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EXTREME DIFFERENTIALS IN A WIDE SENSE OF
FUNCTIONS OF TWO VARIABLES

I. TSIVTSIVADZE

Abstract. For the functions of two variables, the notions of upper
and lower differentials in a wide sense are introduced and the sufficient
conditions for their existence are established.

îâäæñéâ. ëîæ ùãèŽáæï òñêóùææïŽåãæï öâéëôâĲñèæŽ òŽîåë Žä-
îæå äâáŽ áŽ óãâáŽ áæòâîâêùæŽèæï ùêâĲâĲæ áŽ áŽáàâêæèæŽ éëùâ-
éñè ûâîðæèäâ éŽåæ ŽîïâĲëĲæï ïŽçéŽîæïæ ìæîëĲâĲæ.

Introduction

It is well-known that the notion of an upper variable ([1], p. 219; [2],
p. 108) and that of upper semicontinuity ([2], p. 42; [3], p. 385) is a
consequence of replacement of a limit by an upper limit in the corresponding
definitions. Analogously, the notion of a total differentiability of functions
of two variables ([2], p. 300) may result in two notions involving upper and
lower limits which will be called below as upper and lower differentiability
in a wide sense.

In 1932, U. S. Haslam-Jones introduced for functions of two variables the
notion of upper differentiability and called it upper differentiability in the
HJ sense consisting of two conditions ([4]; [2], p. 309). The second condition
is naturally obtained from the notion of total differentiability, but it does
not guarantee the uniqueness of the pair {A, B}. The first condition is a
geometric characteristic of functions of two variables.

But nowadays we are well aware of the necessary and sufficient condition
of differentiability ([5]; [6]; [7], pp. 70–73), and this allows us to proceed
directly from the notion of total differentiability. In addition, the condition
of upper differentiability in a wide sense imposed on the function is not
harder than that of upper differentiability in the HJ sense.

The basic results of the present paper have been announced in [8].
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1. Preliminaries

For a finite in the neighborhood of the point p0 = (x0, y0) ∈ R2 function
of two variables F (x, y), the notion of an upper differential consists in the
following ([2], p. 309).

A pair of finite numbers {A, B} is said to be an upper differential of the
function F at the point (x0, y0), if for z0 = F (x0, y0) the following conditions
are fulfilled:

(i) the plane z − z0 = A(x− x0) + B(y − y0) is an extreme intermediate
tangent plane ([2], p. 263) of the graph of the function F at the point
(x0, y0, z0);

(ii) the equality

lim
(x,y)→(x0,y0)

F (x, y)− F (x0, y0)−A(x− x0)−B(y − y0)
|x− x0|+ |y − y0| = 0. (1.1)

is fulfilled.
The notion of an upper differential has been introduced by U.S. Haslam-

Jones ([4], p. 309), and we shall call it an upper differential in the HJ sense,
and the function F itself will be called upper differentiable in the HJ sense
at the point (x0, y0).

The lower differential is defined analogously. Upper and lower differen-
tials are called extreme differentials.

If the function F is differentiable at the point (x0, y0), then its extreme
differentials coincide at the point (x0, y0). Conversely, if the function F has
equal extreme differentials at the point (x0, y0), then they are differential of
the function F at the same point. There following question is quite natural:
what is the way the pair {A,B} is connected with the function F satisfying
the condition (1.1)?

To resolve the question, we take in the equality (1.1) a particular value
y = y0 and obtain the inequality 1

lim
x→x0

F (x, y0)− F (x0, y0)−A(x− x0)
|x− x0| ≤ 0. (1.2)

Consider two cases.
(I) x > x0. Then the rather that

lim
x→x0
x>x0

F (x, y0)− F (x0, y0)−A(x− x0)
x− x0

≤ 0,

that is,

lim
x→x0
x>x0

(
F (x, y0)− F (x0, y0)

x− x0
−A

)
≤ 0,

1The upper limit with respect to the subset is not more than that with respect to the
basic set.
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whence by virtue of the known equality,

lim
t→t0

[f(t)− g(t)] = lim
t→t0

f(t) + lim
t→t0

g(t), (1.3)

when a finite limit lim
t→t0

g(t) exists ([1], p. 146), we obtain

lim
x→x0
x>x0

F (x, y0)− F (x0, y0)
x− x0

≤ A. (1.4)

(II) x < x0. Now, likewise from (1.2), we have

lim
x→x0
x<x0

F (x, y0)− F (x0, y0)−A(x− x0)
−(x− x0)

≤ 0,

that is,

lim
x→x0
x<x0

(
− F (x, y0)− F (x0, y0)

x− x0

)
≤ −A.

To the left-hand side of the latter inequality we apply the following equal-
ity (see, for e.g., [9], p. 17)

lim
p→p0
p∈E

(−u(p)) = − lim
p→p0
p∈E

u(p). (1.5)

As a result, we get

lim
x→x0
x<x0

F (x, y0)− F (x0, y0)
x− x0

≥ A. (1.6)

Inequalities (1.4) and (1.6) yield

lim
x→x0
x>x0

F (x, y0)− F (x0, y0)
x− x0

≤ A ≤ lim
x→x0
x∈E

F (x, y0)− F (x0, y0)
x− x0

. (1.7)

The left-hand side of the inequality (1.4), symbolically ∂ +
x F (p0), is called

with respect to the variable x a right upper partial derivative of the function
F at the point p0 ([2], pp. 108 and 298).

Analogously, the left-hand side of the inequality (1.6), symbolically
∂ −x F (p0), is called with respect to the variable x a left lower partial de-
rivative of the function F at the point p0.

Thus, we have the correlations

∂ +
x F (p0) ≤ A ≤ ∂ −x F (p0).

The correlation
∂ +

y F (p0) ≤ B ≤ ∂ −y F (p0)

is obtained analogously.
Consequently, we have the following
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Proposition 1.1 ([2], p. 313). If the function F (x, y) satisfies the equal-
ity (1.1), then the inequalities with finite terms

∂ +
x F (p0) ≤ A ≤ ∂ −x F (p0), (1.8)

∂ +
y F (p0) ≤ B ≤ ∂ −y F (p0) (1.9)

hold.

Clearly, the condition (i) introduced by Haslam-Jones is to eliminate such
a non-uniqueness of the pair {A,B}.

Below, we shall need certain definitions for the finite in the neighborhood
u(p0, δ) = {(x, y) ∈ R2 : |x−x0|+ |y−y0| < δ}, δ > 0 of the point p0(x0, y0)
function ϕ(p), p = (x, y).

2. The Upper Differential in a Wide Sense

2.1. Further we will need some definitions.

Definition 2.1 ([8]). The function ϕ(x, y) is said to be upper differen-
tiable in a wide sense at the point (x0, y0), if there exists a unique pair of
finite numbers A = (A1, A2), such that the equality

lim
(x,y)→(x0,y0)

ϕ(x, y)− ϕ(x0, y0)−A1(x− x0)−A2(y − y0)
|x− x0|+ |y − y0| = 0 (2.1)

holds.

In this case the upper differential in a wide sense of the function ϕ(x, y)
at the point p0 = (x0, y0), symbolically dϕ(p0), we define by the equality

d ϕ(p0) = A1dx + A2dy. (2.2)

Clearly, the conditions (i) and (ii) are not uniformly weak than the re-
quirement for the uniqueness of the pair (A1, A2) in the equality (2.1). Just
therefore the phrase “in a wide sense” appears in Definition 2.1.

Consequently, the upper differentiability in the HJ sense implies that in
a wide sense.

Inequalities (1.8) and (1.9) and the notions of angular partial ± deriva-
tives (see [10]) are considered worthwhile to introduce the following

Definition 2.2 ([8]). We say that the function ϕ(x, y) at the point p0

has the right upper angular derivative with respect to the variable x, sym-
bolically ∂ +

x̂ ϕ(p0), if for every constant c ≥ 0 there exists an independent
of c finite or infinite upper limit

∂ +
x̂ ϕ(p0) = lim

x→x+
0

|y−y0|≤c(x−x0)

ϕ(x, y)− ϕ(x0, y)
x− x0

. (2.3)



EXTREME DIFFERENTIALS IN A WIDE SENSE 103

The right upper angular derivative with respect to y for ϕ(x, y) at p0 is
defined as

∂ +
ŷ ϕ(p0) = lim

x→y+
0

|x−x0|≤`(y−y0)

ϕ(x, y)− ϕ(x0, y)
y − y0

, (2.4)

if that upper limit, finite or infinite, exists for every constant ` ≥ 0 and does
not depend on `.

By means of the lower limit, we analogously define for ϕ(x, y) at the
point p0 the left lower angular derivative ∂ −x̂ ϕ(p0) with respect to y and the
left lower angular derivative ∂ −ŷ ϕ(p0) with respect to y (see also equality
(2.13), below).

The existence of ∂ +
x̂ ϕ(p0) implies that of ∂ +

x ϕ(p0), and their equality.
The converse statement is invalid.

In the case if ∂ +
x̂ ϕ(p0) and ∂ +

ŷ ϕ(p0) exist, using the equality

+anggrad ϕ(p0) =
(
∂ +

x̂ ϕ(p0), ∂ +
ŷ ϕ(p0)

)
(2.5)

we introduce the upper right angular gradient of the function ϕ(x, y) at the
point p0.

Analogously, we define the left lower angular gradient

−anggrad ϕ(p0) =
(
∂ −x̂ ϕ(p0), ∂ −ŷ ϕ(p0)

)
(2.6)

of the function ϕ(x, y) at the point p0.

2.2. The sufficient conditions for the existence of dϕ(p0) are given in the
following

Theorem 2.1. For the upper differentiability in a wide sense of the func-
tion ϕ(x, y) at the point p0 it suffices to fulfil the equality −anggrad ϕ(p0) =
+anggrad ϕ(p0) or, what is the same thing, to fulfil the equalities

∂ −x̂ ϕ(p0) = ∂ +
x̂ ϕ(p0), (2.7)

∂ −ŷ ϕ(p0) = ∂ +
ŷ ϕ(p0) (2.8)

under the condition that all their terms are finite, and in these conditions
we have

dϕ(p0) = ∂ +
x̂ ϕ(p0)dx + ∂ +

ŷ ϕ(p0)dy =

= ∂ +
x ϕ(p0)dx + ∂ +

y ϕ(p0)dy, (2.9)

dϕ(p0) = ∂ −x̂ ϕ(p0)dx + ∂ −ŷ ϕ(p0)dy =

= ∂ −x ϕ(p0)dx + ∂ +
y ϕ(p0)dy. (2.10)
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Proof. Since the right-hand side of the equality (2.3) is finite for every con-
stant c ≥ 0, we have

lim
x→x+

0
|y−y0|≤(x−x0)

ϕ(x, y)− ϕ(x0, y)
x− x0

= ∂ +
x̂ ϕ(p0). (2.11)

Introduce the set M1 = {(x, y) ∈ R2 : |y − y0| ≤ (x− x0), x > x0}. The
set of all points (x, y) ∈ M1 from the η-neighborhood U(p0, η) of the point
p0 we denote by Mη

1 .
Applying to (2.11) the equality (1.3), we obtain

lim
(x,y)→p0
(x,y)∈Mη

1

ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +
x̂ ϕ(p0)

x− x0
= 0,

which can be rewritten (since x > x0) in the form

lim
(x,y)→p0
(x,y)∈Mη

1

ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +
x̂ ϕ(p0)

|x− x0| = 0. (2.12)

Using now equalities (2.7), we can show that the equality (2.12) holds
likewise in the case x < x0, symbolically (x, y) ∈ M2, where M2 = {(x, y) ∈
R2 : |y − y0| ≤ (x0 − x), x < x0}. Indeed, we write the equality

∂ −x̂ ϕ(p0) = lim
x→x−0

|y−y0|≤(x−x0)

ϕ(x, y)− ϕ(x0, y)
x− x0

(2.13)

in the form

lim
x→x−0

(x,y)∈Mη
2

ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ −x̂ ϕ(p0)
x− x0

= 0

or, what is the same thing, in the form

lim
(x,y)→p0
(x,y)∈Mη

2

[
− ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ −x̂ ϕ(p0)

|x− x0|
]

= 0.

Thus, taking into account the equalities (1.5) and (2.7), we obtain

lim
(x,y)→p0
(x,y)∈Mη

2

[
ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +

x̂ ϕ(p0)
|x− x0|

]
= 0. (2.14)

We can now combine the equalities (2.12) and (2.14) in the form of the
following equality:

lim
(x,y)→p0
(x,y)∈Mη

ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +
x̂ ϕ(p0)

|x− x0| = 0, (2.15)
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where M = M1 ∪M2.
Take an arbitrarily small number ε > 0. As follows from the notion

of the upper limit, to the number ε there corresponds the number δ1 =
δ1(p0, ε, ϕ) > 0 such that the inequality

ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +
x̂ ϕ(p0) < ε|x− x0| (2.16)

holds for all points (x, y) ∈ M δ1 , by virtue of (2.15).
Reasoning analogously, we obtain the inequality

ϕ(x, y)− ϕ(x, y0)− (y − y0)∂ +
ŷ ϕ(p0) < ε|y − y0| (2.17)

for all points (x, y) ∈ N δ2 , where the set N is obtained in the same way as
we used for the set M = M1 ∪M2. Obviously, combination of the sets M
and N covers the deleted neighborhood U(p0)\{p0} of the point p0.

To prove the theorem, it suffices to assume that tending of the point (x, y)
to the point p0 is realized along the sets M δ1 or N δ2 (since the deleted
neighborhood of the point p0 is represented as a combination of a finite
number of sets). For the sake of definiteness we assume that the point
(x, y) belongs to the set M δ1 and hence tends to the point p0.

The inequality (2.17) holds, particularly, for all points (x, y) ∈ N δ2 .
Thus, we have

ϕ(x0, y)− ϕ(x0, y0)− (y − y0)∂ +
ŷ ϕ(p0) < ε|y − y0|; (2.18)

ϕ(x, y)− ϕ(x0, y0)− (x− x0)∂ +
x̂ ϕ(p0)− (y − y0)∂ +

ŷ ϕ(p0) =

=
[
ϕ(x, y)− ϕ(x0, y)− (x− x0)∂ +

x̂ ϕ(p0)
]
+

+
[
ϕ(x0, y)− ϕ(x0, y0)− (y − y0)∂ +

ŷ ϕ(p0)
]
. (2.19)

Taking into account inequalities (2.16) and (2.18), the inequality (2.19)
yields

ϕ(x, y)− ϕ(x0, y0)− (x− x0)∂ +
x̂ ϕ(p0) > −(y − y0)∂ +

ŷ ϕ(p0) <

< ε(|x− x0|+ |y − y0|) (2.20)

for all points (x, y) ∈ M δ, where δ = min{δ1, δ2}.
To complete the proof of the theorem, we need a well-defined inequality

appearing in the notion of the upper limit.
On the one hand, ∂ +

x̂ ϕ(p0) = ∂ +
x ϕ(p0). On the other hand, for ∂ +

x ϕ(p0)
there exists the convergent to the point p0 sequence of the points (xk, y0),
xk > x0 such that

ϕ(xk, y0)− ϕ(x0, y0)− (xk − x0)∂ +
x̂ ϕ(p0) > −ε|xk − x0|. (2.21)

This implies that for the convergent to the point p0 sequence (xk, y0),
the right-hand side of the equality (2.19), and hence its left-hand side, is
more than −ε(|xk − x0|+ |y0 − y0|).
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This fact, with regard for the inequality (2.20), allows us to prove the
equality (2.1) for the numbers

A1 = ∂ +
x̂ ϕ(p0) = ∂ −x̂ ϕ(p0), (2.22)

A2 = ∂ +
ŷ ϕ(p0) = ∂ −ŷ ϕ(p0), (2.23)

or in view of the above-said, for the numbers

A1 = ∂ +
x ϕ(p0) = ∂ −x ϕ(p0), (2.24)

A2 = ∂ +
y ϕ(p0) = ∂ −y ϕ(p0), (2.25)

By virtue of the equality (2.2), we obtain the equalities (2.9) and (2.10).
Thus, the proof of Theorem 2.1 is completed. ¤

3. The Lower Differential in a Wide Sense

3.1. If the function ϕ(x, y) satisfies the condition

lim
(x,y)→p0

ϕ(x, y)− ϕ(x0, y0)−M(x− x0)−N(y − y0)
|x− x0|+ |y − y0| = 0 (3.1)

for some finite numbers M and N , then the inequalities 2

lim
x→x0
x<x0

ϕ(x, y0)− ϕ(x0, y0)
x− x0

≤ M ≤ lim
x→x0
x>x0

ϕ(x, y0)− ϕ(x0, y0)
x− x0

, (3.2)

lim
y→y0
y<y0

ϕ(x0, y)− ϕ(x0, y0)
y − y0

≤ N ≤ lim
y→y0
y>y0

ϕ(x0, y)− ϕ(x0, y0)
y − y0

(3.3)

hold.
The left-hand side of (3.2), symbolically ∂ −x ϕ(p0), is called with respect

to the variable x a left upper partial derivative, and its right-hand side, sym-
bolically ∂ +

x ϕ(p0), is called with respect to x a right lower partial derivative
of the function ϕ(x, y) at the point p0.

Therefore the relations (3.2) can be written in the form

∂ −x ϕ(p0) ≤ M ≤ ∂ +
x ϕ(p0). (3.4)

For (3.3) we likewise have

∂ −y ϕ(p0) ≤ N ≤ ∂ +
y ϕ(p0). (3.5)

Consequently, from the equality (3.1) we obtain the relations (3.4) and
(3.5).

2The lower limit with respect to the subset is not less than that with respect to the
basic set.
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3.2.

Definition 3.1 ([8]). The function ϕ(x, y) is said to be lower differen-
tiable in a wide sense at the point p0 = (x0, y0), if there exists a unique pair
of finite numbers B = (B1, B2) such that

lim
(x,y)→(x0,y0)

ϕ(x, y)− ϕ(x0, y0)−B1(x− x0)−B2(y − y0)
|x− x0|+ |y − y0| = 0. (3.6)

In this case, the lower differential in a wide sense of the function ϕ(x, y) at
the point p0 = (x0, y0), symbolically ∂ ϕ(p0), can be defined by the equality

∂ ϕ(p0) = B1dx + B2dy. (3.7)

Introduce now the quantities

∂ ±x̂ ϕ(p0) = lim
x→x±0

|y−y0|≤c(x−x0)

ϕ(x, y)− ϕ(x0, y)
x− x0

, c ≥ 0, (3.8)

∂ ±ŷ ϕ(p0) = lim
y→y±0

|x−x0|≤`(y−y0)

ϕ(x, y)− ϕ(x, y0)
y − y0

, ` ≥ 0. (3.9)

Theorem 3.1. For the function ϕ(x, y) to be lower differentiable in a
wide sense at the point p0, it is sufficient that the equalities

∂ +
x̂ ϕ(p0) = ∂ −x̂ ϕ(p0), (3.10)

∂ +
ŷ ϕ(p0) = ∂ −ŷ ϕ(p0) (3.11)

be fulfilled under the condition that their terms are finite, and in such a case

∂ ϕ(p0) = ∂ +
x̂ ϕ(p0)dx + ∂ +

ŷ ϕ(p0)dy =

= ∂ +
x ϕ(p0)dx + ∂ +

y ϕ(p0)dy, (3.12)

∂ ϕ(p0) = ∂ −x̂ ϕ(p0)dx + ∂ −ŷ ϕ(p0)dy =

= ∂ −x ϕ(p0)dx + ∂ −y ϕ(p0)dy. (3.13)

4. On the Total Differential

The upper and lower differentials in a wide sense are called extremal ones
in a wide sense.

Theorem 4.1 ([8]). For the total differential dϕ(p0) to exist, it is neces-
sary and sufficient that the extremal differentials in a wide sense be equal:
dϕ(p0) = dϕ(p0).

Proof. The Necessity. Since the existence of the total differential dϕ(p0) is
equivalent to that of the finite angular partial derivatives ϕ′x̂(p0), ϕ′ŷ(p0)
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and to the equality dϕ(p0) = ϕ′x̂(p0)dx+ϕ′ŷ(p0)dy ([7], p. 71), therefore the
existence of dϕ(p0) implies that of

d−x̂ ϕ(p0) =d +
x̂ ϕ(p0)dϕ(p0) = d +

x̂ ϕ(p0) = d−x̂ ϕ(p0) = ∂x̂ϕ(p0),

d−ŷ ϕ(p0) =d +
ŷ ϕ(p0)dϕ(p0) = d +

ŷ ϕ(p0) = d−ŷ ϕ(p0) = ∂ŷϕ(p0),

dϕ(p0) = dϕ(p0) = dϕ(p0).

The Sufficiency. If dϕ(p0) = dϕ(p0), then for the coefficients appearing
in (2.1) and (3.6) we have the equalities A1 = B1 and A2 = B2 from
which we can easily get the differentiability of the function ϕ at the point
p0 and the equalities ϕ′x̂(p0) = A1 = B1 and ϕ′ŷ(p0) = A2 = B2. Thus,
dϕ(p0) = dϕ(p0) = dϕ(p0). ¤
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