqueness – proof sketch

Idea of the proof: consider the diagram

L FL NFL

B

µ′′µ′′
µ′

µ

By the universal property ofFL, µ extends uniquely to a frame
homomorphism µ′.
And by the universal property of N, µ′ further extends uniquely
to a frame homomorphism µ′′.
Since B is generated by the elements µ(a) and ¬µ(a), a ∈ L, µ′′

is surjective and dense — that is, µ′′−1(0) = {0}.
It now follows from a result of Isbell that µ′′ induces an
isomorphism from (NFL)¬¬ onto B.

15 / 21



Uniqueness – proof sketch

Idea of the proof: consider the diagram

L FL NFL

B

µ′′µ′′
µ′

µ

By the universal property ofFL, µ extends uniquely to a frame
homomorphism µ′.

And by the universal property of N, µ′ further extends uniquely
to a frame homomorphism µ′′.
Since B is generated by the elements µ(a) and ¬µ(a), a ∈ L, µ′′

is surjective and dense — that is, µ′′−1(0) = {0}.
It now follows from a result of Isbell that µ′′ induces an
isomorphism from (NFL)¬¬ onto B.

15 / 21



Uniqueness – proof sketch

Idea of the proof: consider the diagram

L FL NFL

B

µ′′µ′′

µ′
µ

By the universal property ofFL, µ extends uniquely to a frame
homomorphism µ′.
And by the universal property of N, µ′ further extends uniquely
to a frame homomorphism µ′′.

Since B is generated by the elements µ(a) and ¬µ(a), a ∈ L, µ′′

is surjective and dense — that is, µ′′−1(0) = {0}.
It now follows from a result of Isbell that µ′′ induces an
isomorphism from (NFL)¬¬ onto B.

15 / 21



Uniqueness – proof sketch

Idea of the proof: consider the diagram

L FL NFL

B
µ′′

µ′′

µ′
µ

By the universal property ofFL, µ extends uniquely to a frame
homomorphism µ′.
And by the universal property of N, µ′ further extends uniquely
to a frame homomorphism µ′′.
Since B is generated by the elements µ(a) and ¬µ(a), a ∈ L, µ′′

is surjective and dense — that is, µ′′−1(0) = {0}.

It now follows from a result of Isbell that µ′′ induces an
isomorphism from (NFL)¬¬ onto B.

15 / 21



Uniqueness – proof sketch

Idea of the proof: consider the diagram

L FL NFL

B

µ′′

µ′′
µ′

µ

By the universal property ofFL, µ extends uniquely to a frame
homomorphism µ′.
And by the universal property of N, µ′ further extends uniquely
to a frame homomorphism µ′′.
Since B is generated by the elements µ(a) and ¬µ(a), a ∈ L, µ′′

is surjective and dense — that is, µ′′−1(0) = {0}.
It now follows from a result of Isbell that µ′′ induces an
isomorphism from (NFL)¬¬ onto B.

15 / 21



Generalization of B-G-J to conditional frames

Corollary. For a conditional frame L, the Grätzer embedding
L � M B(L) is equivalent to L � (NFL)¬¬.

Indeed, one sees easily that the Grätzer embedding is of the
kind described in Banaschewski’s proposition: M B(L) is
generated by elements of L and their complements.
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Further generalization?

We thus have a transparent proof of Funayama’s theorem that a
distributive lattice L is a conditional frame if and only if there is
a lattice embedding of L into a complete Boolean algebra which
preserves all joins which exist in L.

But what about distributive lattices in general?

Grätzer’s construction can be carried out for any distributive
lattice.
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After a while...

In response to Banaschewski’s note Guram sent him some
relevant material, including his new joint paper with John
Harding “Proximity Frames and Regularization” (2014).

Among many other things they use the notions of admissible
subset and D-ideal of Bruns and Lakser (1970).
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Bruns and Lakser (1970)

A subset S ⊆ L of a distributive lattice L is admissible if it has a
join

∨
S in L and moreover a ∧

∨
S is the join of { a ∧ s | s ∈ S }

for any a ∈ L.

An ideal I ⊆ L is a D-ideal if
∨

S ∈ I for any admissible S ⊆ I.

As it happens, Bruns and Lakser had the following
generalization of Banaschewski’s universal embedding of a
conditional frame into a frame.

The set of D-ideals of a distributive lattice is a frame. Clearly it
coincides withFL if L is a conditional frame. Let us denote it by
FL too.

The embedding ↓ : L �FL preserves joins of admissible subsets,
and is universal among those lattice homomorphisms to frames
L → F which preserve such joins.
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Generalization of B-G-J to distributive lattices

As Banaschewski points out in a subsequent letter to Guram,
this enables one to generalize his results to arbitrary distributive
lattices.

Let L � B be an embedding of a distributive lattice into a
complete Boolean algebra which preserves joins of admissible
subsets.

Suppose that B is generated as a frame by elements of L and their
complements. Then this embedding is equivalent to the composite

L �FL � NFL � (NFL)¬¬.

It is easy to see that for any distributive lattice L the Grätzer
construction L � B(L) � M B(L) satisfies these conditions, so
the Isbell and Grätzer embeddings are equivalent in the general
case too.
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THANK YOU!
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