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THE EXISTENCE AND CONTROLLABILITY RESULTS
FOR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL

INCLUSIONS IN FRÉCHET SPACES

M. BENCHOHRA, K. EZZINBI AND S. LITIMEIN

Abstract. In this paper, we prove the existence and controllability
results for fractional integro-differential inclusions with state-depen-
dent delay in Fréchet spaces. The results are obtained by using a re-
cent nonlinear alternative for contractive multivalued maps in Fréchet
spaces due to Frigon.

îâäæñéâ. êŽöîëéöæ òîâöâï ïæãîùââĲöæ, ûæèŽáñîæ æêðâàîë-áæ-
òâîâêùæŽèñîæ øŽîåãæïåãæï áŽàãæŽêâĲæå, àŽéëçãèâñèæŽ ŽîïâĲë-
ĲæïŽ áŽ éŽîåãŽáëĲæï ïŽçæåýâĲæ. öâáâàâĲæ éæôâĲñèæŽ òîâöâï ïæãî-
ùâöæ çñéöãŽáæ éîŽãŽèïŽýŽ ŽïŽýãæïŽåãæï òîæàëêæï ñŽýèâïæ ŽîŽûî-
òæãæ ŽèðâîêŽðæãæï àŽéëõâêâĲæå.

1. Introduction

Differential inclusions arise in the mathematical modeling of certain prob-
lems in economics, optimal control, and so forth, and are widely studied by
many authors (see [5, 42, 43, 45, 50, 52] and the references therein). For
some recent developments on differential inclusions, we refer the reader to
the references [2, 3, 46]. Moreover, the concept of controllability plays an
important role both in many branches of physics and in technical sciences.
In recent years, the problem of controllability for various kinds of functional
differential and integro-differential systems, including delay systems in Ba-
nach spaces has been extensively studied by many researchers (see [14, 23],
and the references therein).

The main object of this paper is to provide sufficient conditions for the
existence of mild solutions for fractional integro-differential inclusions with
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a state-dependent delay in Fréchet spaces of the form

y′(t)−
t∫

0

(t− s)α−2

Γ(α− 1)
Ay(s)ds ∈ F (t, yρ(t,yt)), a.e. t ∈ J = [0,∞), (1)

y0 = φ ∈ B, (2)

where 1 < α < 2 and A : D(A) ⊂ E → E is the generator of an integral
resolvent family defined on a complex Banach space (E, | · |), the convolu-
tion integral in the equation is known as the Riemann-Liouville fractional
integral and f : [0,∞)× E → P(E) is a multivalued map. For any contin-
uous function y defined on R and any t ≥ 0, we denote by yt the element
of B defined by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. Here yt(·) represents the
history of the state from each time θ ∈ (−∞, 0] up to the present time t.
We assume that the histories yt belong to some abstract phase space B, to
be specified later.

For the past several years it has become apparent that equations with
a state-dependent delay arise also in several areas such as classical elec-
trodynamics [26, 27], population models [7, 10, 15, 21, 31, 51], models of
commodity price fluctuations [16, 40], and in models of blood cell produc-
tion [41]. The existence results among other things were derived recently for
functional differential equations when the solution depends on the delay on
a bounded interval for impulsive problems. For details, we refer the reader
to the papers by Abada et al. [1], Ait Dads and Ezzinbi [6], Anguraj et al.
[8, 11, 33, 24], Hernandez et al. [34] and Li et al. [38].

In the case where F is either a single or a multivalued map, the problem
(1)–(2) has been investigated on compact intervals in the papers of Agarwal
et al. [4], Benchohra et al. [18, 19]. On infinite intervals when F is a single
map, the problem (1)–(2) was studied by Benchohra and Litimein by means
of Schauder’s fixed point theorem combined with the diagonalization process
[17]. For the controllability of differential inclusions in Fréchet spaces see,
for instance, the papers of Benchohra and Ouahab [20], Henderson and
Ouahab [35] and the references cited therein.

The main aim of this paper is to establish the global uniqueness of so-
lutions for problem (1)–(2) by applying the nonlinear alternative of Leray-
Schauder type due to Frigon [30] for contractive multivalued maps in Fréchet
spaces. The rest of this paper is organized as follows: in Section 2, we will
recall briefly some basic definitions and preliminary facts which will be used
throughout the following sections. The existence theorems for the problem
(1)–(2) and their proofs are arranged in Section 3. Finally, in Section 4 an
application of controllability result is given to illustrate the theory. The
present results complement and extend to the Fréchet space setting those
considered on the Banach spaces.
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2. Preliminaries

In this section, we introduce the notations, definitions and preliminary
facts from multivalued analysis which will be used throughout this paper.

Let C([0, n];E), n ∈ N be the Banach space of all continuous functions
from Jn = [0, n] into E with the usual norm

‖y‖n = sup{|y(t)| : 0 ≤ t ≤ n}.
Let B(E) denote the Banach space of bounded linear operators from E

into E.
A measurable function y : [0,∞) → E is Bochner integrable if and only

if |y| is Lebesgue integrable. (For properties of the Bochner integral see
Yosida [53]).

Let L1([0,∞), E) denote the Banach space of continuous functions y :
[0,∞) → E which are Bochner integrable and have norm

‖y‖L1 =

∞∫

0

|y(t)|dt for all y ∈ L1([0,∞), E).

Consider the space

B+∞ = {y : (−∞, +∞) → E : y|J ∈ C(J,E), y0 ∈ B},
where y|J is the restriction of y to J = [0,+∞).

In this paper, we will employ an axiomatic definition of the phase space
B introduced by Hale and Kato in [32] and follow the terminology used in
[36]. Thus, (B, ‖·‖B) will be a seminormed linear space of functions mapping
(−∞, 0] into E, and satisfying the following axioms:

(A1) If y : (−∞, b) → E, b > 0, is continuous on J and y0 ∈ B, then for
every t ∈ J the following conditions hold:
(i) yt ∈ B;
(ii) there exists a positive constant H such that |y(t)| ≤ H‖yt‖B;
(iii) there exist two functions K(·),M(·) : R+ → R+ independent
of y with K continuous and M locally bounded such that

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+ M(t)‖y0‖B.

(A2) For the function y in (A1), yt is a B-valued continuous function
on J .

(A3) The space B is complete.
Denote Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

Remark 2.1. 1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.
2. Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B satisfy the condition

that ‖φ− ψ‖B = 0 not necessarily with φ(θ) = ψ(θ) for all θ ≤ 0.
3. From the equivalence of the first remark, we can see that for all φ, ψ ∈ B

such that ‖φ− ψ‖B = 0, we necessarily have φ(0) = ψ(0).
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We now present some examples of phase spaces. For other details, we
refer, for instance, to the book by Hino et al [36].

Example 2.2. Let:

BC be the space of bounded continuous functions defined from (−∞, 0]
to E;

BUC be the space of bounded uniformly continuous functions defined
from (−∞, 0] to E;

C∞ :=
{

φ ∈ BC : lim
θ→−∞

φ(θ) exist in E

}
;

C0 :=
{

φ ∈ BC : lim
θ→−∞

φ(θ) = 0
}

, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.
We have that the spaces BUC, C∞ and C0 satisfy the conditions (A1)–(A3).
However, BC satisfies (A1), (A3) but (A2) is not satisfied.

Example 2.3. The spaces Cg, UCg, C∞g and C0
g .

Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=
{

φ ∈ C((−∞, 0], E) :
φ(θ)
g(θ)

is bounded on (−∞, 0]
}

;

C0
g :=

{
φ ∈ Cg : lim

θ→−∞
φ(θ)
g(θ)

= 0
}

, endowed with the uniform norm

‖φ‖ = sup
{ |φ(θ)|

g(θ)
: θ ≤ 0

}
.

Then we have that the spaces Cg and C0
g satisfy the conditions (A3). We

consider the following condition on the function g:

(g1) For all a > 0, sup
0≤t≤a

sup
{

g(t + θ)
g(θ)

: −∞ < θ ≤ −t

}
< ∞.

They satisfy the conditions (A1) and (A2) if (g1) holds.

Example 2.4. The space Cγ .
For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{

φ ∈ C((−∞, 0], E) : lim
θ→−∞

eγθφ(θ) exists in E

}
,

endowed with the norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.
Then the axioms (A1)–(A3) in the space Cγ are satisfied.
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The Laplace transformation of a function f ∈ L1
loc(R+, E) is defined by

L(f)(λ) :=: â(λ) =

∞∫

0

e−λtf(t)dt, Re(λ) > ω,

if the integral is absolutely convergent for Re(λ) > ω. In order to define the
mild solution of the problem (1)–(2), we recall the following definition:

Definition 2.5. Let A be a closed and linear operator with the domain
D(A) defined on a Banach space E. We call A the generator of an integral
resolvent if there exists ω > 0 and a strongly continuous function S : R+ →
B(E) such that

(
1

â(λ)
I −A

)−1

x =

∞∫

0

e−λtS(t)xdt, Re λ > ω, x ∈ E.

In this case, S(t) is called the integral resolvent family generated by A.

The following result is a direct consequence of [44] (Proposition 3.1 and
Lemma 2.2).

Proposition 2.6. Let {S(t)}t≥0 ⊂ B(E) be an integral resolvent family
with generator A. Then the following conditions are satisfied:

a) S(t) is strongly continuous for t ≥ 0 and S(0) = I;
b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0;
c) for every x ∈ D(A) and t ≥ 0,

S(t)x = a(t)x +

t∫

0

a(t− s)AS(s)xds.

d) Let x ∈ D(A). Then

t∫

0

a(t− s)S(s)xds ∈ D(A) and

S(t)x = a(t)x + A

t∫

0

a(t− s)S(s)xds.

In particular, S(0) = a(0).

Remark 2.7. The uniqueness of the resolvent is well known (see Prüss
[48]).

If an operator A with the domain D(A) is the infinitesimal generator
of an integral resolvent family S(t) and a(t) is a continuous, positive and
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nondecreasing function satisfying lim
t→0+

‖S(t)‖B(E)

a(t)
< ∞, then for all x ∈

D(A) we have

Ax = lim
t→0+

S(t)x− a(t)x
(a ∗ a)(t)

,

see ([39], Theorem 2.1). For example, the case a(t) ≡ 1 corresponds to the
generator of a C0-semigroup (see [13]) and a(t) = t actually corresponds to
the generator of a sine family (see [9]). A characterization of generators of
the integral resolvent families, analogous to the Hille-Yosida Theorem for
C0-semigroups, can be directly deduced from ([39], Theorem 3.4). More
information on the C0-semigroups and sine families can be found in [13, 28,
29, 47].

Definition 2.8. A resolvent family of bounded linear operators,
{S(t)}t>0, is called uniformly continuous if

lim
t→s

‖S(t)− S(s)‖B(E) = 0.

Throughout this paper, we will use the following notation:
Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},
Pcv(X) = {Y ∈ P(X) : Y convex}, Pcp(X) = {Y ∈ P(X) : Y compact}.
Let (X, d) be a metric space induced from the normed space (X, | · |). Con-
sider Hd : P(X)×P(X) → R+ ∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b) and d(a, B) = infb∈B d(a, b). Then (Pb,cl(X),
Hd) is a metric space and (Pcl(X),Hd) is a generalized metric space (see [42]).

Definition 2.9. A multivalued map G : J → Pcl(E) is said to be mea-
surable if for each y ∈ E the function Y : J → R defined by

Y (t) = d(y, G(t)) = inf{|y − z| : z ∈ G(t)}
belongs to L1(J,R).

Definition 2.10. A multivalued map F : J × B → P(E) is an L1
loc -

Carathéodory if
(i) t 7→ F (t, y) is measurable for each y ∈ B, and
(ii) y 7→ F (t, y) is continuous for almost all t ∈ J .
(iii) for every positive constant k there exists hk ∈ L1

loc(J,R+) such that

‖F (t, y)‖ ≤ hk(t) for all ‖y‖B ≤ k and for almost all t ∈ J.

For each y ∈ B+∞, define the set of selections for F by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, yρ(t,yt)) for a.e. t ∈ J}.



FRACTIONAL ORDER INTEGRO-DIFFERENTIAL INCLUSIONS 7

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. Let
Y ⊂ X, we say that F is bounded if for every n ∈ N, there exists Mn > 0
such that

‖y‖n ≤ Mn for all y ∈ Y.

Proposition 2.11. ([22], Proposition III.4) If Γ1 and Γ2 are compact
valued measurable multifunctions, then the multifunction t → Γ1(t) ∩ Γ2(t)
is measurable. If (Γn) is a sequence of compact valued measurable multi-
functions, then t → ∩Γn(t) is measurable, and if ∪Γn(t) is compact, then
t → ∪Γn(t) is measurable.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows:
for every n ∈ N, we consider the equivalence relation ∼n defined by: x ∼n y
if and only if ‖x− y‖n = 0 for all x, y ∈ X. We denote Xn = (X|∼n , ‖ · ‖n)
the quotient space, the completion of Xn with respect to ‖ · ‖n. To every
Y ⊂ X, we associate a sequence {Y n} of subsets Y n ⊂ Xn as follows: For
every x ∈ X, we denote by [x]n the equivalence class of x of subset Xn

and define Y n = {[x]n : x ∈ Y }. We denote by Y n, intn(Y n) and ∂nY n,
respectively, the closure, the interior and the boundary of Y n with respect
to ‖ · ‖ in Xn. We assume that the family of semi-norms {‖ · ‖n} verifies :

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ · · · for every x ∈ X.

Definition 2.12 ([30]). A multivalued map F : X → Pcl(E) is called an
admissible contraction with the constant {kn}n∈N if for each n ∈ N there
exists kn ∈ [0, 1) such that

(i) Hd(F (x), F (y)) ≤ kn‖x− y‖n for all x, y ∈ X;
(ii) For every x ∈ X and every ε ∈ (0,∞)n, there exists y ∈ F (x) such

that

‖x− y‖n ≤ ‖x− F (x)‖n + εn for every n ∈ N.

Theorem 2.13 (Nonlinear Alternative [30]). Let X be a Fréchet space
and U be an open neighborhood of the origin in X and let N : U → P(X)
be an admissible multivalued contraction. Assume that N is bounded. Then
one of the following statements holds:

(C1) N has a fixed point;
(C2) there exist λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λN(x).

For more details on multivalued maps see the books of Aubin and Cellina
[12], Deimling [25] and Hu and Papageorgiou [37].

3. Main Results

In this section, we are concerned with the existence of solutions for the
problem (1)–(2).
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Definition 3.1. We say that the function y : (−∞, +∞) → E is a
mild solution of (1)–(2) if y(t) = φ(t) for all t ≤ 0, the restriction of y(.)
to the interval [0,∞) is continuous and there exists v(.) ∈ L1(J,E), such
that v(t) ∈ f(t, yρ(t,yt)) a.e. t ∈ [0,∞), and y satisfies the following integral
equation:

y(t) = S(t)φ(0) +

t∫

0

S(t− s) v(s) ds for each t ∈ [0, +∞). (3)

Set
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤ 0}.

We always assume that ρ : J ×B → (−∞,+∞) is continuous. Additionally,
we introduce the following hypothesis:

(Hφ) The function t → φt is continuous from R(ρ−) into B and there
exists a continuous and bounded function Lφ : R(ρ−) → (0,∞)
such that

‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

Remark 3.2. Related to the condition (Hφ), we point out here that this
condition is frequently verified by the functions continuous and bounded. In
fact, if the space B verifies axiom C2 in the nomenclature of [36], then there
exists a constant L > 0 such that ‖φ‖B ≤ L supθ≤0 ‖φ(θ)‖ for every φ ∈ B
continuous and bounded, (see [36], Proposition 7.1.1.) for details. Con-
sequently, ‖φt‖B ≤ L

supθ≤0 ‖φ(θ)‖
‖φ‖B ‖φ‖B for every continuous and bounded

function φ ∈ B {0} and every t ≤ 0.

Lemma 3.3. ([34], Lemma 2.4) If y : (−∞, +∞) → E is a function
such that y0 = φ, then

‖ys‖B ≤ (Mn+Lφ)‖φ‖B+Kn sup{|y(θ)|; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−)∪J,

where Lφ = sup
t∈R(ρ−)

Lφ(t).

Proof. The assertion follows from the inequalities

‖ys‖B = ‖φs‖B ≤ Lφ(s)‖φ‖B, s ∈ R(ρ−),

and

‖ys‖B ≤ M(s)‖φ‖B+K(s)‖y‖s, s ∈ J. ¤

To establish our main result concerning the existence of the problem
(1)–(2), we list the following hypotheses:

(H1) The operator solution S(t)t∈J is compact for t > 0.
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(H2) The multifunction F : J × B → P(E) is L1
loc-Carathéodory with

compact and convex values, and there exist a function p∈L1
loc(J,R+)

and a continuous nondecreasing function ψ : J → (0,∞) such that

‖F (t, u)‖P(E) ≤ p(t)ψ(‖u‖B) for a.e t ∈ J and each u ∈ B.

(H3) For all R > 0, there exists lR ∈ L1
loc(J,R+) such that

Hd(F (t, u), F (t, v)) ≤ lR(t)‖u− v‖B
for each t ∈ J and for all u, v ∈ B with ‖u‖B ≤ R and ‖v‖B ≤ R
and

d(0, F (t, 0)) ≤ lR(t) a.e. t ∈ J.

For every n ∈ N, we define in B+∞ the family of semi-norms by

‖y‖n := sup { e−τ L∗n(t) |y(t)| : t ∈ [0, n] },

where L∗n(t) =

t∫

0

ln(s) ds , ln(t) = KnMln(t) and ln is the function

from (H3).
Then B+∞ is a Fréchet space with the family of semi-norms

‖ · ‖n∈N. In what follows, we will choose τ > 1.

Theorem 3.4. Suppose that hypotheses (H1)–(H3) are satisfied and,
moreover,

+∞∫

0

ds

ψ(s)
> KnM

n∫

0

p(s) ds for n ∈ N. (4)

Then the problem (1)–(2) has a mild solution on (−∞, +∞).

Proof. Transform the problem (1)–(2) into a fixed point problem. Consider
the multivalued operator N : B+∞ → P(B+∞) defined by: N(h) = {h ∈
B+∞} with

h(t) =





φ(t), if t ≤ 0;

S(t) φ(0) +

t∫

0

S(t− s) v(s) ds, v ∈ SF,yρ(s,ys) , if t ∈ J.

(5)
For φ ∈ B, we define the function x : (−∞,∞) → E by

x(t) =

{
φ(t), if t ≤ 0;

S(t) φ(0), if t ∈ J.
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Then x0 = φ. For each function z ∈ B+∞ with z0 = 0, we denote by z the
function defined by

z(t) =

{
0, if t ∈ J ;

z(t), if t ∈ J.

If y satisfies (3), we can decompose it as y(t) = z(t) + x(t), t ∈ J , which
implies yt = zt + xt, for every t ∈ J and the function z(·) satisfies

z(t) =

t∫

0

S(t− s) v(s) ds, t ∈ J,

where v(s) ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) .
Let

B0
+∞ = {z ∈ B+∞ : z0 = 0 ∈ B} .

For any z ∈ B0
+∞ we have

‖z‖+∞ = ‖z0‖B + sup{|z(s)| : 0 ≤ s < +∞} = sup{|z(s)| : 0 ≤ s < +∞}.
Thus (B0

+∞, ‖·‖+∞) is a Banach space. We define the operator P : B0
+∞ →

P(B0
+∞) by: P (z) := {h ∈ B0

+∞} with

h(t) =

t∫

0

S(t− s) v(s)ds, v(s) ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) , t ∈ J. (6)

Obviously, the operator N has a fixed point, equivalent to P , so it remains
to prove that P has a fixed point. Let z ∈ B0

+∞ be a possible fixed point of
the operator P . Given n ∈ N, then z should be a solution of the inclusion
z ∈ λP (z) for some λ ∈ (0, 1) and there exists v ∈ SF,z such that for each
t ∈ [0, n], we have

|z(t)| ≤
t∫

0

‖S(t− s)‖B(E) |v(s)| ds ≤

≤ M

t∫

0

p(s) ψ
(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B

)
ds ≤

≤ M

t∫

0

p(s) ψ
(
Kn|z(s)|+ (Mn + Lφ + KnMH)‖φ‖B

)
ds.

Set
cn := (Mn + Lφ + KnMH)‖φ‖B.
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Then we have

|z(t)| ≤ M

t∫

0

p(s) ψ (Kn|z(s)|+ cn) ds.

Thus

Kn|z(t)|+ cn ≤ cn + KnM

t∫

0

p(s) ψ (Kn|z(s)|+ cn) ds.

We consider the function µ defined by

µ(t) := sup { Kn|z(s)|+ cn : 0 ≤ s ≤ t }, t ∈ J.

Let t? ∈ [0, t] be such that

µ(t) = Kn|z(t?)|+ cn‖φ‖B.

By the previous inequality, we have

µ(t) ≤ cn + Kn M

t∫

0

p(s) ψ(µ(s)) ds for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then we
have

µ(t) ≤ v(t) for all t ∈ [0, n].

From the definition of v, we have

v(0) = cn and v′(t) = KnMp(t) ψ(µ(t)) a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ KnM p(t) ψ(v(t)) a.e. t ∈ [0, n].

Using the condition (4), this implies that for each t ∈ [0, n] we have

v(t)∫

cn

ds

ψ(s)
≤ KnM

t∫

0

p(s) ds ≤ KnM

n∫

0

p(s) ds <

+∞∫

cn

ds

ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn

and hence µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λ.
Set

U =
{

z ∈ B0
+∞ : sup

0≤t≤n
|z(t)| < Λn + 1 for all n ∈ N

}
.

Clearly, U is an open subset of B0
+∞. We shall show that P : U → P(B0

+∞)
is a contraction and an admissible operator. First, we prove that P is a
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contraction. Let z, z ∈ B0
+∞ and h ∈ P (z). Then there exists v(t) ∈

F (t, zρ(s,zs+xs) + xρ(s,zs+xs)) such that

h(t) =

t∫

0

S(t− s)v(s)ds

for each t ∈ [0, n]. It follows from (H3) that

Hd(F (t, zρ(s,zs+xs) + xρ(s,zs+xs)), F (t, zρ(s,zs+xs) + xρ(s,zs+xs))) ≤
≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B.

Hence, there is w ∈ F (t, zρ(s,zs+xs) + xρ(s,zs+xs)) such that

|v(t)− w| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B, t ∈ [0, n].

Consider U∗ : [0, n] → P(E) given by

U∗(t) = {w ∈ E : |v(t)− w| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B}.

Since the multivalued operator V∗(t) = U∗(t)∩F (t, zρ(s,zs+xs) +xρ(s,zs+xs))
is measurable (see Proposition 2.11), there exists a function v(t), which is
a measurable selection for V∗. So, v(t) ∈ F (t, zρ(s,zs+xs) + xρ(s,zs+xs)), and
using (A1), for each t ∈ [0, n], we obtain

|v(t)− v(t)| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ≤
≤ ln(t)[K(t)|z(t)− z(t)|+ M(t)‖z0 − z0‖B] ≤
≤ ln(t)Kn|z(t)− z(t)|.

For each t ∈ [0, n], let us define

h(t) =

t∫

0

S(t− s)v(s)ds.
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Then we have

|h(t)− h(t)| ≤
t∫

0

‖S(t− s)‖|v(s)− v(s)|ds ≤

≤
t∫

0

MKnln(s)|z(s)− z(s)|ds ≤

≤
t∫

0

[ln(s)eτ L∗n(s)][e−τ L∗n(s)|z(s)− z(s)|]ds ≤

≤
t∫

0

[
eτ L∗n(s)

τ

]′
ds ‖z − z‖n ≤

≤ 1
τ

eτ L∗n(t) ‖z − z‖n.

Therefore,

‖h− h‖n ≤ 1
τ
‖z − z‖n.

By an analogous relation obtained by interchanging the roles of z and z, it
follows that

Hd(P (z), P (z)) ≤ 1
τ
‖z − z‖n.

So, P is a contraction for all n ∈ N. Now we shall show that P is an
admissible operator. Let z ∈ B0

+∞. Set, for every n ∈ N, the space

B0
n =

{
y : (−∞, n] → E : y|[0,n] ∈ C([0, n], E), y0 ∈ B

}
,

and let us consider the multivalued operator

P (z) =
{

h ∈ B0
n : h(t) =

t∫

0

S(t− s)v(s)ds, t ∈ [0, n]
}

,

where v ∈ Sn
F,y = {v ∈ L1([0, n], E) : v(t) ∈ F (t, yρ(t,yt)) for a.e. t ∈ [0, n]}.

From (H1)–(H3) and since P is a multivalued map with compact values,
we can prove that for every z ∈ B0

n, P (z) ∈ Pcp(B0
n) and there exist z∗ ∈ B0

n

such that z∗ ∈ P (z∗). Let h ∈ B0
n, z ∈ U and ε > 0. Assume that z∗ ∈ P (z),

then we have

|z(t)− z∗(t)| ≤ |z(t)− h(t)|+ |z∗(t)− h(t)| ≤
≤ eτ L∗n(t)‖z − P (z)‖n + ‖z∗ − h‖.
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Since h is arbitrary, we may suppose that h ∈ B(z∗, ε) = {h ∈ B0
n : ‖h −

z∗‖n ≤ ε}. Therefore,

‖z − z∗‖n ≤ ‖z − P (z)‖n + ε.

If z is not in P (z), then ‖z∗ − P (z)‖ 6= 0. Since P (z) is compact, there
exists x ∈ P (z) such that ‖z∗ − P (z)‖ = ‖z∗ − x‖. Then we have

|z(t)− x(t)| ≤ |z(t)− h(t)|+ |x(t)− h(t)| ≤
≤ eτ L∗n(t)‖z − P (z)‖n + ‖x(t)− h(t)‖.

Therefore,

‖z − x‖n ≤ ‖z − P (z)‖n + ε.

Thus, P is an admissible operator contraction. From the choice of U , there
is no z ∈ ∂U such that z = λP (z) for some λ ∈ (0, 1). Then the statement
(C2) in Theorem 2.13 does not hold. As a consequence of the nonlinear
alternative, we deduce that the operator P has a fixed point z∗. Then
y∗ = z∗ + x, is a fixed point of the operator N , which is a mild solution of
the problem (1)–(2). ¤

4. Controllability Results

As an application of Theorem 3.4, we consider the following controllabil-
ity for fractional integro-differential inclusions with a state-dependent delay
in a complex Banach space (E, |.|):

y′(t)−
t∫

0

(t− s)α−2

Γ(α− 1)
Ay(s)ds ∈ F (t, yρ(t,yt)) + (Bu)(t), (7)

a.e. t ∈ J = [0,∞),

y0 = φ ∈ B, (8)

where α, F, A, φ are as in (1)–(2), B is a bounded linear operator from U into
E and the control parameter u(.) belongs to L2(J, U), a space of admissible
controls, and U is a Banach space.

Similar to the Definition 3.1, the mild solution of (7)–(8) is given by

y(t) = S(t)φ(0) +

t∫

0

S(t− s) v(s) ds+

+

t∫

0

(Bu)(s) ds for each t ∈ [0, +∞). (9)
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Definition 4.1. The system (7)–(8) is said to be controllable if for any
continuous function φ ∈ B and any x1 ∈ E and for each n ∈ N there exists
a control u ∈ L2([0, n], E) such that the mild solution y of (7)–(8) satisfies
y(n) = x1.

Let us introduce the following hypotheses:

(H4) For each n > 0, the linear operator W : L2([0, n], U) → E defined
by

Wu =

n∫

0

S(n− s)Bu(s)ds,

has an invertible operator W−1 which takes values in L2([0, n], U)/KerW ,
and there exist positive constants M1,M2 such that ‖B‖ ≤ M1 and
‖W−1‖ ≤ M2.

Remark 4.2. The question of the existence of the operator W and of its
inverse is discussed in the paper by Quinn and Carmichael [49].

Then B+∞ is a Fréchet space with those families of semi-norms ‖ · ‖n∈N.
Consider the operator N1 : B+∞ → B+∞ defined by: N1(h) = {h ∈ B+∞}
with

h(t) =





φ(t), if t ≤ 0;

S(t) φ(0) +

t∫

0

S(t− s) v(s) ds

+

t∫

0

S(t− s)Bun
y (s)ds, v ∈ SF,yρ(s,ys) , if t ∈ J.

(10)

Using the assumption (H4), for an arbitrary function y(.) we define the
control

un
y (t) = W−1

[
y1 − S(t) φ(0)−

t∫

0

S(n− s) v(s) ds

]
(t).

Next, we will prove that Ñ has a fixed point. Let x(.) : R → E be the
function defined by

x(t) =

{
φ(t), if t ≤ 0;

S(t) φ(0), if t ∈ J.
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Then x0 = φ. For each function z ∈ B+∞ with z0 = 0, we denote by z the
function defined by

z(t) =

{
0, if t ≤ 0;

z(t), if t ∈ J.

If y(·) satisfies (9), we can decompose it as y(t) = z(t) + x(t), t ≥ 0, which
implies yt = zt + xt for every t ∈ J , and the function z(·) satisfies

z(t) =

t∫

0

S(t− s)v(s)ds +

t∫

0

Bun
z+x(s)ds, t ∈ J,

where v(s) ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) .
Let

B0
+∞ = {z ∈ B+∞ : z0 = 0 ∈ B} .

For any z ∈ B0
+∞, we have

‖z‖+∞ = ‖z0‖B + sup{|z(s)| : 0 ≤ s < +∞} = sup{|z(s)| : 0 ≤ s < +∞}.
Thus (B0

+∞, ‖·‖+∞) is a Banach space. We define the operator P1 : B0
+∞ →

P(B0
+∞) by: P1(z) := {h ∈ B0

+∞} with

h(t) =

t∫

0

S(t− s) v(s)ds +

t∫

0

S(t− s)Buz+x(s)ds, (11)

v(s) ∈ SF,zρ(s,zs+xs)+xρ(s,zs+xs) , t ∈ J.

Let z ∈ B0
+∞ be a possible fixed point of the operator P1. Given n ∈ N,

then z should be a solution of the inclusion z ∈ λP1(z) for some λ ∈ (0, 1)
and there exists v ∈ SF,z such that, for each t ∈ [0, n], we have

|z(t)| ≤
t∫

0

‖S(t− s)‖B(E) |v(s)| ds+

+

t∫

0

‖S(t− s)‖B(E) ‖B‖ ‖un
z+x(s)‖ ds ≤

≤ M

t∫

0

p(s) ψ(‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B) ds+

+MM1M2

t∫

0

[
‖y1‖+M‖φ‖+M

n∫

0

p(τ)ψ(‖zρ(τ,zτ+xτ )+xρ(τ,zτ+xτ )‖) dτ

]
ds ≤
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≤ M

t∫

0

p(s) ψ
(
Kn|z(s)|+ (Mn + Lφ + KnMH)‖φ‖B

)
ds+

+ nMM1M2[‖y1‖+ M‖φ‖]+

+ nM2 M1M2

n∫

0

p(s) ψ
(
Kn|z(s)|+ (Mn + Lφ + KnMH)‖φ‖B

)
ds.

Set

cn := (Mn + Lφ + KnMH)‖φ‖B.

Then we have

|z(t)| ≤ M

t∫

0

p(s) ψ (Kn|z(s)|+ cn) ds + nMM1M2[‖y1‖+ M‖φ‖]+

+ nM2M1M2

n∫

0

p(s) ψ (Kn|z(s)|+ cn) ds.

Then

Kn|z(t)|+ cn ≤ cn + KnM

t∫

0

p(s) ψ (Kn|z(s)|+ cn) ds+

+ KnnMM1M2[‖y1‖+ M‖φ‖]+

+ KnM2M1M2n

n∫

0

p(s) ψ (Kn|z(s)|+ cn) ds.

Set

βn = KnnMM1M2[‖y1‖+ M‖φ‖] + cn.

Thus

Kn|z(t)|+ cn ≤ βn + KnM

t∫

0

p(s)ψ (Kn|z(s)|+ cn) ds+

+ KnM2M1M2n

n∫

0

p(s)ψ (Kn|z(s)|+ cn) ds.

Let

µ(t) := sup { Kn|z(s)|+ cn : 0 ≤ s ≤ t }, t ∈ J.
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By the previous inequality, we have

µ(t) ≤ βn + KnM

t∫

0

p(s)ψ(µ(s)) ds+

+ KnM2M1M2n

n∫

0

p(s)ψ(µ(s))ds for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). We have

µ(t) ≤ v(t) for all t ∈ [0, n].

From the definition of v, we have

v(0) = βn + KnM2M1M2n

n∫

0

p(s)ψ(µ(s))ds,

and
v′(t) = KnMp(t)ψ(µ(t)) a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ KnMp(t)ψ(v(t)) a.e. t ∈ [0, n].

Using the condition (4), this implies that for each t ∈ [0, n], we have
v(t)∫

cn

ds

ψ(s)
≤ KnM

t∫

0

p(s) ds ≤ KnM

n∫

0

p(s) ds <

+∞∫

cn

ds

ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn

and hence µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn.
Set

U1 =
{

z ∈ B0
+∞ : sup

0≤t≤n
|z(t)| < Λn + 1 for all n ∈ N

}
.

Clearly, U is an open subset of B0
+∞. Let us how that P1 : U1 → P(B0

+∞)
is a contraction and an admissible operator. First, we prove that P1 is a
contraction. Let z, z ∈ B0

+∞ and h ∈ P1(z). Then there exists v(t) ∈
F (t, zρ(s,zs+xs) + xρ(s,zs+xs)) such that for each t ∈ [0, n],

h(t) =

t∫

0

S(t− s)v(s)ds +

t∫

0

S(t− s)Bun
z+x(s)ds.

From (H3), it follows that

Hd(F (t, zρ(s,zs+xs) + xρ(s,zs+xs)), F (t, zρ(s,zs+xs) + xρ(s,zs+xs))) ≤
≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B.
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Hence, there is w ∈ F (t, zρ(s,zs+xs) + xρ(s,zs+xs)) such that

|v(t)− w| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B t ∈ [0, n].

Consider U∗ : [0, n] → P(E), given by

U∗(t) =
{
w ∈ E : |v(t)− w| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B

}
.

Since the multivalued operator V∗(t) = U∗(t)∩F (t, zρ(s,zs+xs) +xρ(s,zs+xs))
is measurable (see Proposition 2.11), there exists a function v(t), which is
a measurable selection for V∗. So, v(t) ∈ F (t, zρ(s,zs+xs) + xρ(s,zs+xs)), and
using (A1), for each t ∈ [0, n], we obtain

|v(t)− v(t)| ≤ ln(t)‖zρ(s,zs+xs) − zρ(s,zs+xs)‖B ≤
≤ ln(t)[K(t)|z(t)− z(t)|+ M(t)‖z0 − z0‖B] ≤
≤ ln(t)Kn|z(t)− z(t)|.

For each t ∈ [0, n], let us define

h(t) =

t∫

0

S(t− s)v(s)ds +

t∫

0

S(t− s)B un
z+x(s)ds.

Then we have

|h(t)− h(t)| ≤
t∫

0

‖S(t− s)‖|v(s)− v(s)|ds+

+

t∫

0

‖S(t− s)‖[(Bun
z+x)(s)− (Bun

z+x)(s)]ds ≤

≤
t∫

0

MKnln(s)|z(s)− z(s)|ds+

+ MM1

t∫

0

∣∣∣∣∣∣
W−1


y1 − S(n)φ(0)−

n∫

0

S(n− s)v(τ)dτ


−

− W−1


y1 − S(n)φ(0)−

n∫

0

S(n− s)v(τ)dτ




∣∣∣∣∣∣
ds ≤

≤
t∫

0

MKnln(s)|z(s)− z(s)|ds+

+ MM1M2

t∫

0

M

n∫

0

|v(τ)− v(τ)|dτ ds ≤
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≤
t∫

0

MKnln(s)|z(s)− z(s)|ds+

+ M2M1M2n

t∫

0

Knln(s)|z(s)− z(s)|ds ≤

≤
t∫

0

[ln(s)|z(s)− z(s)|ds ≤

≤
t∫

0

[ln(s)eτ Ln(s)][e−τ Ln(s)|z(s)− z(s)|]ds ≤

≤
t∫

0

[
eτ Ln(s)

τ

]′
ds ‖z − z‖n ≤

≤ 1
τ

eτ Ln(t) ‖z − z‖n.

Therefore,

‖h− h‖n ≤ 1
τ
‖z − z‖n.

By an analogous relation, obtained by interchanging the roles of z and z, it
follows that

Hd(P1(z), P1(z)) ≤ 1
τ
‖z − z‖.

So, P1 is a contraction for all n ∈ N, and as in Theorem 3.4, we can prove
that P1 is an admissible multivalued map. From the choice of U1 there is
no z ∈ ∂U1 such that z = λP1(z)for some λ ∈ (0, 1). As a consequence of
Theorem 2.13 we deduce that the operator P1 has a fixed point z∗. Then
y∗ = z∗ + x is a fixed point of the operator N1, which is a mild solution of
the problem (7)–(8).
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neutral functional differential equation with state-dependent delay. Appl. Anal. 86
(2007), No. 7, 861–872.

9. W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace trans-
forms and Cauchy problems. Monographs in Mathematics, 96. Birkhauser Verlag,
Basel, 2001.

10. O. Arino, K. P. Hadeler and M. L. Hbid, Existence of periodic solutions for delay dif-
ferential equations with state dependent delay. J. Differential Equations 144 (1998),
No. 2, 263–301.

11. M. Mallika Arjunan and V. Kavitha, Existence results for impulsive neutral functional
differential equations with state-dependent delay. Electron. J. Qual. Theory Differ.
Equ. 2009, No. 26, 13 pp.

12. J. P. Aubin and A. Cellina, Differential inclusions. Set-valued maps and viability
theory, 264. Springer-Verlag, Berlin, 1984.

13. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces.
Translated from the Romanian. Editura Academiei Republicii Socialiste Romania,
Bucharest; Noordhoff International Publishing, Leiden, 1976.

14. K. Balachandran and R. Sakthivel, Controllability of integrodifferential systems in
Banach spaces. Appl. Math. Comput. 118 (2001), No. 1, 63–71.

15. J. Bélair, Population models with state-dependent delays. Lect. Notes Pure Appl.
Math., Dekker, New York, 131 (1990), 165-176.

16. J. Bélair and M. C. Mackey, Consumer memory and price fluctuations in commodity
markets: an integrodifferential model. J. Dynam. Differential Equations 1 (1989),
No. 3, 299–325.

17. M. Benchohra and S. Litimein, Fractional integro-differential equations with state-
dependent delay on an unbounded domain. Afr. Diaspora J. Math. 12 (2011), No.
2, 13–25.

18. M. Benchohra, S. Litimein and G. M. N’Guérékata, On fractional integro-differential
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