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A NOTE ON THE STRONG CONVERGENCE OF
TWO–DIMENSIONAL WALSH-FOURIER SERIES

G. TEPHNADZE

Abstract. Goginava and Gogoladze proved that the following result
is true ∞∑

n=1

‖Sn,nf‖L1(G2)

n log2 (n + 1)
≤ c ‖f‖H1(G2) ,

where f ∈ H1

(
G2

)
and c is absolute constant. The main aim of this

paper is to prove that the rate of the deviant behavior of the L1(G2)
norm of (n, n)-th partial sum is exactly [n log2(n + 1)]∞n−1.

îâäæñéâ. àëàæêŽãŽï áŽ àëàëèŽúæï éæâî áŽéðçæùâĲñèæ æõë öâé-
áâàæ ñðëèëĲŽ

∞∑
n=1

‖Sn,nf‖L1(G2)

n log2 (n + 1)
≤ c ‖f‖H1(G2) ,

ïŽáŽù f ∈ H1

(
G2

)
áŽ c îŽôŽù áŽéëñçæáâĲâèæ éñáéæãæŽ. êŽöîëé-

öæ áŽéðçæùâĲñèæŽ, îëé (n, n)-ñîæ çâîúë þŽéæï L1(G
2) êëîéæï

éêæöãêâèæï îæàæ Žîæï äñïðŽá [n log2(n + 1)]∞n−1.

Let N+ denote the set of positive integers, N := N+ ∪ {0}. Denote by
Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar mea-
sure on Z2 is given such that the measure of a singleton is 1/2. Let G be
the complete direct product of the countable infinite copies of the compact
group Z2. The elements of G are of the form x = (x0, x1, . . . , xk, . . . ) with
xk ∈ {0, 1} (k ∈ N) . The group operation on G is the coordinate-wise addi-
tion, the measure (denote by µ) and the topology are the product measure
and topology. The compact Abelian group G is called the Walsh group. A
base for the neighborhoods of G can be given in the following way:

I0 (x) := G,

In (x) := In (x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )} ,

where x ∈ G and n ∈ N+. Denote In := In (0) , for n ∈ N.
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If n ∈ N, then n =
∞∑

i=0

ni2i, where ni ∈ {0, 1} (i ∈ N) , i. e. n is

expressed in the number system of base 2. Denote |n| := max{j ∈ N : nj 6=
0}, that is, 2|n| ≤ n < 2|n|+1.

Define the variation of an n ∈ N with binary coefficients (nk, k ∈ N) by

V (n) = n0 +
∞∑

k=1

|nk − nk−1| .

For k ∈ N and x ∈ G let us denote by

rk (x) := (−1)xk (x ∈ G, k ∈ N)

the k-th Rademacher function.
The Walsh-Paley system is defined as the sequence of Walsh-Paley func-

tions:

wn (x) :=
∞∏

k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1∑
k=0

nkxk

(x ∈ G, n ∈ N+) .

The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1∑

k=0

wk (x) .

Recall that (see [9, p. 7])

D2n (x) =
{

2n, x ∈ In,
0, x /∈ In,

(1)

and
Dm+2l (x) = D2l (x) + w2l (x)Dm (x) , when m ≤ 2l. (2)

Denote by Lp

(
G2

)
, (0 < p < ∞) the two-dimensional Lebesgue space,

with corresponding norm ‖·‖p .

The number ‖Dn‖1 is called n-th Lebesgue constant. Then (see [9])

1
8

V (n) ≤ ‖Dn‖1 ≤ V (n) . (3)

The rectangular partial sums of the two-dimensional Walsh-Fourier series
of a function f ∈ L1

(
G2

)
are defined as follows:

SM,Nf (x, y) :=
M−1∑

i=0

N−1∑

j=0

f̂ (i, j)wi (x)wj (y) ,

where the numbers f̂ (i, j) :=
∫

G2 f (x, y)wi (x)wj (y) dµ (x, y) is said to be
the (i, j)-th Walsh-Fourier coefficient of the function f.
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Let f ∈ L1

(
G2

)
. Then the dyadic maximal function is given by

f∗ (x, y) = sup
n∈N

1
µ (In(x)× In(y))

∣∣∣∣∣
∫

In(x)×In(y)

f (s, t) dµ (s, t)

∣∣∣∣∣.

The dyadic Hardy space Hp(G2) (0 < p < ∞) consists of all functions for
which

‖f‖Hp
:= ‖f∗‖p < ∞.

If f ∈ L1

(
G2

)
, then (see [14])

‖f‖H1
=

∥∥∥∥sup
k∈N

∣∣S2k,2kf
∣∣
∥∥∥∥

1

. (4)

It is known [8, p. 125] that the Walsh-Paley system is not a Schauder
basis in L1 (G). Moreover, there exists a function in the dyadic Hardy space
H1 (G), the partial sums of which are not bounded in L1 (G) . However,
Simon ([10] and [11]) proved that there is an absolute constant cp, depending
only on p, such that

1

log[p] n

n∑

k=1

‖Skf‖p
p

k2−p
≤ cp ‖f‖p

Hp
(5)

for all f ∈ Hp (G), where 0 < p ≤ 1, Skf denotes the k-th partial sum of the
Walsh-Fourier series of f and [p] denotes integer part of p. (For the Vilenkin
system when p = 1 see in Gat [2]). When 0 < p < 1 and f ∈ Hp (G) the
author [13] proved that sequence

{
1/k2−p

}∞
k=1

in (5) can not be improved.
For the two-dimensional Walsh-Fourier series some strong convergence

theorems are proved in [12] and [15]. Convergence of quadratic partial sums
was investigated in details in [3, 7]. Goginava and Gogoladze [6] proved that
the following result is true:

Theorem G. Let f ∈ H1

(
G2

)
. Then there exists absolute constant c,

such that
∞∑

n=1

‖Sn,nf‖1
n log2 (n + 1)

≤ c ‖f‖H1
. (6)

The main aim of this paper is to prove that sequence
{
1/n log2 (n+1)

}∞
n=1

in (6) is essential too. In particular, the following is true:

Theorem 1. Let Φ : N → [1, ∞) be any nondecreasing function,
satisfying the condition limn→∞ Φ(n) = +∞. Then

sup
‖f‖H1

≤1

∞∑
n=1

‖Sn,nf‖1 Φ (n)
n log2 (n + 1)

= ∞.
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Proof. Let

fn,n (x, y) =
(
D2n+1 (x)−D2n (x)

)(
D2n+1 (y)−D2n (y)

)
.

It is easy to show that

f̂n,n(i, j) =

{
1, if ( i, j) ∈ {

2n, . . . , 2n+1 − 1
}2

,

0, if ( i, j) /∈ {
2n, . . . , 2n+1 − 1

}2
.

(7)

Applying (1) and (4) we have

∥∥fn,n

∥∥
H1

=
∥∥∥∥sup

k∈N

∣∣S2k,2kfn,n

∣∣
∥∥∥∥

1

=
∥∥fn,n

∥∥
1

= 1. (8)

Let 2n < k ≤ 2n+1. Combining (2) and (7) we get

Sk,kfn,n (x, y) =
k−1∑

i=2n

k−1∑

j=2n

wi (x)wj (y) =

=
(
D

k
(x)−D2n (x)

)(
Dk (y)−D2n (y)

)
=

= w2n (x)w2n (y)Dk−2n (x)Dk−2n (y) .

Using (3) we have
∥∥Sk,kfn,n (x, y)

∥∥
1
≥

∫

G2

∣∣Dk−2n (x)Dk−2n (y)
∣∣dµ (x, y) ≥

≥ cV 2 (k − 2n) . (9)

Let Φ (n) be any nondecreasing, nonnegative function, satisfying condi-
tion limn→∞ Φ(n) = ∞. Since (see Fine [1])

1
n log n

n∑

k=1

V (k) =
1

4 log 2
+ o (1) ,

using (8) and (9) and Cauchy-Schwarz inequality we obtain

sup
‖f‖H1

≤1

2n+1∑

k=1

‖Sk,kf‖1 Φ(k)
k log2 (k + 1)

≥
2n+1∑

n=2n+1

‖Sk,kfn,n‖1 Φ (k)
k log2 (k + 1)

≥

≥ cΦ(2n)
n22n

2n+1∑
n=2n+1

V 2 (k − 2n) ≥ cΦ(2n)
n22n

2n∑

k=1

V 2 (k) ≥

≥ cΦ (2n)

(
1

n2n

2n∑

k=1

V (k)

)2

≥ cΦ (2n) →∞ as n →∞,

which completes the proof of Theorem 1. ¤
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