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SOME UNSOLVED PROBLEMS IN MEASURE THEORY

A. KHARAZISHVILI

Abstract. One of the central problems in measure theory is con-
cerned with proper extensions of measures. This problem has various
aspects: purely set theoretical, algebraic, topological. The present
article is devoted to some open questions which are closely connected
with the general measure extension problem and with the existence of
sets nonmeasurable with respect to nonzero σ-finite invariant (quasi-
invariant) measures.

îâäæñéâ. äëéæï åâëîææï âîå-âîåæ ùâêðîŽèñîæ ìîëĲèâéŽ âýâ-
ĲŽ äëéâĲæï ïŽçñåîæãæ àŽàîúâèâĲâĲæï ŽîïâĲëĲŽï. Žé ìîëĲèâéŽï
Žóãï ïýãŽáŽïýãŽ Žïìâóðæ: ûéæêáŽ ïæéîŽãèñî-åâëîæñèæ, ŽèàâĲîñ-
èæ, ðëìëèëàæñîæ. ïðŽðæŽ âúôãêâĲŽ äëàæâîå ôæŽ ïŽçæåýï, îë-
éèâĲæù ñöñŽèëá ŽîæŽê áŽçŽãöæîâĲñèæ äëéæï àŽàîúâèâĲæï äë-
àŽá ŽéëùŽêŽïåŽê áŽ ŽîŽêñèëãŽêæ ïæàéŽ-ïŽïîñèæ æêãŽîæŽêðñèæ
(çãŽäæ-æêãŽîæŽêðñèæ) äëéâĲæï éæéŽîå ŽîŽäëéŽáæ ïæéîŽãèââĲæï
ŽîïâĲëĲŽïåŽê.

There are many problems in real analysis and measure theory, which are
not solved so far and which are attractive for researchers working in the
above-mentioned classical disciplines of mathematics.

Of course, the significance of those problems is quite different: some
of them are interesting for a limited circle of specialists, some are topical
or, at least, deserve to be discussed and investigated, while others are of
great importance and stimulate the further development of corresponding
branches of mathematical analysis.

Here we would like to present a short list of problems and questions in
measure theory, which still remain unsolved, although most of them were
posed many years ago and may be regarded as old ones (cf. [24], [26],
[32]). In our opinion, these problems and questions are interesting from
the measure-theoretical point of view. Also, they have nontrivial connec-
tions with certain topics of abstract set theory, group theory, and general
topology.

For the reader’s convenience, in our further presentation we sometimes
recall the corresponding notions before formulating problems. Also, we
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systematically provide the text with comments and examples which are
related to the problems and questions discussed in this article.

ZFC abbreviates the standard Zermelo-Fraenkel set theory (see, e.g.,
[21]).

The symbol ω denotes the least infinite ordinal (cardinal) number.
The symbol ω1 denotes the least uncountable ordinal (cardinal) number.
R stands, as usual, for the set of all real numbers (i.e., R is the real line).
c denotes the cardinality of the continuum (i.e., c = card(R) = 2ω).
Q stands for the set of all rational numbers.
Let E be a ground set and let G be a group of transformations of E. So

we may consider the pair (E,G) which is usually called a space equipped
(endowed) with a transformation group.

Suppose that a nonzero σ-finite measure µ is defined on a σ-algebra of
subsets of E. As a rule, this σ-algebra will be denoted by dom(µ) (domain
of µ). The σ-ideal generated by the family of all µ-measure zero sets will
be denoted by I(µ).

A measure µ on E is called continuous (or diffused) if {x} ∈ dom(µ) and
µ({x}) = 0 for each x ∈ E.

A cardinal number α is called measurable in the Ulam sense (or, some-
times, real-valued measurable) if there exists a nonzero σ-finite diffused
measure µ whose domain coincides with the family of all subsets of α (i.e.,
dom(µ) = P(α)).

It is known that the existence of real-valued cardinal numbers cannot be
established within contemporary ZFC set theory (see [21], [61], [68]).

Having a nonzero σ-finite measure µ on E, we can associate with µ the
Hilbert space L2(µ) consisting of all real-valued square integrable functions
on E (of course, identifying µ-equivalent functions). The topological weight
of L2(µ) is a certain cardinal characteristic (invariant) of µ. In the sequel,
we refer to this cardinal invariant as to the weight of µ. In the literature the
terms ”character of µ” or ”separability character of µ” are usually exploited
instead of the weight of µ (see, for instance, [15], [18], [22], [47]).

If the space L2(µ) is separable, then µ is called a separable measure.
Accordingly, if L2(µ) is nonseparable, then µ is called a nonseparable

measure.
Notice that if, for a given σ-finite measure µ, the σ-algebra dom(µ) is

countably generated, then µ turns out to be separable. The converse asser-
tion is not true, in general.

Let E be a ground set, G be a group of transformations of E, and let µ
be a σ-finite measure defined on some σ-algebra of subsets of E.

µ is called G-quasi-invariant if both dom(µ) and I(µ) are G-invariant
classes of subsets of E (see [3], [10], [17], [33], [74]).
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A G-quasi-invariant measure µ is called G-invariant if µ(g(X)) = µ(X)
for all transformations g ∈ G and all sets X ∈ dom(µ) (see [3], [10], [17],
[33], [74]).

Example 1. Let n be a natural number and let Rn denote the Euclidean
n-dimensional space. This space is endowed with the following two classical
groups of transformations:

Tn = the group of all translations of Rn;
Isn = the group of all isometric transformations of Rn.
The standard Lebesgue measure λn on Rn is Isn-invariant (consequently,

also Tn-invariant). Notice that if n ≥ 1, then there exist many measures on
Rn which extend λn, are Tn-invariant but are not Isn-invariant (see, e.g.,
[24], [26], [56]).

If n = 1, then, for the sake of brevity, we shall write λ instead of λ1.

Example 2. Let (G, ·) be a σ-compact locally compact topological group
(identified with the group of all its left translations). As is well known, there
exists a nonzero σ-finite G-invariant Borel measure µ on G, the so-called
(left) Haar measure (see [17], [18], [50], [58]). This measure is unique in
the following sense: every σ-finite G-invariant Borel measure ν on G is
proportional to µ, i.e. the equality ν = t · µ holds for some real number
t ≥ 0 which depends on ν, i.e, t = t(ν).

Example 3. Let (E,G) be a space endowed with a transformation group
and let µ be a σ-finite G-invariant measure on E. For every µ-measurable
function φ : E → ]0, +∞[, we may put

ν(X) =
∫

X

φ(x)dµ(x) (X ∈ dom(µ)).

So we get the σ-finite measure ν which is defined on the σ-algebra dom(µ),
and it can easily be seen that ν is a σ-finite G-quasi-invariant measure
(actually, µ and ν are equivalent measures in the sense that I(µ) = I(ν)).

Since the notion of a quasi-invariant measure and the notion of an invari-
ant measure are closely connected with each other, some problems listed
below will be formulated simultaneously for both kinds of measures.

The concept of metrical transitivity of a quasi-invariant measure is clas-
sical and well known in the theory of dynamical systems and ergodic theory
(see, e.g., [10], [16], [74]).

A G-quasi-invariant measure µ on E is called G-metrically transitive (or
G-ergodic) if, for any µ-measurable set X with µ(X) > 0, there exists a
countable family {gi : i ∈ I} of transformations from G such that

µ(E \ ∪{gi(X) : i ∈ I}) = 0.
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Example 4. The (left) Haar measure µ on a σ-compact locally com-
pact topological group (G, ·) is G-metrically transitive (in particular, the
Lebesgue measure λn, considered as a Tn-invariant measure, is Tn-metrically
transitive). More generally, if H is an everywhere dense subgroup of G, then
µ treated as a left H-invariant measure is H-metrically transitive as well
(cf. [30], [73]).

Having an abstract space (E, G) equipped with a transformation group,
we may introduce the following two natural classes of measures:

M1(E, G) = the class of all those nonzero σ-finite diffused measures on
E which are G-invariant;

M2(E, G) = the class of all those nonzero σ-finite diffused measures on
E which are G-quasi-invariant.

Clearly, we have the inclusion M1(E, G) ⊂ M2(E,G). The first prob-
lem concerning these two classes of measures is about proper extensions of
members of M1(E, G) (respectively, of M2(E,G)). It looks as follows.

Problem 1. Find necessary and sufficient conditions, in terms of (E, G),
under which for every measure µ belonging to the class M1(E, G) (respec-
tively, to the class M2(E, G)) there exists a measure µ′ also belonging to
M1(E, G) (respectively, to M2(E,G)) and strictly extending µ.

More or less trivial examples show that certain conditions on (E, G) are
necessary for the existence of a required extension µ′.

Actually, if G is a small group of transformations of E, then Problem 1
becomes purely set-theoretical and its solution depends on additional hy-
potheses. To illustrate the said above, suppose for a moment that G contains
only the identical transformation of E. In this case, if card(E) is nonmea-
surable in the Ulam sense, then a required extension µ′ does always exist,
and if card(E) is measurable in the Ulam sense, then µ′ may not exist.

Also, it is worth mentioning in connection with Problem 1 that, having
a G-quasi-invariant (respectively, G-invariant) measure µ and considering
various G-quasi-invariant (respectively, G-invariant) extensions of µ, one
should be care of various ”good” properties of µ. In other words, when
extending µ, one may try to preserve ”nice” properties of µ (e.g., its G-
metrical transitivity, its separability, etc). Similar aspects of the general
measure extension problem are touched upon in [39], [66], [67].

A special and important case of Problem 1 is when the ground set E is
a group and G coincides with the group of all left translations of E (so we
may identify E and G by a canonical isomorphism). Even in this particular
case the reduced version of Problem 1 remains open. Let us formulate the
corresponding question.

Problem 2. Let (G, ·) be an uncountable group. Is it true that, for
every measure µ belonging to the class M1(G,G) (respectively, to the class
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M2(G,G)), there exists a measure µ′ also belonging to M1(G,G) (respec-
tively, to M2(G,G)) and strictly extending µ?

Let us make some remarks in connection with Problem 2. If µ is an arbi-
trary measure from the class M2(G,G), then the σ-algebra dom(µ) differs
from the family P(G). Moreover, a much stronger statement can be proved
by using the fact that the least uncountable cardinal ω1 is not measurable
in the Ulam sense.

Theorem 1. Let (G, ·) be an uncountable group, µ be a measure from
the class M2(G,G) and let X be a µ-measurable set with µ(X) > 0. Then
there exists a set Y ⊂ X such that Y 6∈ dom(µ).

Theorem 1 was first established in [23] where this result was applied to the
uniqueness property of σ-finite invariant measures (cf. also [13], [33], [65],
[74]). Theorem 1 shows, in particular, that G-quasi-invariant extensions of
µ a priori may exist. Indeed, as turns out, the answer to the question of
Problem 2 is positive if one assumes the non-existence of cardinal numbers
measurable in the Ulam sense (see [19], [33], [43], [56], [74]). Nevertheless,
Problem 2 still remains open within ZFC set theory.

It is reasonable to consider two analogues of Problems 1 and 2 in terms
of so-called absolutely negligible sets. First, let us give the precise definition
of such sets.

Let (E, G) be an abstract space equipped with a transformation group.
A set X ⊂ E is G-absolutely negligible if, for any measure µ from the class

M1(E, G) (respectively, from the class M2(E, G)), there exists a measure
µ′ from M1(E, G) (respectively, from M2(E,G)) extending µ and such that
X ∈ dom(µ′) and µ′(X) = 0.

Various properties of absolutely negligible sets are discussed in [24], [26],
[33], [43]. A purely algebraic (or, if one prefers, purely geometric) charac-
terization of G-absolutely negligible sets in terms of the pair (E, G) can also
be found in those works. Namely, we have the following result.

Theorem 2. Let E be a space equipped with a transformation group G
and let X be a subset of E. These two assertions are equivalent:

(1) for any countable family {gi : i ∈ I} ⊂ G, there exists a countable
family {hj : j ∈ J} ⊂ G such that

∩{hj(∪{gi(X) : i ∈ I}) : j ∈ J} = ∅.
(2) X is G-absolutely negligible.

As one can see, condition (1) is purely geometric, because it does not
appeal to the concept of measure.

It directly follows from the definition that the family of all G-absolutely
negligible sets in E forms a G-invariant ideal of subsets of E which, in
general, does not need to be a σ-ideal. Moreover, in certain situations it
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becomes possible to cover E by countably many G-absolutely negligible sets.
So the next problem naturally arises.

Problem 3. Find necessary and sufficient conditions on a space (E, G),
under which there exists a countable family {Xi : i ∈ I} of subsets of E
having the property that all Xi (i ∈ I) are G-absolutely negligible and
∪{Xi : i ∈ I} = E.

Observe that if for a given space (E,G) the above-mentioned family
{Xi : i ∈ I} does exist, then Problem 1 is positively solvable for (E, G).
Indeed, in such a case, having any measure µ from M2(E, G) (respectively,
from M1(G,G)), we get that at least one set Xi must be nonmeasurable
with respect to µ. So, by using this Xi, we may strictly extend µ to a
measure µ′ belonging to M2(E, G) (respectively, belonging to M1(E, G)).

In light of the just stated, the next special form of Problem 3 is of interest,
too.

Problem 4. Let (G, ·) be an uncountable group (identified with the
group of all left translations of G). Does there exist a countable family
{Xi : i ∈ I} having the property that all sets Xi (i ∈ I) are G-absolutely
negligible and ∪{Xi : i ∈ I} = G?

It makes sense to point out here that in some particular cases Problem
4 admits a positive solution. To show this, let us recall the widely known
notion of a solvable group.

Let (G, ·) be a group. G is said to be a solvable group if there exists a
finite k-sequence

G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gk−1 ⊃ Gk

of subgroups of G such that:
(a) G0 = G and Gk = {e}, where e denotes the neutral element of G;
(b) for every natural index i ∈ [1, k], the group Gi is a normal subgroup

of Gi−1 and the quotient-group Gi−1/Gi is commutative.
The following statement is true (see, e.g., [33], [35], [43]).

Theorem 3. If (G, ·) is an uncountable solvable group, then G admits a
countable covering, all members of which are G-absolutely negligible sets.

Moreover, the technique of absolutely negligible sets turned out to be
useful even in those cases where a basic transformation group is not, in
general, solvable.

For example, it was demonstrated that if E coincides with the Euclidean
n-dimensional space Rn, where n ≥ 1, and G coincides with the group
Isn of all isometric transformations of Rn, then there exists a countable
covering of E with G-absolutely negligible sets. So, in this classical case,
we have a positive solution of Problem 1 (for more details, see [5], [6], [9],
[24], [26], [55], [71], [72], [74]).
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Recall that, for n ≥ 3, the group Isn is very far from being solvable.
This fact implies that, for n ≥ 3, there are various paradoxical decomposi-
tions of bounded subsets of Rn with nonempty interiors (see the extensive
monograph [69] in which many topics related to the famous Banach-Tarski
paradox are envisaged).

From the above-mentioned result on proper extensions of Isn-invariant
(respectively, Isn-quasi-invariant) measures it directly follows that if µ is
any Isn-invariant extension of the standard Lebesgue measure λn on Rn,
then there always exists an Isn-invariant measure µ′ on Rn strictly extend-
ing µ.

Furthermore, it turns out that there are even nonseparable Isn-invariant
measures µ on Rn which extend λn. Now, we would like to say a few words
about such extensions.

As earlier, let Tn stand for the group of all translations of Rn. The two
methods of constructing nonseparable Tn-invariant extensions of λn can be
distinguished. The first of them is due to Kakutani and Oxtoby [22], the
second method is due to Kodaira and Kakutani [47].

The method of Kakutani and Oxtoby admits a natural generalization to
a certain class of spaces (E,G), which includes some types of uncountable
σ-compact locally compact topological groups (see [18]; cf. also [15], [20],
[42], [54]). Besides, a nonseparable Tn-invariant measure µ on Rn which
extends λn and is obtained by this method is such that its weight is equal
to 2c, i.e., attains maximum. However, there is a weak side of the method,
because µ is not Tn-metrically transitive (Tn-ergodic). Thus, the metrical
transitivity of λn is lost by µ.

The second method, due to Kodaira and Kakutani, has a certain ad-
vantage. Namely, the nonseparable Tn-invariant measure µ on Rn which
extends λn and is obtained by their method preserves the property of Tn-
metrical transitivity of λn (surprisingly, this important fact is not stated in
[47]). But the construction of µ only yields that the weight of µ is equal to
c, i.e., is not maximal.

In this context, the following question arises.

Problem 5. Let n ≥ 1 be a natural number. Does there exist an Isn-
invariant measure on Rn which extends the Lebesgue measure λn, which is
also Isn-metrically transitive and whose weight is equal to 2c?

In [40] a nonseparable complete measure ν on R was constructed by using
the Continuum Hypothesis. This ν extends the Lebesgue measure λ, the
weight of ν is equal to c and the σ-ideal I(ν) of all ν-measure zero sets
coincides with the σ-ideal I(λ) of all λ-measure zero sets. In other words,
the measure ν being a nonseparable extension of the Lebesgue measure λ
does not expand the σ-ideal I(λ) of all Lebesgue measure zero sets.

In this connection, the next problem seems to be of some interest.
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Problem 6. Investigate (possibly, with the aid of additional set-theoretic
assumptions such as the Continuum Hypothesis or Martin’s Axiom) whether
there exists a measure θ on R satisfying the following relations:

(a) θ extends λ;
(b) the weight of θ is equal to 2c;
(c) the σ-ideal I(θ) of all θ-measure zero sets coincides with the σ-ideal

I(λ) of all λ-measure zero sets.

As has been said earlier, G-absolutely negligible sets in a space (E,G) are
very good from the point of view of the measure extension problem. But,
in many cases, there are subsets of a ground space E which are extremely
bad from the measure-theoretical view-point. Recall the definition of the
latter subsets of E (see [24], [26], [33], [35], [43]).

A set X ⊂ E is G-absolutely nonmeasurable if, for every measure µ
belonging to the class M2(E,G), we have X 6∈ dom(µ).

In other words, X ⊂ E is G-absolutely nonmeasurable if X is simultane-
ously nonmeasurable with respect to all measures from M2(E, G).

Various properties of G-absolutely nonmeasurable sets are discussed in
[24], [26], [33], [35] and [43]. One of the simplest properties is indicated in
the following example.

Example 5. If X is a G-absolutely nonmeasurable subset of E, then
there exists a countable family {gi : i ∈ I} of transformations from G such
that ∪{gi(X) : i ∈ I} = E.

However, the property described in the above example is very far from
being sufficient to assert that X is G-absolutely nonmeasurable in E.

Example 6. In [11] a function φ : R → R is constructed such that the
graph Gr(φ) of φ has the following property: there exists a countable family
{gi : i ∈ I} ⊂ Is2 for which the equality

∪{gi(Gr(φ)) : i ∈ I} = R2

holds true (for some related results, see also [12] and [61]). It can easily
be verified that Gr(φ) is an Is2-absolutely nonmeasurable subset of the
plane R2.

The next problem remains open, too.

Problem 7. In terms of (E,G), find a characterization of G-absolutely
nonmeasurable subsets of E.

Let us formulate one more problem also concerning absolutely nonmea-
surable sets and closely connected with the previous one.

Problem 8. Find necessary and sufficient conditions on (E,G), under
which there exists at least one G-absolutely nonmeasurable subset of E.
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The following question is a special important case of Problem 8.

Problem 9. Let (G, ·) be an uncountable group (identified with the
group of all left translations of G). Does there exist a G-absolutely non-
measurable subset of G?

Again, it should be indicated that, for some rather wide classes of un-
countable groups, the answer to this question turns out to be positive. In
particular, we have the following result.

Theorem 4. If (G, ·) is an uncountable solvable group, then there are
G-absolutely nonmeasurable sets in G.

A detailed proof of this statement can be found in [35] (see also [25], [33],
[43]). As a consequence, we obtain that there are G-absolutely nonmeasur-
able sets in any uncountable commutative group (G, +). So, if a natural
number n is strictly positive, then there exist Tn-absolutely nonmeasurable
sets in the Euclidean space Rn (cf. Example 6).

From the said above one can conclude that, for a large class of uncount-
able groups (G, ·), there are G-absolutely negligible sets and G-absolutely
nonmeasurable sets in G.

Now, we would like to recall one old result of Sierpiński [60], according
to which there exist two λ-measure zero sets X ⊂ R and Y ⊂ R such that
their algebraic sum

X + Y = {x + y : x ∈ X, y ∈ Y }
is nonmeasurable with respect to λ.

Notice that somewhat similar result is also known for the algebraic sum of
Borel subsets of R, namely, there exist two Borel sets X ′ ⊂ R and Y ′ ⊂ R
whose algebraic sum

X ′ + Y ′ = {x′ + y′ : x′ ∈ X, y′ ∈ Y ′}
is not Borel (see [4], [14], [59], [64]). Obviously, X ′ + Y ′ is an analytic (i.e.,
Suslin) subset of R.

Sierpiński’s above-mentioned result initiated a series of publications in
recent years (see, e.g., [4], [7], [8], [34], [36], [41], [44], [45], [46]). The next
problem is also motivated by the same result.

Problem 10. Let (G, +) be an uncountable commutative group. Do
there exist two G-absolutely negligible sets A ⊂ G and B ⊂ G such that
their algebraic sum

A + B = {a + b : a ∈ A, b ∈ B}
is a G-absolutely nonmeasurable set in G?

In this direction, the following statement has been established.
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Theorem 5. Let (E, +) be a vector space over Q and let card(E) ≥ c.
Then there are two E-absolutely negligible sets A ⊂ E and B ⊂ E such that
their algebraic sum A + B is an E-absolutely nonmeasurable set in E.

In particular, if n ≥ 1, then there are two Rn-absolutely negligible subsets
of Rn whose algebraic sum is an Rn-absolutely nonmeasurable set in Rn.

For the proof of Theorem 5, see [36] or [43]. One direct consequence of
this theorem should be indicated here. Namely, we have:

Under the Continuum Hypothesis, every uncountable vector space E over
Q contains two E-absolutely negligible sets A and B whose algebraic sum
A + B turns out to be E-absolutely nonmeasurable.

We do not know whether it is possible to obtain the above consequence
within ZFC set theory.

The properties of G-absolutely negligible subsets and G-absolutely non-
measurable subsets of E substantially depend on the structural properties
of G. It makes sense to distinguish especially the two classical cases where
a ground space E coincides with the Euclidean n-dimensional space Rn and
G coincides either with the group Tn of all translations of Rn or with the
group Isn of all isometric transformations of Rn.

Problem 11. Let n ≥ 2 be a natural number. Does there exist a Tn-
absolutely negligible set in Rn which simultaneously is Isn-absolutely non-
measurable?

Even for n = 2 the answer to this question remains unknown. Notice that
for n = 1 the class of all Tn-absolutely negligible sets is identical with the
class of all Isn-absolutely negligible sets, so in this situation there does not
exist a Tn-absolutely negligible set which is Isn-absolutely nonmeasurable.

As is widely known, a lot of analogies may be observed between the two
fundamental concepts of real analysis: Lebesgue measurability and Baire
property. An excellent reference is Oxtoby’s small text-book [53] (see also
Morgan’s much more extensive monograph [49] in which a unified approach
to these two concepts is developed). A simple fact concerning analogies
between the Lebesgue measure and Baire property can be expressed in the
following two statements:

(i) if n ≥ 1, then there exists a λn-measure zero subset of Rn which does
not possess the Baire property;

(ii) if n ≥ 1, then there exists a first category subset of Rn which is not
λn-measurable.

The assertions (i) and (ii) readily follow from the existence of a partition
{X, Y } of Rn such that X is of λn-measure zero and Y is of first category
in Rn (see [49], [53]).

In connection with (ii), we would like to formulate the next question.
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Problem 12. Let n ≥ 1 be a natural number. Does there exist a Tn-
absolutely nonmeasurable subset of Rn which has the Baire property?

Recall that a set X ⊂ Rn is almost Isn-invariant (with respect to the
Lebesgue measure λn) if, for any transformation g ∈ Isn, we have

λn(g(X)4X) = 0.

By using the Continuum Hypothesis (or Martin’s Axiom), it can be
demonstrated that if n ≥ 1, then there exists a partition {X, Y } of Rn,
where both sets X and Y are almost Isn-invariant and none of them is of
λn-measure zero (see, e.g., [24], [26], [33], [35], [43], [49], [53], [56]). It is
unknown whether the analogous result holds within the standard ZFC set
theory.

Problem 13. Let n ≥ 1 be a natural number. Does there exist (within
ZFC set theory) a partition {X, Y } of Rn such that both sets X and Y are
almost Isn-invariant and none of them is of λn-measure zero?

It may happen that this question cannot be resolved without the aid of
additional set-theoretical hypotheses.

Now, let us recall the notion of a Sierpiński-Zygmund function (see [6],
[48], [62]). Any function of this kind is extremely discontinuous, so is utterly
bad from the purely topological point of view.

Let f : R → R be a function. We say that f is a Sierpiński-Zygmund
function if, for any set X ⊂ R with card(X) = c, the restriction of f to X
is not continuous (i.e., is discontinuous).

The existence of such functions can be established only by using uncount-
able forms of the Axiom of Choice. Various interesting and unexpected
properties of Sierpiński-Zygmund functions are discussed, e.g., in [2], [6],
[37], [38], [43], [51], [57].

Let M(R) denote the class of the completions of all nonzero σ-finite con-
tinuous Borel measures on R. It is not hard to show that every Sierpiński-
Zygmund function f is absolutely nonmeasurable with respect to M(R),
i.e., f is nonmeasurable with respect to every measure from M(R). In
particular, f is nonmeasurable with respect to λ.

On the other hand, it was demonstrated in [38] that there exists a trans-
lation invariant measure µ on R which extends the Lebesgue measure λ and
for which some Sierpiński-Zygmund function ψ : R → R turns out to be
µ-measurable. This function ψ is not additive, i.e., is not an endomorphism
of the additive group (R, +) into itself. So the following question arises.

Problem 14. Investigate whether there exists a Sierpiński-Zygmund
function f : R → R satisfying these two relations:

(1) f is additive (in other words, f is a solution of the Cauchy functional
equation);
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(2) f is measurable with respect to some translation invariant measure
on R which extends λ.

Notice that if in the formulation of Problem 14 we replace the translation
invariance by the translation quasi-invariance, then such a function f does
exist (for more details, see [38], [43]).

Now, let us introduce a notion somewhat similar to the concept of an
absolutely negligible set.

Let (E,G) be again a space equipped with a transformation group and
let X be a subset of E.

We say that X is G-negligible in E if these two conditions are fulfilled:
(a) there exists a nonzero σ-finite diffused G-invariant (G-quasi-invariant)

measure µ0 on E such that X ∈ dom(µ0) and µ0(X) = 0;
(b) if µ is an arbitrary σ-finite diffused G-invariant (G-quasi-invariant)

measure on E such that X ∈ dom(µ), then µ(X) = 0.
It can easily be seen that every G-absolutely negligible set is G-negligible

as well. The converse assertion fails to be true, in general, as simple exam-
ples show.

Since we have a suitable characterization of G-absolutely negligible sets
(see Theorem 2), it makes sense to formulate the next problem.

Problem 15. Let (E,G) be a space equipped with a transformation
group. In terms of the pair (E, G), give a characterization of all G-negligible
subsets of E.

Let us consider a particular case, where a base set E is a commutative
group and G coincides with the group of all translations of E (naturally,
the latter is identified with E).

So, let (G,+) be a commutative group and let X be a subset of G such
that there exists an uncountable family {gi : i ∈ I} of elements of G for
which the corresponding family of sets {gi + X : i ∈ I} is disjoint. Then
we may assert that the set X is G-negligible. This fact is implied by the
following auxiliary proposition which is not difficult to prove and is useful
in many situations.

Theorem 6. Let (G, +) be a commutative group, Z be a subset of G and
suppose that these two conditions are satisfied:

(1) ∪{hj + Z : j ∈ J} = G for some family {hj : j ∈ J} of elements
of G;

(2) there exists a family {gi : i ∈ I} of elements of G such that the
corresponding family of sets {gi + Z : i ∈ I} is disjoint.

Then the inequality card(J) ≥ card(I) holds true.

It directly follows from this theorem that if a subset X of a commutative
group (G, +) is such that, for some uncountable family {gi : i ∈ I} ⊂ G,
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the family of sets {gi + X : i ∈ I} is disjoint, then

card(G \ ∪{hj + X : j ∈ J}) > ω

whenever {hj : j ∈ J} is a countable family of elements of G. Keeping in
mind this circumstance, it is easy to define a probability diffused G-invariant
measure µ0 on G such that X ∈ dom(µ0) and µ0(X) = 0. Also, in view
of the disjointness of the uncountable family of sets {gi + X : i ∈ I}, we
readily infer that µ(X) = 0 for any σ-finite G-quasi-invariant measure µ on
G such that X ∈ dom(µ).

The following simple example serves as an illustration of the stated above.

Example 7. Let f : R → R be a function and let Gr(f) denote the
graph of f . Then Gr(f) is a T2-negligible subset of the plane R2, but the
same Gr(f) does not need to be a T2-absolutely negligible set (see [24],
[26], [33], [35]). Here the symbol T2 stands, as earlier, for the group of all
translations of the plane R2.

Example 8. It can be proved, by assuming the Continuum Hypothesis,
that there exists a subset Y of the space Rn (n ≥ 1) satisfying the following
two conditions:

(a) ∪{hj + Y : j ∈ J} = Rn for some countable family {hj : j ∈ J} of
elements of Rn;

(b) there exists an uncountable family {gi : i ∈ I} of elements of Rn such
that

card((gi + Y ) ∩ (gi′ + Y )) ≤ ω

for any two distinct indices i ∈ I and i′ ∈ I.

For the proof, see [24] or [35] (in these works the more general case of a
commutative group (G,+) with card(G) = ω1 is considered). Clearly, the
above-mentioned set Y turns out to be Tn-absolutely nonmeasurable.

If (E, G) is a space endowed with a transformation group, then, for every
ordinal number α, we may introduce the class Kα of subsets of E. We first
put:

X ∈ K0 if and only if there exists an uncountable family {gi : i ∈ I} of
elements from G such that the family {gi(X) : i ∈ I} is disjoint.

Suppose now that, for an ordinal α, all the classes Kβ (β < α) have
already been defined. Then we put:

X ∈ Kα if and only if there exists an uncountable family {gi : i ∈ I} of
elements from G such that, for any two distinct indices i ∈ I and i′ ∈ I, the
relation

gi(X) ∩ gi′(X) ∈ ∪{Kβ : β < α}
holds true.

By using the method of transfinite induction, it is easy to prove that, for
any ordinal α, all sets X from the class Kα have the following property: if
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µ is an arbitrary σ-finite G-quasi-invariant measure on E and X ∈ dom(µ),
then µ(X) = 0.

Example 9. Let E = Rn and let G = Tn, where n ≥ 1. It can be shown
that there exists a G-absolutely nonmeasurable subset of E belonging to
the class K1 (cf. Example 8; see also [24], [35]).

Some interesting problems arise in connection with absolutely nonmea-
surable additive functions, i.e., absolutely nonmeasurable homomorphisms
of commutative groups.

Let (G, +) be an uncountable commutative group and let (H, +) be an
uncountable commutative Polish group. We say that a homomorphism
φ : G → H is absolutely nonmeasurable if, for any nonzero σ-finite transla-
tion quasi-invariant measure µ on G, this φ is nonmeasurable with respect
to µ.

Let T denote the additive group of the one-dimensional unit torus (ac-
tually, T stands for the circle group). The following statement is true.

Theorem 7. Let (G, +) be a commutative group and let G0 be the torsion
subgroup of G. These two conditions are equivalent:

(1) the quotient group G/G0 is uncountable;
(2) there exists a homomorphism from G into R (into T) which is abso-

lutely nonmeasurable with respect to the class M2(G,G).

In view of Theorem 7, the next example is relevant.

Example 10. Let C = {0, 1}ω denote the Cantor space regarded as a
commutative compact metrizable group with respect to the standard prod-
uct topology and group operation modulo 2. By using the Continuum Hy-
pothesis (Martin’s axiom), it can be demonstrated that C contains a Luzin
subset (a generalized Luzin subset) L which simultaneously is a subgroup
of C. So, under these additional axioms, there exist universal measure zero
subgroups of C which are equinumerous with C. Let now (G, +) be an
arbitrary 2-divisible commutative group (e.g., G = R or G = T). Then it is
clear that any homomorphism φ : G → C is trivial and, consequently, there
exist no absolutely nonmeasurable homomorphisms acting from G into C
(although condition (1) of Theorem 7 may be satisfied for G). At the same
time, one can see that the identical embedding of L into C is an absolutely
nonmeasurable group monomorphism.

In view of Theorem 7 and Example 10, the following problem arises.

Problem 16. Let (G,+) be an uncountable commutative group and
let (H, +) be an uncountable commutative Polish topological group. Find
necessary and sufficient conditions for the existence of an absolutely non-
measurable homomorphism of (G,+) into (H, +).
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Obviously, the analogous problem can be formulated for uncountable
non-commutative groups.

We now turn our attention to Borel measures in an infinite-dimensional
Hausdorff topological vector space E.

A long time ago, it was demonstrated by various authors that, as a
rule, there are no nonzero σ-finite Borel measures on E invariant (or quasi-
invariant) with respect to a vector subspace of E of second category (in
this connection, see especially [63] and the references therein; cf. also [27],
[29]). Further, it was proved that if all cardinal numbers are nonmeasurable
in the Ulam sense, then no metrizable nonseparable topological group G
admits a nonzero σ-finite Borel measure quasi-invariant with respect to an
everywhere dense subgroup of G. The latter fact substantially exploits the
metrizability of G. For non-metrizable topological groups (and for non-
metrizable topological vector spaces) the situation is radically different, as
the next example shows.

Example 11. Let α be any infinite cardinal number. Consider the
product space Rα endowed with the Tychonoff topology. Let R(α) stand
for all those elements of Rα which have finite supports, i.e.,

R(α) = {(xi)i∈α ∈ Rα : card({i ∈ α : xi 6= 0}) < ω}.
Obviously, R(α) is an everywhere dense vector subspace of the topological
vector space Rα. It was shown (see, e.g., [31]) that there exists a probability
Borel measure µ on Rα which is R(α)-quasi-invariant. Notice that if α > c,
then Rα is not separable and if α > ω, then this µ is not a Radon measure.

The said above leads to the next problem (see [32]).

Problem 17. Give a characterization of all those Hausdorff topological
vector spaces E which possess the following property: there exists a nonzero
σ-finite Borel measure on E quasi-invariant with respect to some everywhere
dense vector subspace of E.

It should be noticed that, for certain natural classes of Hausdorff topolog-
ical vector spaces, we have a complete solution of the formulated problem.

Example 12. If E is an arbitrary Banach space, then these two asser-
tions are equivalent:

(a) E is separable;
(b) there exists a nonzero σ-finite Borel measure on E quasi-invariant

with respect to an everywhere dense vector subspace of E.
The proof of the equivalence of (a) and (b) may be found in [32].

Let H be an infinite-dimensional separable Hilbert space. Some con-
structions are known for obtaining nonzero σ-finite Borel measures in H
which are invariant with respect to an everywhere dense vector subspace of
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H (see, for instance, [28], [70]). Those constructions are also applicable to
other classical separable Banach spaces (e.g., for lp where p ≥ 1). Similarly
to Problem 17, one can formulate the problem of a characterization of all
those Hausdorff topological vector spaces E which possess the property that
there exists a nonzero σ-finite Borel measure on E invariant with respect to
an everywhere dense vector subspace of E.

Notice at the end of this article that there are several constructions of
translation invariant Borel measures in some infinite-dimensional topolog-
ical vector spaces E, which take nonzero finite value on certain canonical
Borel subsets of E (see, for instance, [1], [52]). Of course, a weak side of
those measures is that they are not σ-finite, so classical results of measure
theory (such as Fubini’s theorem, Radon-Nikodym theorem, etc.) are not
applicable to them.
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