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THERMOSTABILITY OF PRETWISTED SHELLS OF
REVOLUTION, CLOSE BY THEIR FORM TO

CYLINDRICAL ONES, WITH AN ELASTIC FILLER

S. KUKUDZHANOV

Abstract. The stability of shells of revolution which by their form
are close to cylindrical ones, with an elastic filler, under the action of
torques, applied to the shell end-walls, external pressure and heating
is investigated. Temperature in the shell body is distributed uni-
formly. The shells of positive and negative gaussian curvature are
considered. Formulas for finding critical load and forms of wave for-
mation depending on temperature, rigidity of an elastic base and
amplitude of deviation of the shell from cylindrical form, are derived.

îâäæñéâ. öâïûŽãèæèæŽ Ĳîñêãæåæ àŽîïâĲæï åâîéëéáàîŽáëĲŽ, îë-
éèâĲæù òëîéæå éæŽýèëâĲñèæŽ ùæèæêáîñèåŽê, áîâçŽáæ öâãïâ-
Ĳæå, éàîâýŽãæ éëéâêðâĲæï, êëîéŽèñîæ ûêâãæïŽ áŽ ðâéìâîŽðñîæï
éëóéâáâĲæï óãâö. Ĳîñêãæåæ àŽîïâĲæ öâïûŽãèæèæŽ îëàëîù áŽáâ-
Ĳæåæ, Žïâãâ ñŽîõëòæåæ àŽñïæï ïæéîñáæå. éæôâĲñèæŽ òëîéñèâĲæ
çîæðæçñèæ éàîâýŽãæ éëéâêðâĲæï áŽ ðŽèôñîæ òëîéæï àŽêïŽäôã-
îæïŽåãæï, îëéâèæù áŽéëçæáâĲñèæŽ ðâéìâîŽðñîæïŽàŽê, êëîéŽèñ-
îæ ûêâãæïŽàŽê, áîâçŽáæ òñúæï ïæéðçæùæïŽ áŽ ùæèæêáîñèæ àŽîïæï
àŽáŽýîæï ŽéìèæðñáæïŽàŽê.

In the present paper we consider the stability of shells of revolution,
close by their form to cylindrical ones, with elastic filler, which are under
the action of torques M applied to the shell end-walls in terms of uniformly
distributed tangential forces, external pressure, uniformly distributed over
the whole lateral surface of the shell, and heating. The shell is assumed to
be thin and elastic. Temperature in the shell body is distributed uniformly.
An elastic filler is modeled by Winkler’s base; its extension due to heating
is not taken into account. We consider the shells of middle length whose
midsurface generatrix is described by a parabolic function. The shells of
positive and negative gaussian curvature are also investigated. The bound-
ary conditions at the shell end-walls correspond to a free support admitting
certain radial displacement in a subcritical state.
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We consider the shell whose midsurface is formed by the rotation of
square parabola about the z-axis of the rectangular system of coordinates
x, y, z with origin in the midsegment of the axis of revolution (Figure 1).
It is assumed that radius R of the midsurface cross-section of the shell is
defined by the equality R = r + δ0[1 − ξ2(r/L)2], where r is radius of the
end-wall section, δ0 is maximal deviation (the shell is convex for δ0 > 0 and
concave for δ0 < 0), L = 2` is the shell length, ξ = z/r. It is assumed that

(δ0/r)2, (δ0/`)2 ¿ 1. (1)

Temperature in the shell body is assumed to be uniformly distributed. An
elastic filler is modeled by Winkler’s base and its extension due to heating
is not taken into account.

As the basic equations of stability, we have used equations of the theory
of shallow shells [1]. For the shells of middle length [2], the form of stability
loss goes along with a weakly expressed longitudinal wave formation as
compared with a circumferential one, therefore the relation

∂2f

∂ξ2
¿ ∂2f

∂ϕ2
(f = w, ψ), (2)

is valid, where w and ψ are the functions, respectively, of radial displace-
ment and stress. As a result, the system of equations for the shell under
consideration is reduced to the following equation [7] (by our assumption,
temperature terms are equal to zero [6]):
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+

∂4w
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+ 4δ

∂4w
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+ 4δ2 ∂4w

∂ϕ4
+

+
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∂ϕ4

[
∂

∂ξ
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t01

∂w

∂ξ
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∂

∂ϕ
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t02
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∂ϕ
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+

∂

∂ξ

(
s0 ∂w

∂ϕ

)
+

∂

∂ϕ

(
s0 ∂w

∂ξ

)]
+

+β
∂4w

∂ϕ4
= 0, ε = h2/12 r2(1− v2), β = βr2/Eh, (3)

δ = δ0r/`2, t0i = T 0
i /Eh (i = 1, 2), s0 = S0/Eh, (4)

where E is the elasticity modulus and v is the Poisson coefficient of the
shell material; ϕ is the angular coordinate; T 0

1 and T 0
2 are, respectively,

axial and circumferential normal contractive forces in a subcritical state;
S0 is shearing stress in a subcritical state; h is the shell thickness; β is the
“bed” coefficient of an elastic filler in a supercritical state. The subcritical
state is assumed to be momentless. On the basis of the appropriate solution
and inequalities (1) and (2), it is not difficult to show that

∂

∂ξ

(
T 0

1

∂w

∂ξ

)
¿ T 0

2

∂2w

∂ϕ2
,

T 0
2 ≈ r(q − β0w0), S0 ≈ M/2πr2, q > 0,

(5)
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where q is external pressure; w0 and β0 are, respectively, deflection and
”bed” coefficient of the filler in a subcritical state. Total subcritical dis-
placement equals

w0 = w0q − w0
T
, (6)

where w0q
and w0

T
are deflections due to the action of pressure and tem-

perature, respectively. They are expressed through the stresses σ0q
and σ0

T

by the formulas

w0q
=

σ0
ϕq

(1− v2)R
E

, w0
T

=
[
αT −

σ0
ϕ

T
(1− v2)

E

]
R, (7)

where σ0
ϕq

is a circumferential normal stress in the shell due to external
pressure; σ0

ϕT
is a circumferential normal stress due to temperature and

filler constraint; T is temperature; α is the coefficient of linear extension of
the shell material. Substituting (7) into (6) and (5), we obtain

T 0
2 ≈

r

g
(q + αTrβ0), g = 1 + (1− v2)

β0r
2

Eh
,

T 0
2 = σ0

ϕh, σ0
ϕ = σ0

ϕq
+ σ0

ϕ
T
.

(8)

In addition, taking into account the fact that R is close to r just as above,
in the expression for the force (8) we take R ≈ r.

Like cylindrical shells, we have considered only the principal boundary
conditions whose fulfilment allowed us to get good enough approximation
of values of critical load for freely supported edges [2,3].

Taking into account the relations (5) and (8), we find that equation (3)
takes the form

ε
∂8w

∂ϕ8
+

∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂ϕ2
+

(
4δ2 +

r2β

Eh

)
∂4w

∂ϕ4
+

+
(

qr

Eh
+

αTr2β0

Eh

)
g−1 ∂6

∂ϕ6
− 2s0 ∂6w

∂ξ ∂ϕ5
= 0. (9)

Thus, on the basis of the above-said, determination of forms of stability
loss for the shells under consideration is reduced to finding nonzero solutions
of equation (9) under the boundary conditions

w(`/r, ϕ) = w(−`/r, ϕ) = 0. (10)

A solution will be sought in the form of a series

w =
∑
mn

cosλmξ
(
Amn sin n(ϕ− γξ) + Bmn cos n(ϕ− γξ)

)
, (11)

λm =
mπr

2`
(m = 2i + 1, i = 0, 1, 2, . . . )

satisfying the given boundary conditions.
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We represent the expression (11) as follows:

w =
∑
mn

Amn

2

(
sin

[
n(ϕ− γξ)− λmξ

]
+ sin

[
n(ϕ− γξ) + λmξ

])
+

+
Bmn

2

(
cos

[
n(ϕ− γξ)− λmξ

]
+ cos

[
n(ϕ− γξ) + λmξ

])
. (12)

Substituting (12) into equation (9), we obtain
∑
mn

{
AmnF (n,−m) sin

[
n(ϕ− γξ)− λmξ

]
+

+ AmnF (n,m) sin
[
n(ϕ− γξ) + λmξ

]
+

+ BmnF (n,−m) cos
[
n(ϕ− γξ)− λmξ

]
+

+ BmnF (n,m) cos
[
n(ϕ− γξ) + λmξ

]}
= 0,

F (n,±m) = εn8 + µ4
± + 4δµ2

±n2 + 4(δ2 + ω/4)n4−
− (t0 + ω0αT )g−1n6 + 2s0µ±n5,

µ± = −nγ ± λm, ω0 = r2β0/Eh, ω = r2β/Eh,

t0 = qr/Eh, s0 = M/2πr2Eh.

(13)

From which it follows that

Amn

[
F (n,−m) + F (n,m)

]
= 0, Amn

[
F (n,−m)− F (n,m)

]
= 0,

Bmn

[
F (n,−m) + F (n,m)

]
= 0, Bmn

[
F (n,−m)− F (n, m)

]
= 0.

Thus, for the existence of a nontrivial solution of equation (9) under the
boundary conditions (10), it is necessary and sufficient that there exist the
integers m and n satisfying the conditions

F (n,m) = 0. F (n,−m) = 0. (14)

The relations (14) in expanded form are, in fact, the following conditions:

εn4 + (−γ + mπr/nL)4 + 4δ(−γ + mπr/nL)2 + 4(δ2 + ω/4)+

− 2s0(−γ + mπr/nL)n2 − (t0 + ω0αT )g−1n2 = 0, t0 = qr/Eh, (15)

εn4 + (−γ −mπr/nL)4 + 4δ(−γ −mπr/nL)2 + 4(δ2 + ω/4)+

+ 2s0(−γ −mπr/nL)n2 − (t0 + ω0αT )g−1n2 = 0, t0 = qr/Eh, (16)

from which it is not difficult to show that the least value s0, depending on
m, is realized for m = 1. Therefore, in the sequel we put m = 1.

Introduce the notation

ρ = λ1ε
−1/4
∗ /n, θ = γε

−1/4
∗ , ε∗ = hr/L2(1− v2)1/2, (17)

λ1 = πr/L, δ∗ = δε
−1/2
∗ , ω∗ = ωε−1

∗ , ω0 = rβ0/Eh, ω = rβ/Eh,

S = s0/s∗, Q = t0/t0, s∗ = 0, 74(1− v2)−5/8(h/r)5/4(r/L)1/2, (18)
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t∗ = 0, 855(1− v2)−3/4(h/r)3/2r/L, T =
[
Q + (ω0αT/t∗)

]
g−1.

In what follows, T will be called a reduced circumferential force. As a
result, equations (15) and (16) can be represented in the following dimen-
sionless form:

π2ρ−2

12
+ π−2

[
ρ2(−θ ± ρ)4 + 4δ∗ρ2(−θ ± ρ)2 + 4δ 2

∗ρ
2
]
+

+1, 485 S(−θ ± ρ)− 0, 855 T = 0, δ 2
∗ = δ2

∗ + ω∗/4, (19)

from which we get the equalities

1, 48 S =
π2

12
θ

ρ2(θ2 − ρ2)
+

+ π−2

[
ρ2θ(θ2 + 3ρ2) + 4δ∗ρ2θ +

4δ 2
∗ρ

2θ

θ2 − ρ2

]
+

0, 855 θT

θ2 − ρ2
, (20)

π2

12
θ

ρ2(θ2 − ρ2)
=π−2

[
ρ2θ(3θ2−ρ2)+4δ∗ρ2θ− 4δ 2

∗ρ
2θ

θ2−ρ2

]
− 0, 855 θT

θ2−ρ2
. (21)

Substituting (21) into (20), we have

S = 0, 274 ρ2θ(θ2 + ρ2 + 2δ∗). (22)

Equality (21) results in the equation

3Λ4 −BΛ2 − C = 0, Λ = θ/ρ, B = 2− 4δ∗ρ−2, (23)

C = 1 + 4δ∗ρ−2 + 4δ 2
∗ρ
−4 + π2

(
π2ρ−8

12
− 0, 855 Tρ−6

)
. (24)

Since ρ > 0, γ ≥ 0, of our interest are only positive or zero roots of that
equation. Depending on the values B and C, the positive roots of equation
(23) have the form

Λ1 =
[(√

B2+12 C+B
)
/6

]1/2

, Λ2 =
[(

B−
√

B2+12 C
)
/6

]1/2

. (25)

Inserting the variable Λ into formula (22), we obtain

S = 0, 274 ρ3Λ
[
ρ2(1 + Λ2) + 2δ∗

]
. (26)

Substituting the expression Λi (i = 1, 2), according to equalities (25),
into formula (26), we obtain S as the function of one dimensionless value
ρ and of three dimensionless parameters δ∗, ω∗, T (T = (t0/t∗) + ω∗αT/t∗,
t0 > 0 is external pressure; T is temperature, T > 0). Defining the least
value S of ρ for fixed δ∗, ω∗, T we obtain the corresponding critical value
of S.

For C > 0, we have Λ1 is the real root, whereas Λ2 is an imaginary one.
For C = 0, we have Λ1 = (B/3)2, Λ2 = 0 and for C < 0, B > 0 we have
Λ2 < Λ1.
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Note that for C = 0, the least value S = 0 results in the root Λ2 = 0
(i.e., there is the case of action of one reduced pressure).

Equating the expression (24) for C to zero, we obtain the equation

0, 855 π2T =
π4

12
N + N−3 + 4 δ∗N−2 + 4 δ∗N−1, N−1 = ρ2. (27)

The investigation for finding a minimum of the above expression has been
performed in [7]. It was found that under the condition 6(δ2

∗+ω∗/4)/π4 ¿ 1
the minimum of the expression (27) is realized for

N± =
(

12
π4

)1/4[√√
3 + 0, 234

(
δ2∗ +

3
4

ω∗
)
± 0, 635 |δ∗|

]
, (28)

where the indices “ ± ” and “ − ” correspond to δ0 > 0 and δ0 < 0, respec-
tively. In particular, for δ0 = 0, ω∗ = 0, from which follows the well known
formula for a critical number of waves of cylindrical shell [2]. Substituting
(28) into formula (27), we obtain critical value for dimensionless reduced
pressure.

Moreover, it should be noted that for Λ = 0, by virtue of (17), γ = 0,
and consequently, the reduced solution (11) transforms into the solution for
the freely supported shell.

Figure 1 for S = 0 shows dimensionless form of critical values Nk and
T k (k = 1, 2) depending on δ∗ for ω0∗ = ω∗ = 0 (continuous curves) (k = 1)
and for ω0∗ = ω∗ = 3, 816 (dotted curves) (k = 2).

Figure 2 for T = 0 shows dimensionless form of critical values S = s0/s∗
depending on δ∗ for the above-considered cases (k = 1) and (k = 2).

In Figure 3, we can see the values ρ0 for which the least value S is realized
for those cases.

Further, defining on the basis of formula (26) the least values S of ρ for
fixed ω∗, δ∗, T we obtain the corresponding critical values S(T , δ∗, ω∗).

Figure 4 shows curves of critical values Sk(T k) for δ∗ = 0, 0, 781, −0, 781,
ω0∗ = ω∗ = 0 and ω0∗ = ω∗ = 3, 816 which are denoted, respectively,
by 00, 10, 20 and 0, 1, 2 (where the index corresponds to the values ω∗
and the number itself corresponds to three values of δ∗). Note that for
ω∗ = δ∗ = T = 0, q 6= 0, S 6= 0 the curve 00 coincides practically with the
corresponding curve mentioned in [4] for a cylindrical shell.

Thus, given all parameters for the shell, filler, temperature and external
pressure, on the basis of the above-obtained formulas and curves, it is not
difficult to find the critical shearing force (critical torque).
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Figure 1

Figure 2

Figure 3
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Figure 4
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