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ON SOLVING THE DIRICHLET GENERALIZED
PROBLEM FOR A HARMONIC FUNCTION IN THE CASE

OF AN INFINITE PLANE WITH A CRACK-TYPE CUT

N. KOBLISHVILI, M. KUBLASHVILI, Z. SANIKIDZE AND M. ZAKRADZE

Abstract. An algorithm for the approximate solution of the
Dirichlet generalized problem is proposed. The term “general-
ized” indicates that the boundary function has a finite number
of first kind break points. The solution consists of the following
stages: 1) the reduction of the Dirichlet generalized problem
to an ordinary auxiliary problem for a harmonic function; 2)
an approximate solution of the auxiliary problem by the modi-
fied version of the MFS (the method of fundamental solutions);
3) the construction of an approximate solution of the general-
ized problem from the solution of the auxiliary problem. An
example is considered in which the break points are the cusp
ones.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÌÏÝÄÌÖËÉÀ ÂÀÒÊÅÄÖËÉ ÓÀáÉÓ ÃÉÒÉá-
ËÄÓ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÀËÂÏÒÉÈÌÉ. ÂÀÍ-
ÆÏÂÀÃÄÁÖËÉ ÀÌÏÝÀÍÉÓ ØÅÄÛ ÉÂÖËÉÓáÌÄÁÀ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ
ÓÀÓÀÆÙÅÒÏ ×ÖÍØÝÉÀÓ ÀØÅÓ ÐÉÒÅÄËÉ ÂÅÀÒÉÓ ßÚÅÄÔÉÓ ßÄÒÔÉ-
ËÄÁÉÓ ÓÀÓÒÖËÉ ÒÀÏÃÄÍÏÁÀ. ÀÌÏáÓÍÉÓ ÐÒÏÝÄÓÉ ÛÄÃÂÄÁÀ
ÛÄÌÃÄÂÉ ÄÔÀÐÄÁÉÓÀÂÀÍ: 1) ÃÉÒÉáËÄÓ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÀÌÏ-
ÝÀÍÉÓ ÃÀÚÅÀÍÀ ÃÀÌáÌÀÒÄ ÜÅÄÖËÄÁÒÉÅ ÀÌÏÝÀÍÀÆÄ äÀÒÌÏÍÉÖËÉ
×ÖÍØÝÉÉÓÀÈÅÉÓ; 2) ÃÀÌáÌÀÒÄ ÀÌÏÝÀÍÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏáÓÍÀ
×ÖÍÃÀÌÄÍÔÖÒ ÀÌÏÍÀáÓÍÈÀ ÌÄÈÏÃÉÓ ÌÏÃÉ×ÉÝÉÒÄÁÖËÉ ÅÄÒÓÉ-
ÉÓ ÂÀÌÏÚÄÍÄÁÉÈ; 3) ÃÀÓÌÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÂÀÍÓÀÆ-
ÙÅÒÀ ÃÀÌáÌÀÒÄ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÓÀÛÖÀËÄÁÉÈ. ÌÀÂÀËÉ-
ÈÉÓ ÒÏËÛÉ ÂÀÍáÉËÖËÉÀ ÉÓÄÈÉ ÒÈÖËÉ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ
ßÚÅÄÔÉÓ ßÄÒÔÉËÄÁÉ ÖÊÖØÝÄÅÉÓ ßÄÒÔÉËÄÁÉÀ. ÌÏÝÄÌÖËÉÀ
ÒÉÝáÅÉÈÉ ÄØÓÐÄÒÉÌÄÍÔÉÓ ÛÄÃÄÂÄÁÉ.
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1. Introduction

Let D be the infinite plane z = x + iy ≡ (x, y) with a finite crack-
type cut G, which is bounded by a closed piecewise smooth contour S =
m∪
j=1

Sj , without multiple points. On each piece of the cut its width d is

positive, and the length of the cut l ≫ d. Moreover, we assume that the
contour S has cusp points and the parametric equations of the smooth
curves SJ are given. It is known that the classical statement of the Dirichlet
ordinary boundary problem for the Laplace equation requires continuity of
the boundary function. However, in practical problems (for example, for
the determination of temperature of the thermal field or the potential of the
electric field, and so on) there are the cases where the boundary condition is
piecewise continuous and therefore it is necessary to consider the Dirichlet
generalized problem (see [1,2,3,4]).

Problem A. A function g(τ) is given on the boundary S of the do-
main D which is continuous everywhere, except at a finite number of points
τ1, τ2, . . . , τn at which it has the first kind break points. It is required to find
a function u(z) ≡ u(x, y) ∈ C2(D)

∩
C(D \ {τ1, τ2, . . . , τn}) satisfying the

conditions
∆u(z) = 0, z ∈ D (1.1)

u(τ) = g(τ), τ ∈ S, τ ̸= τk (k = 1, 2, . . . , n), (1.2)

u(z) = c+O

(
1

|z|

)
for z → ∞, (1.3)

where ∆ is the Laplace operator and c is a real constant such that |c| <∞.
It is known (see [1,2,5]) that Problem (1.1)–(1.3) has a unique solution

depending continuously on the data, and for a generalized solution u(z) the
generalized extremum principle is valid:

min
z∈S

u(z) < u(z)
z∈D

< max
z∈S

u(z), (1.4)

where for z ∈ S it is assumed that z ̸= τk (k = 1, n).
It should be noted that condition (1.3) is important in the extremum

principle (1.4) and, consequently, in the uniqueness theorem of the solution
of Problem A (see [1,2]).

It can be easily shown that if we fix in advance the value of the constant
c, this will be a rather strong restriction. Since under conditions (1.1), (1.2),
(1.3) for u(x, y) the minimax principle is satisfied, Problem A with c fixed a
priori may have no solution. To avoid this the constant c should be defined
from condition (1.2).

If g−(τk) and g+(τk) are the limiting values of the boundary function
g(τ), as τ tends to the point τk along S, respectively, in the positive and



ON SOLVING THE DIRICHLET GENERALIZED PROBLEM 55

negative directions, then the following theorem explains the behavior of the
generalized solution in the neighborhood of the point τk (see [1,5]).

Theorem 1. The limiting values of the solution u(z) of the Dirichlet
generalized problem, when the point z ∈ D approaches the point τk, lie
between g−(τk) and g+(τk).

Remark 1. In general, the method of conformal mapping (MCM) (see
e.g., [1,6,7]) may be applied to obtain an approximate solution of Problem
A, but in the case under consideration it is ineffective. Indeed, a strong
tension (or compression) of parts of the boundary (see [8,9]) take place
under the conformal mapping of the domains of type D onto the unit disk
and inversely.

2. On the Application of the MFS for Generalized Problem

In general, it is known (see [3,6]) that the methods used to obtain an
approximate solution of ordinary boundary value problems are less suitable
(or not suitable at all) for solving problems with singularities. In partic-
ular, the convergence is very slow and, consequently, the accuracy is very
low in the neighborhood of the boundary singularities. Similar phenomena
take place in solving the generalized Dirichlet boundary problem with the
MFS. For this reason, many researchers have tried to perform preliminary
improvements on the boundary value problem. More precisely, they have
to reduce, if possible, the posed problem by smoothing a boundary func-
tion to solving the ordinary problem (see, e.g.,[3,5,6]). For example, the
plane harmonic and biharmonic problems for simply connected domains
with certain singularities have been considered in [10,11,12]. To solve such
problems, the authors have used modified versions of the MFS, which were
based on the direct subtraction of the leading terms of the singular lo-
cal solution (which have to be determined) from the original mathematical
problem. The problems of the type A are studied in [13] for finite simply–
and multiply-connected domains.

Theoretically, the MFS may be used for an approximate solution of gen-
eralized problems of the type A (see [14,15]), but since the fundamental
solutions have a high degree of smoothness on the contour S, such func-
tions are less suitable for the approximation of discontinuous functions. In
order to get a desired result from the point of view of its accuracy, it is
necessary to have a very large number of auxiliary points (see Sect. 4).
In its turn, the above-mentioned situation produces technical difficulties in
numerical implementation.
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3. A Method of Reduction of the Dirichlet Generalized
Problem to an Ordinary Problem

To reduce Problem A to an ordinary problem, it suffices to construct
a function u0(z) which would be a solution of equation (1.1), bounded in
D, continuous everywhere in D , except at the points τ = τk, and would
have the same jumps at the points τk, as g(τ). Indeed, if such a function is
constructed, we define a new (unknown) function

v(z) = u(z)− u0(z). (3.1)

To determine v(z), we have to solve an ordinary Dirichlet problem.
Problem B.

∆v(z) = 0, z ∈ D, (3.2)
v(τ) = f(τ), τ ∈ S, (3.3)

where f(τ) = g(τ)− u0(τ) is a continuous function on the contour S (since
the function f(τ) has removable break points at τk, i.e.,f(τk) = f−(τk) =
f+(τk)).

Since the domain D is infinite, for the uniqueness of the solution of
Problems B and A (see [1,2]) we require, additionally, that

lim v(z) = c1, for z → ∞, (3.4)
limu0(z) = c2, for z → ∞. (3.5)

It is evident that in this case, since c = c1+ c2, therefore c2 should be given
in advance, and c1 should be found while solving Problem (3.2),(3.3). Con-
ditions (1.4), (3.4) and (3.5) are essential, respectively, for the uniqueness
of the solution of Problems A and B in the case of an infinite domain.

After the function v(z) = v(x, y) is constructed, from (3.1) we have

u(z) = v(z) + u0(z), z ∈ D, z ̸= τk. (3.6)

In [5], it is shown that for smoothing the function g(τ) on the contour S
we can take the function

u0(z) =

n∑
k=1

uk(z), (3.7)

uk(z) =
hk
δk
wk(z),

wk(z) = arg
(

z − τk
(z − z0)(z0 − τk)

)
,
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where hk and δk are the jumps of the functions g(τ) and wk(τ) at the point
τk along S, respectively; in particular,

hk = g+(τk)− g−(τk), δk = φ+
k − φ−

k ,

φ+
k = lim

τ→τk+
wk(τ), φ−

k = lim
τ→τk−

wk(τ), τ ∈ S.

In the expression for (3.7), z0 is the inner point of the cut (to avoid diffi-
culties in calculations, it is better to take z0 as the “center” of G).

From (3.7), for the value of the constant c2 (see (3.5)) we have

c2 = lim
z→∞

u0(z) =

n∑
k=1

hk
δk

arg(z0 − τk). (3.8)

4. On the Application of the Modified Version of MFS for the
Solution of the Dirichlet Ordinary External Problem

It is known (see [14,15,16]) that the method of fundamental solutions
can be used in the general case to solve approximately both internal and
external boundary value problems. The functions (see [14,15])

{φk(z)}∞k=1 = {ln |z − z̃k|}∞k=1 , z ∈ S, (4.1)
are the fundamental solutions of the Laplace operator. In (4.1), {z̃k}∞k=1 is
a countable set of points lying everywhere densely on the auxiliary closed
Liapunov contour S̃, lying inside of the finite domain G and min ρ(S, S̃) > 0,

where ρ is the distance between S and S̃. It is known that system (4.1) is
linearly independent and complete not only in the space L2(S), but also
in C(S). Theoretically, by means of system (4.1), the boundary function
g(z) can be approximated to within any accuracy. When using the MFS,
an approximate solution is sought in the form

uN (z) =
N∑

k=1

a
(N)
k ln |z − z̃k| , z ∈ D,

where the points z̃k(k = 1, 2, . . . , N) are situated “uniformly” on the auxil-
iary contour S̃, and a(N)

k are the coefficients of the expansion of the function
g(z). It is obvious that lim uN (z) = ∞ as z → ∞, which means that con-
dition (3.4) for the solution to be unique is not satisfied.

Remark 2. Further, (see [16]), while solving approximately Problem B,
the contour S̃ is the Jordan contour which represents the boundary of the
domain G̃(G̃ ⊂ G). The domain G̃ is “similar” to G, oriented in the same
way and they have the same “center” of gravity. As for the values ρ(S, S̃)
and N , they can be chosen during the numerical implementation of the
algorithm, taking into account a posteriori estimates of the accuracy of the
results.
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Remark 3. If we seek a solution to Problem B in the form

uN (z) =

N∑
k=1

a
(N)
k ln |z − z̃k|+ cN ,

under the condition
N∑

k=1

a
(N)
k = 0, where cN is a real constant and |cN | <∞,

then it can be easily proved that uN (∞) = cN . However, when finding the
constants a(N)

k (k = 1, 2, . . . , N) and cN there arise considerable difficulties
connected with the solvability of the system and conditioning its matrix.

To avoid the above situations, in [17] the modified version of the system
of fundamental solutions (4.1) is constructed by conformal mapping of the
form

{ψk(z)}∞k=1 ≡ {ψ(z, z̃k)}∞k=1 =

{
ln

∣∣∣∣ z̃k − z

(z − z0)(z̃k − z0)

∣∣∣∣}∞

k=1

, (4.2)

For system (4.2) the following conditions are satisfied (see [17]):
10. ∆ψk(z) = 0 , ∀z ∈ D;
20. The system {ψk(z)}∞k=1 is linearly independent and complete not

only in the space L2(S), but also in C(S).
30. limψk(z) is finite as z → ∞.
Since in our case f(z) ∈ C(S), on the basis of property 20 for arbitrary

ε > 0 there exist natural numbers N0(ε) and a set of coefficients a(N)
k

(k = 1, 2, . . . , N), such that if N ≥ N0, then

max
z∈S

∣∣∣∣f(z)− N∑
k=1

a
(N)
k ψk(z)

∣∣∣∣ < ε.

If we introduce the notation

vN (z) ≡ vN (x, y) =

N∑
k=1

a
(N)
k ψk(z),

then from the minimax principle we obtain max
z∈D

|v(z) − vN (z)| < ε, where

v(z) is the exact solution of Problem B, i.e. vN (z) converges uniformly to
v(z) in D for N → ∞.

Thus, the approximate solution vN (z) of Problem B by the modified
version of MFS has the form

vN (z) ≡ vN (x, y) =
N∑

k=1

a
(N)
k ln

∣∣∣∣ z̃k − z

(z − z0)(z̃k − z0)

∣∣∣∣, (4.3)

where the auxiliary points (simulation sources) z̃k(k = 1, 2, . . . , N) are sit-
uated “uniformly” on the contours S̃.



ON SOLVING THE DIRICHLET GENERALIZED PROBLEM 59

As for the coefficients a(N)
k , they can be found (see [14,15,16]) from the

system of linear algebraic equations of the form
N∑

k=1

a
(N)
k ψ(zj , z̃k) = f(zj) , (4.4)

where the collocation points zj (j = 1, 2, . . . , N) are situated “uniformly” on
the contour S. The matrix of system (4.4) has the same properties as the
matrix obtained when solving internal problems by virtue of system (4.1)
(see[17]).

From (4.3), for an approximate value of the constant c1 we have

cN1 = lim
z→∞

vN (z) = vN (∞) = −
N∑

k=1

a
(N)
k ln

∣∣∣z̃k − z0

∣∣∣ ,
or |cN1 | <∞.

5. Numerical Example

In the example considered below, the coefficients a(N)
k of the expansion

(4.3) are found from system (4.4).
In Table 1, N is a number of auxiliary and collocation points on the

contours S̃ and S, respectively; ε is an a posteriori error estimate of the
solution of Problem B or Problem A:

ε = max{|f(zj)− vN (zj)|},
where f(zj) = g(zj) − u0(zj)(zj ̸= τk) and τk is the point of discontinuity.
The points zj(j = 1, 2, . . . ,M) are situated “uniformly” on the contour S.
If zj = τk, then f(zj) = f+(τk) ≡ f−(τk).

Example. The domain D is the exterior of the crack-type cut G with
the boundary S = S1

∪
S2, where the equations of the curves S1 and S2

have the following form:

S1 : y =
b

1 + x2
− b

1 + a2
, x ∈ [−a, a];

S2 : y = − b

1 + x2
+

b

1 + a2
, x ∈ [−a, a].

(5.1)

For illustration, the form of the contour S is given in Figure 1 for a = 3
and b = 1.

In the solution of Problem B, S̃ = S̃1

∪
S̃2 was taken as the auxiliary

contour, where

S̃1 : ỹ =
b1

1 + x̃2
− b1

1 + a21
, x̃ ∈ [−a1, a1];

S̃2 : ỹ = − b1
1 + x̃2

+
b1

1 + a21
, x̃ ∈ [−a1, a1].

(5.2)
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Figure 1.

In the above equations a, b, a1 and b1 are the real constants.
The function g(τ) was taken to be a function with two break points

τ1 = (a; 0), τ2 = (−a; 0). In particular, we have taken

g(τ) =

{
1, τ ∈ τ1τ2,

−1, τ ∈ τ2τ1,
(5.3)

where τ1τ2 and τ2τ1 are the open curves S1 and S2, respectively.
It is evident that the jumps of the function g(τ) at the break points τ1

and τ2 are equal to h1 = 2 and h2 = −2. In the implementation: z0 = (0; 0)
(see (3.7), (4.3)); For f(τ1) and f(τ2) we took f(τ∗1 ) and f(τ∗2 ), where
τ∗1 = (a − ε1; y) ∈ S1, τ∗2 = (−a + ε1; y) ∈ S1 and ε1 = 0.0001; The
auxiliary points,the collocation points and the points for the calculation of
ε in solving Problem B by the modified version of the MFS were situated
uniformly on S̃ and S with respect to the abscissa x, and ordinates of these
points were found from (5.1) and (5.2).



ON SOLVING THE DIRICHLET GENERALIZED PROBLEM 61

In Table 1: N = N1+N2 (N1 = N2); M =M1+M2 (M1 =M2); uN (zk)
is the value of an approximate solution to Problem A at the point zk ∈ D,
calculated by virtue of (3.6). The results of numerical experiments for the
various values of a, b, a1, b1 and N are given. Computations were realized
by the MATLAB system.

Table 1

M = 5000; ε2 = 10−5

z1 = a+ ε2; z2 = −a− ε2; z3 = ∞
a = 20; b = 1; a1 = a− 0.00001; b1 = b− 0.1
N ε uN (z1) uN (z2) uN (z3)
400 0.03 5.835(−5) −5.844(−5) −8.436(−6)
800 0.001 5.834(−5) −5.842(−5) −8.400(−6)
1000 0.0003 5.835(−5) −5.839(−5) −1.381(−6)
a = 20; b = 0.1; a1 = a− 0.00001; b1 = b− 0.01
N ε uN (z1) uN (z2) uN (z3)
500 0.07 7.066(−6) −4.600(−6) 2.136(−4)
1000 0.02 5.999(−6) −5.666(−6) 3.915(−5)
2000 0.002 5.845(−6) −5.820(−6) 3.697(−6)
2200 0.0009 5.840(−6) −5.827(−6) 2.444(−6)

6. Concluding Remarks

From Table 1 it is clear that for an approximate solution uN (z) of Prob-
lem A at the above-considered points of the domain D, the conditions of
the generalized extremum principle and Theorem 1 are satisfied.

The results of numerical experiments indicate the effectiveness of the
proposed algorithm for an approximate solution of Problem A in the case
of an infinite plane with a crack-type cut. In particular, the algorithm is
rather simple for numerical implementation and characterized by an accu-
racy which is sufficient practically for many problems.

Finally, it should be noted that we can apply the proposed algorithm to
the solution of generalized Dirichlet three-dimensional problems, which can
be reduced to problems of type A.
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