
Proceedings of A. Razmadze
Mathematical Institute
Vol. 161 (2013), 83–95

ON THE MODIFICATION OF HEAVY BALL METHOD

K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

Abstract. This paper discusses the new continuous model of the
heavy ball method. It examines in detail the modified heavy ball
algorithm from a theoretical perspective in terms of geometric inter-
pretation and programming realization. The new model assumes the
possibility to slow down, stop or accelerate. The programming real-
ization of the new algorithm is much more flexible. It provides for
a richer set of parameters to select from and during the testing it
consistently demonstrates much better results compared to the heavy
ball method.

îâäæñéâ. ûŽîéëáàâêæè êŽöîëéöæ àŽêæýæèâĲŽ éúæéâ Ĳæîåãæï éâ-
åëáæï ŽýŽèæ ñûõãâðæ éëáâèæ. ïŽçéŽëá áâðŽèñîŽá, åâëîæñèæ
ŽïìâóðâĲæï, àâëéâðîæñèæ àŽŽäîâĲæï áŽ ìîëàîŽéñèæ îâŽèæäŽùææï
åãŽèïŽäîæïæå ýáâĲŽ éúæéâ Ĳæîåãæï éëáæòæùæîâĲñèæ Žèàëîæåéæï
öâïûŽãèŽ. ŽýŽèæ éâåëáæ ñöãâĲï áŽéñýîñüâĲæï, àŽøâîâĲæï, ŽøóŽîâ-
Ĳæï öâïŽúèâĲèëĲŽï. ŽýŽèæ Žèàëîæåéæï ìîëàîŽéñèæ îâŽèæäŽùæŽ
àŽùæèâĲæå éëóêæèæŽ, Žóãï ìŽîŽéâðîâĲæï öâîøâãæï ñòîë éáæáŽîæ
ïŽöñŽèâĲâĲæ áŽ ðâïðâĲäâ ïðŽĲæèñîŽá ŽøãâêâĲï àŽùæèâĲæå ñçâåâï
öâáâàâĲï éúæéâ Ĳæîåãæï éâåëáåŽê öâáŽîâĲæå.

Introduction

The “heavy ball” is a well-known and effective method to solve the un-
constrained minimization problem of the smooth function, f(x) → min,
x ∈ Rn. This method is multifunctional in its essence and can be used both
for quickly attaining the “first” local minimal and for identifying global (or
good local) minimal.

The heavy ball is an interesting topic from the perspective of mathemati-
cal modeling, since the idea of the dynamic process converging towards equi-
librium can be realized through significantly different mathematical models
(see [1]–[5]). A number of scientific papers (e.g. [6]–[10]), timely from the
practical point of view, are currently devoted to the general cases of un-
constrained optimization (e.g. smooth, convex, quasiconvex functions). In
these papers first or second order ordinary differential systems are used

2010 Mathematics Subject Classification. 49M37, 65K05.
Key words and phrases. Heavy ball method, Fletcher-Reeves method, Eason’s func-

tion, Pawell’s function, Rosenbrock’s function.

84 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

as mathematical models. Through experimenting we can become assured
that the heavy ball method can be successfully used for the minimization
of non-smooth functions.

The first paragraph describes heavy ball method and its new modifica-
tion: continuous model of heavy ball method in terms of delayed neutral sys-
tem; recurrent equations for the algorithm of standard heavy ball method;
description of modified Heavy Ball method and theorems of convergence.
It is well known that proving of convergence of the standard heavy ball
method is much more difficult, than for example proving of convergence of
the standard gradient method (with fixed step). In contrast, proving of con-
vergence of our modified heavy ball method has the same level of difficulty
as proving of convergence of the standard gradient method (see theorems).

The second paragraph presents a geometrical interpretation of the new
approach.

The third paragraph provides the results of testing of the modified met-
hod’s programming realization on several well-known problems and shows
that this method has a number of advantages compared to the standard
one.

The aim of the presented paper is to attract the attention of the special-
ists in this field to the new algorithm. Therefore, we prove the correctness
of the new method, evaluation the speed of convergence relying solely on
test results.

1. Modification of the Heavy Ball Method

The standard heavy ball method algorithm is defined by a recurrent
equation: {

x1 = x0 − β0 f ′(x0),
xi+1 = xi + αi(xi − xi−1)− βi f ′(xi), i > 0,

(1)

where f : Rn → R is the objective function, x0 is the initial approximation
of the solution, 0 ≤ αi ≤ 1,i > 0 and βi > 0, i ≥ 0. In extreme cases,
when αi = 0 and αi = 1, we get a standard fixed step gradient method and
endless frictionless movement of the heavy ball. It is widely accepted that
in case of well-chosen 0 ≤ αi ≤ 1 and βi > 0 coefficients, the heavy ball is
one of the best among the numeric optimization methods. This is achieved
thanks to the fact that in the proximity of minimal the speed of convergence
does not decrease. However, choosing the coefficients is quite complicated
and it is essential to take into account the experience accumulated while
experimenting with specific problems.

According to the widely accepted approach (see [2], [5], [6]), continuous
model of scheme (1) is a second order differential system, but this model is
less informative in some cases (see below) and we choose to use a different
model.

ON THE MODIFICATION OF HEAVY BALL METHOD 85

If we assume that step in (1) is quite small and equal to delay τ > 0,
then we can consider the following neutral delayed system as the continuous
model for scheme (1):

{
ẋ(t) = 0, t ≤ 0; x(0) = x0,
ẋ(t) = α ẋ(t− τ)− β f ′(x(t)), t > 0.

(2)

Let us discuss a modification of the heavy ball method, which is much
faster and its coefficients can be chosen from a much vaster range.

Let us assume, f : Rn → R is the objective function, x0 is the initial
approximation of the solution, αi, βi are constants, equal to some α ≥ 0,
β > 0 consequently (which is quite small) are constants and let’s describe
an algorithm:

Let us define
{
yi

}∞
i=0

sequence in the following way:

• Let us take y0 = x0. According to formula (1) we find the next
approximation, until the values of the objective function are de-
creasing; as soon as for some xi we will get f(xi) ≤ f(xi+1), we will
take y1 = xi, x0 = y1. Let us note that f(y1) ≤ f(y0).

• Let us assume that yn is already constructed so that f(yn) <
f(yn−1) and x0 = yn. Again using formula (1) let us find the next
approximation, until the values of the objective function are de-
creasing; as soon as for some xi we will get f(xi) < f(xi+1), we will
take yn+1 = xi, x0 = yn+1. We again have that f(yn+1) ≤ f(yn).

• We continue defining the terms of {yi} sequence until the condition
to stop is not satisfied
(usually this has to do with small value of the objective function
gradient in the point yk).

Let us prove the convergence of the method under standard conditions
(see example, [3]). We should note that

{
yi

}∞
i=0

sequence defined by us has
the following properties: for every k ∈ {0, 1, 2, . . . } index, yk approximation
already found defines transitional value of yk−βf ′(yk), using which we find
yk+1 (how do we do that has no pertinence to proving the convergence),
such that the inequality f(yk+1) ≤ f(yk − βf(yk)) stands.

Theorem 1. Let us assume that f(·) is derivable in Rn and the gradient
of f(·) satisfies the Lipschitz’s condition:

∥∥f ′(x)− f ′(y)
∥∥ ≤ L

∥∥x− y
∥∥; (3)

f(·) is bounded below

f(x) ≥ f∗ > −∞; (4)

β satisfies the condition:

0 < β < 2/L. (5)

86 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

In
{
yk

}∞
k=0

sequence y0 is an arbitrarily taken vector and for every k ∈
{0, 1, 2, . . . } index yk and yk+1 approximations relate to each other only
through the following inequality: f(yk+1) ≤ f(yk − βf ′(yk)).

Then, for
{
yi

}∞
i=0

sequence:

• f(·) function is monotonously decreasing on
{
yk

}∞
k=0

sequence: con-
dition f(yk+1) ≤ f(yk) is fulfilled for each k.

• Gradient converges towards 0: lim
k→∞

f ′(yk) = 0.

Proof. The proof repeats the main parts of the proof of the convergence of
the simplest gradient method. Let us use the formula:

f(x + y) = f(x) +

1∫

0

f ′(x + τy) · yT dτ

which gives us:

f
(
yk − β f ′(yk)

)
=

= f(yk) +

1∫

0

f ′
(
yk + τ(−β f ′(yk))

) · (− β f ′(yk)
)T

dτ =

(
add and subtract f ′(yk) · (− β f ′(yk)

)T
)

= f(yk) + f ′(yk) · (− β f ′(yk)
)T +

+

1∫

0

[
f ′

(
yk + τ(−β f ′(yk))

)− f ′(yk)
]
· (− β f ′(yk)

)T
dτ ≤

≤ f(yk)− β
∥∥f ′(yk)

∥∥2 +

+
∣∣∣∣

1∫

0

[
f ′

(
yk + τ(−β f ′(yk))

)− f ′(yk)
]
· (− β f ′(yk)

)T
dτ

∣∣∣∣ ≤

≤ f(yk)− β
∥∥f ′(yk)

∥∥2 +

+

1∫

0

∥∥∥f ′
(
yk + τ(−β f ′(yk))

)− f ′(yk)
∥∥∥ ·

∥∥− β f ′(yk)
∥∥dτ ≤

≤ f(yk)− β
∥∥f ′(yk)

∥∥2 +

1∫

0

L ·
∥∥τ(−β f ′(yk))

∥∥ ·
∥∥− β f ′(yk)

∥∥dτ =

=f(yk)−β
∥∥f ′(yk)

∥∥2+
Lβ2

2

∥∥f ′(yk)
∥∥2 =f(yk)−β

(
1−Lβ

2

) ∥∥f ′(yk)
∥∥2

.

ON THE MODIFICATION OF HEAVY BALL METHOD 87

We get

f
(
yk − βf ′(yk)

) ≤ f(yk)− β

(
1− Lβ

2

) ∥∥f ′(yk)
∥∥2

.

Since f(yk+1) ≤ f(yk − βf ′(yk)), therefore

f(yk+1) ≤ f(yk)− β

(
1− Lβ

2

) ∥∥f ′(yk)
∥∥2

,

so
f(yk+1) ≤ f(yk)− α

∥∥f ′(yk)
∥∥2

, (6)

where α = β
(
1− Lβ

2

)
. This formula proves the first part of the theorem. If

we use the same formula several times in the right part of (6) we will get:

f(yk+1) ≤ f(y0)− α
(∥∥f ′(y0)

∥∥2 + · · ·+
∥∥f ′(yk)

∥∥2
)

=

= f(y0)− α

k∑

i=0

∥∥f ′(yi)
∥∥2

.

with (5) in mind, α > 0, therefore for every k it is true that
k∑

i=0

∥∥f ′(yi)
∥∥2 ≤ α−1

(
f(y0)− f(yk+1)

) ≤ α−1
(
f(y0)− f∗

)
.

This inequality is also true for every i and the right side is not dependent
on i, therefore it is also true that

∞∑

i=0

∥∥f ′(yi)
∥∥2 ≤ α−1

(
f(y0)− f∗

)
,

which proves that ‖f ′(yi)‖ → 0 when t →∞. ¤

If for every k ∈ {0, 1, 2, . . . } index, we denote xk = yk − βf ′(yk), then
several first terms of

{
yk

}∞
k=0

sequence can be located as it is shown in
Figure 1.

Theorem 2. If besides the conditions of the Theorem 1 the objective
function is also strongly convex, then the sequence {yi}∞i=1 constructed in
Theorem 1 converges to the unique global minimal of objective function f(·).
Proof. Objective function f(·) as strongly convex function has unique global
minimal ŷ. It is also well-known that

f ′(x) = 0

is the nessessary and sufficient condition for minimum of convex function.
Again from the strong convexity of f(·) follows that the set

S =
{
x ∈ Rn | f(x) ≤ f(y0)

}

88 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

is bounded and convex. Consequently, {yi}∞i=1 has limiting points. Let ỹ
be arbitrarily given limiting point of {yi}∞i=1 and yij → ỹ as j →∞. f(·) is
continuously differentiable and ‖ · ‖ is also continuous function, therefore

0 = lim
j→∞

∥∥f ′(yij
)
∥∥ =

∥∥f ′(ỹ
∥∥.

From 0 = f ′(ỹ) = f ′(ŷ) follows ỹ = ŷ. By virtue of arbitrarity of ỹ, every
convergent subsequence of {yi}∞i=1 converges to ŷ. But this means that
{yi}∞i=1 itself converges to ŷ. ¤

If besides the conditions of the proven theorem, the objective function is
also strongly convex, then convergence of

{
yi

}∞
i=1

sequence is proved exactly
like, for example, as in [3], so we will not repeat it.

Figure 1

2. Geometric Interpretation of the Method for a Quadratic
Objective Function

Trajectory of the modified heavy ball is shown in four different cells in
figures coupled with trajectories of four prevalent minimization methods.
x2 + 10y2 is taken as the objective function. Initial conditions are the
same everywhere. The coefficients of standard and modified heavy balls are
equal. The trajectories of the steepest descent and modified heavy ball are
simultaneously shown in the first cell (see about the terminology pertaining
to the other methods in the last point). In the second cell you can see
where the modified heavy ball stops, unlike the standard heavy ball, and its
further movement. In the third cell we compare our method to the standard
gradient method with fixed step. In the fourth cell all the four trajectories
are shown at the same time:

The trajectories resulting from minimization of Rosenbrock’s function
using the following methods are shown in the cells of the next table (Fig-
ure 3):

ON THE MODIFICATION OF HEAVY BALL METHOD 89

Figure 2

• the steepest descent;
• heavy ball;
• modified heavy ball;
• standard gradient method with fixed step;

(please find the detailed information about Rosenborck’s function below).
As we can see, the same fact that we found during the comparison of

the heavy and modified heavy balls in the vicinity of the solution for the
quadratic function, shows up from the beginning of the trajectory in case
of the Rosenbrock’s function.

It is also interesting that the trajectory of the modified heavy ball is quite
close to the one of standard gradient method, but the modified method is
significantly faster.

The radically different trajectory of the steepest descent method is ex-
plained by the circumstance that this method, just as Fletcher-Reeves met-
hod, is significantly dependent on the used one-dimensional minimization
problem algorithm. When one-dimensional algorithm quickly (and roughly)
tries to identify the endpoints of the search interval, for a non-convex func-
tion there is a possibility that one-dimensional minimal is not a global or
good local minimal for the given direction. Getting a different trajectory is
possible with a different realization.

3. The Results of Testing the Modified Heavy Ball Algorithm

We rarely encounter scientific studies that compare and analyze program-
ming codes of different algorithms. One reason could be that the conclusions
of such works are sometimes subjective and contradictory. We tried to test

90 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

Figure 3

the algorithm using the same technologies used in [11], which is a kind of de
facto standard. From a methodological perspective in [12], [13] we selected
several very well-known minimization problems, for which the tests of other
algorithms (except the modified heavy heavy ball) were known. However,
we deemed necessary to try our implementation of several algorithms and
compare to the modified heavy ball method.

Due to the small number of variables in the test tasks, we have also
considered the such type of quadratic minimization problem, where the
objective function is a penalty function for some system of linear equations.

The code for the modified heavy ball algorithm is extremely easy to write.
Maybe it is exactly because of simplicity that the algorithm works extremely
reliably. We will be assured in the algorithm’s reliability after discussing
the results of testing.

The description and implementation of the modified heavy ball algorithm
are for simplicity placed together in “ModifiedHeavyBall” file. Let us note
that thanks to using STL library capabilities there is no necessity to use
indexed variables, therefore saving the needed amounts of points in the
trajectory is easily regulated. Since due to limited space we provide only
the modified heavy ball code, we do not place it separately in “namespace”.
Unlike [11], “ModifiedHeavyBall.h” file receives the necessary information

ON THE MODIFICATION OF HEAVY BALL METHOD 91

about the objective function from “data.h” file, which can be changed if
needed, boosting the codes flexibility.

Let us take into account that in case of the standard heavy ball

double alpha=1.05;

line would definitely cause the method to overflow. This is one of the strong
resources to accelerate the convergence in our method. Another different
and interesting resource is the term “inertia”, which always becomes null
when a threat that the objective function will grow along the trajectory
appears. This means that we cause the ball to brake in this moment and
then it has to accelerate. Maintaining inertia at a certain level and turning
it to a needed direction thus creating an effect of turning the ball in motion
makes for an interesting perspective. For the sake of simplicity we do not
dwell on this effect in this paper.

There is no need for more comments due to the simplicity of the code:

//file “ModifiedeavyBall.h”
include“data.h” // addressing data (dimension, function, derivative)
include<iostream>
include<vector>
const double EPS = 1E-6;
double beta = 1E-4;
double alpha = 1.05;
vector<double> inertia(DIMENSIONALITY);
vector<vector<double>> trajectory;
template<typename T>
void getNextIteration(vector<T>& x0)
{

vector<T> x1(DIMENSIONALITY,0.0);
while(true)
{

objFunctionPrime(x0);
for(int i=0; i < DIMENSIONALITY; ++i)

x1[i] = x0[i] + alpha *inertia[i] - beta*yPrime[i];
if(objFunction(x0)<= objFunction(x1))

return;
for(int i=0; i < DIMENSIONALITY; ++i)

inertia[i] = x1[i]-x0[i];
x0 = x1;
if(dist(x0, trajectory[trajectory.size()-1])>0.2)

trajectory.push−back(x0);
}

92 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

}
template<typename T>
void getMinimal(vector<T>& x0)
{

while(true)
{

getNextIteration(x0);
solutionIterations.push−back(x0);
for(int i=0; i < DIMENSIONALITY; ++i)

inertia[i] = 0.0;
if(norm(yPrime)<EPS)

break;
}

}
It is implied that “ModifiedHeavyBall.h”file will get the following infor-

mation from “data.h” file (in case of Pawell’s function):

const int DIMENSIONALITY = 4; //problem dimension
double array[]={3.0, -1.0, 0.0, 1.0}; //{0.0, 0.0};
vector<double> x0(array,array+4); //starting point
double y(0.0); //point for saving function values
//vector for saving function derivative
vector<double>yPrime(DIMENSIONALITY);

template<typename T>
T objFunction(vector<T>&x)
{

y =(x[0]+10*x[1])*(x[0]+10*x[1]) + 5*(x[2]- x[3])*(x[2]- x[3])+
pow((x[1]-2*x[2]), 4) + 10*pow((x[0] - x[3]), 4);

return y;
}
template<typename T>
void objFunctionPrime(const vector<T>& x)
{

yPrime[0]=2*(x[0] + 10*x[1]) + 40*pow((x[0] - x[3]),3);
yPrime[1]=20*(x[0] + 10*x[1]) + 4*pow((x[1] - 2*x[2]), 3);
yPrime[2]=10*(x[2]-x[3]) - 8*pow((x[1]-2*x[2]),3);
yPrime[3]=-10*(x[2]-x[3]) - 40*pow((x[0]-x[3]), 3);

}
Since our main purpose is to attract the attention to this approach and

not provide a full-scale research in one paper, we placed emphasis on the
level of algorithm performance. The algorithm stops when the derivative
satisfies given precision. Testing took the minimal value for which the

ON THE MODIFICATION OF HEAVY BALL METHOD 93

Fletcher-Reeves method worked properly as selection criteria for the preci-
sion parameter. Testing took place on standard personal computers with
the following specifications: Intel(R) Pentium(R) Dual CPU E2200 2.20
GHz, 2.00 GB of RAM. Methods used for testing (indicating some parame-
ters) are listed in the left column and the names of the functions are given
in the top row.

The results of testing are given in the next table. In every cell there is the
result of testing the method in the corresponding row on the corresponding
function. Two numbers are given in every cell, (e.g. 0.001 /1E-12), from
which the first number is time in seconds (average of several trials) and the
second number is precision. First of all, we consider the precision which is
common for all the methods (mostly it is 1E-6).

Both for the heavy and modified heavy balls the length of the step is
taken as

double beta = 1E-4;

We are not trying to accelerate the convergence of the method using this
parameter, which gives an advantage to the other three methods. However,
in case of the steepest descent and the Fletcher-Reeves methods we use fast
one-dimensional minimization method.

Let us also note that terminology is mixed in scientific literature. The
method we call standard gradient method with fixed step is sometimes called
the steepest descent method. We use the term “Steepest descent” according
to [3].

As it appears from these tests (with the small number of variables), the
effectiveness of modified Heavy ball method only falls behind the Fletcher-
Reeves algorithm. But if the number of variables increases significantly,
the situation changes even in case of quadratic objective function. More

precisely, if one can compose the penalty function f(x) =
n∑

i=1

g(A[i]x− a[i])

for the system of linear equations A(x) = a (with square random matrix)
where A[i] is a i-th row of the matrix, a[i] is the corresponding constant
term, and g(z) = max(0, z)2, then approximately beginning from n = 20,
modified Heavy ball method works much more faster than Fletcher- Reeves
method. It is explained by the fact that the latter is very sensitive to
error accumulation. However, the situation may change if we take into
consideration the special type of objective function (quadratic form). It is
clear that for objective functions the degree of which is more than quadratic,
in case of high dimension, the method offered by us is more effective than
the other methods mentioned above.

94 K. GELASHVILI, L. ALKHAZISHVILI, I. KHUTSISHVILI, N. ANANIAISHVILI

Eason’sfunction Powell’s Rosenbrock’s Wood’s
function function function

Steepest- 0.000/1E-7 1.9188 /1E-5 0.184 /1E-5 0.297/1E-5
descent 0.001/1E-12 39.8662/1E-7 0.481/1E-7 1.1047/1E-7

1.3996/1E-7 26.525/1E-5 0.849/1E-7 2.53/1E-7
std−gradient 3.085/1E-11 122.453/1E-6 1.505/1E-12 3.02/1E-11

— /1E-12 —- / 1E-7 —/1E-12

modified-
HeavyBall 0.005/1E-6 0.006/1E-6 0.002 /1E-6 0.009 /1E-6
alpha=1.05; —/1E-7 0.011/1E-7 0.002/1E-7 0.007/1E-7
beta=1E-4 0.025/1E-12 0.004/1E-12 0.01/1E-12

modified-
HeavyBall 0.001/1E-6 0.017/1E-6 0.001/1E-6 0.023/1E-7
alpha=1.25; —/1E-7 0.038/1E-7 0.003/1E-7 0.023/1E-11
beta=1E-4 0.208/1E-12 0.003/1E-12 —/1E-12

modified-
HeavyBall 0.001/1E-5 3.994/1E-6 0.011/1E-7 0.035 /1E-7
alpha=2.05; —/1E-7 18.488 /1E-7 0.013/1E-7 0.046/1E-11
beta=1E-4 —/1E-8 —/1E-12

HeavyBall
alpha=0.96 0.395/1E-7 10.556/1E-7 0.03/1E-7 —
beta=1E-4 0.429/1E-12 —/1E-8 0.056/1E-12

Fletcher-
Reeves 0.000/1E-7 0.0045/1E-7 0.0016/1E-7 0.0015/1E-7

References

1. G. W. Brown and J. von Neumann, Solutions of games by differential equations.
Contributions to the Theory of Games, pp. 73–79. Annals of Mathematics Studies,
No. 24. Princeton University Press, Princeton, N. J., 1950.

2. G. W. Brown, Iterative solution of games by fictitious play. Activity Analysis of
Production and Allocation, Cowles Commission Monograph No. 13, 374–376, John
Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1951.

3. B. T. Polyak, Introduction to optimization. Translated from the Russian. With a fore-
word by Dimitri P. Bertsekas. Translations Series in Mathematics and Engineering.
Optimization Software, Inc., Publications Division, New York, 1987.

4. H. A. Eiselt and C.-L. Sandblom, The bounce algorithm for mathematical program-
ming. Math. Methods Oper. Res. 52 (2000), No. 2, 173–183.

5. S. Y. Chang and K. G. Murty, The steepest descent gravitational method for linear
programming. Discrete Appl. Math. 25 (1989), No. 3, 211–239.

6. X. Goudou and J. Munier, The gradient and heavy ball with friction dynamical
systems: the quasiconvex case. Math. Program. 116 (2009), No. 1-2, Ser. B, 173–
191.

7. Tamas Hajba, Optimizing second-order differential equation systems. Electron. J.
Differential Equations 2011, No. 44, 16 pp.

8. A. Cabot, H. Engler and S. Gadat, On the long time behavior of second order dif-
ferential equations with asymptotically small dissipation. Trans. Amer. Math. Soc.
361 (2009), No. 11, 5983–6017.

ON THE MODIFICATION OF HEAVY BALL METHOD 95

9. A. Bhaya, F. Pazos and E. Kaszkurewicz, The controlled conjugate gradient type
trajectory-following neural net for minimization of nonconvex functions. Proceedings
of the IEEE International Joint Conference on Neural Networks (IJCNN), 18–23
July, Spain, Barcelona, 1–8, 2010.

10. Paul-Emile, Mainge, Asymptotic convergence of an inertial proximal method for
unconstrained quasiconvex minimization. J. Global Optim. 45 (2009), No. 4, 631–
644.

11. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes.
The art of scientific computing. Third edition. Cambridge University Press, Cam-
bridge, 2007.

12. Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom, Testing unconstrained
optimization software. ACM Trans. Math. Software 7 (1981), No. 1, 17–41.

13. A. Ravindran, K. M. Ragsdell and G. V. Reklaitis, Engineering Optimization: Meth-
ods and Applications, Second Edition. John Wiley & Sons, Inc., Hoboken, New
Jersey, 2006.

(Received 29.06.2012; revised 11.12.2012)

Authors’ address:

Department of Computer Sciences
I. Javakhishvili Tbilisi State University
13 University St., Tbilisi 0186, Georgia
E-mail: koba.gelashvili@tsu.ge

lela.alkhazishvili@tsu.ge
irina.khutsishvili@gmail.com

