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GLOBAL ASYMPTOTIC STABILITY FOR NONLINEAR
MULTI-DELAY DIFFERENTIAL EQUATIONS OF

FRACTIONAL ORDER

S. ABBAS AND M. BENCHOHRA

Abstract. The aim of this paper is to study the existence and the
stability of solutions for a system of nonlinear delay partial differential
equations of fractional order. The Schauder fixed point theorem for
the existence of solutions is used, and it is proved that all solutions
are globally asymptotically stable.

îâäæñéâ. êŽöîëéæï éæäŽêï ûŽîéëŽáàâêï ŽîŽûîòæãæ áŽàãæŽêâĲñ-
èæ ûæèŽáñîæ ýŽîæïýæï çâîúë ûŽîéëâĲñèâĲæŽêæ áæòâîâêùæŽèñîæ
àŽêðëèâĲâĲæïŽåãæï ŽéëêŽýïêâĲæï ŽîïâĲëĲæïŽ áŽ éáàîŽáëĲæï öâ-
ïûŽãèŽ. àŽéëõâêâĲñèæŽ öŽñáâîæï ñúîŽãæ ûâîðæèæï åâëîâéŽ Žéë-
êŽýïêâĲæï ŽîïâĲëĲæïŽåãæï áŽ áŽéðçæùâĲñèæŽ, îëé õãâèŽ ŽéëêŽýïêæ
Žîæï àèëĲŽèñîŽá ŽïæéìðëðñîŽá éáàîŽáæ.

1. Introduction

The study of fractional differential equations ranges from the theoret-
ical aspects of existence and uniqueness of solutions to the analytic and
numerical methods for finding solutions. Fractional differential equations
appear naturally in a number of fields such as physics, polymer rheology,
regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bodes
analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental data,
etc. There has been a significant development in ordinary and partial frac-
tional differential and integral equations in recent years; see the monographs
of Abbas et al. [3], Baleanu et al. [10], Diethelm [16], Hilfer [18], Kilbas
et al. [19], Lakshmikantham et al. [24], Podlubny [28], Tarasov [30], and
the papers by Abbas et al. [1, 2, 4], Agarwal et al. [5, 6, 7, 8], Araya et al.
[9], Cuevas et al. [13, 14], Mophu and N’Guérékata [25, 26], N’Guérékata
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[27], Lakshmikantham et al. [20, 21, 22, 23], Vityuk and Golushkov [31].
Recently interesting results of the stability of the solutions of various classes
of integral equations of fractional order have obtained by Banaś et al. [11],
Darwish et al. [15] and the references therein.

In this paper we establish a sufficient condition for the existence and the
stability of solutions of the following system of nonlinear delay differential
equations of fractional order of the form

cDr
θu(t, x)=p(t, x)−q(t, x)f

(
t, x, u(t−τ1, x−ξ1), . . . , u(t−τm, x−ξm)

)

for (t, x) ∈ J := R+ × [0, b], (1)

u(t, x) = Φ(t, x) for (t, x) ∈ J̃ := [−T,∞)× [−ξ, b]\(0,∞)× (0, b], (2){
u(t, 0) = ϕ(t), t ∈ [0,∞),
u(0, x) = ψ(x), x ∈ [0, b],

(3)

where b > 0, θ = (0, 0), R+ = [0,∞), τi, ξi ≥ 0, i = 1, . . . , m, T =
max

i=1,...,m
{τi}, ξ = max

i=1,...,m
{ξi}, cDr

θ is the Caputo fractional derivative of

order r = (r1, r2) ∈ (0, 1] × (0, 1], p, q : J → R, f : J × R → R are
given continuous functions, ϕ : R+ → R, ψ : [0, b] → R are absolutely
continuous functions with lim

t→∞
ϕ(t) = 0 and ψ(x) = ϕ(0) for each x ∈ [0, b],

and Φ : J̃ → R is continuous with ϕ(t) = Φ(t, 0) for each t ∈ R+, and
ψ(x) = Φ(0, x) for each x ∈ [0, b].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. By L1([0, a] × [0, b]), a, b > 0, we
denote the space of Lebesgue-integrable functions u : [0, a]× [0, b] → R with
the norm

‖u‖1 =

a∫

0

b∫

0

|u(t, x)|dx dt.

By BC := BC([−T,∞)×[−ξ, b]) we denote the Banach space of all bounded
and continuous functions from [−T,∞) × [−ξ, b] into R equipped with the
standard norm

‖u‖BC = sup
(t,x)∈[−T,∞)×[−ξ,b]

|u(t, x)|.

For u0 ∈ BC and η ∈ (0,∞), we denote by B(u0, η), the closed ball in BC
centered at u0 with radius η.

Definition 2.1 ([31]). Let r = (r1, r2) ∈ (0,∞)× (0,∞), θ = (0, 0) and
u ∈ L1([0, a] × [0, b]). The left-sided mixed Riemann-Liouville integral of
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order r of u is defined by

(Ir
θu)(t, x) =

1
Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1u(s, τ)ds dτ,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ν) =

∞∫

0

tν−1e−tdt, ν > 0.

In particular,

(Iθ
θ u)(t, x) = u(t, x), (Iσ

θ u)(t, x) =

t∫

0

x∫

0

u(τ, s)ds dτ

for almost all (t, x) ∈ [0, a]× [0, b],

where σ = (1, 1). For instance, Ir
θu exists for all r1, r2 ∈ (0,∞), when

u ∈ L1([0, a]× [0, b]). Note also that when u ∈ C([0, a]× [0, b]), then (Ir
θu) ∈

C([0, a]× [0, b]), moreover

(Ir
θu)(t, 0) = (Ir

θu)(0, x) = 0, t ∈ [0, a], x ∈ [0, b].

Example 2.2. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞) × (0,∞),
then

Ir
θ tλxω =

Γ(1 + λ)Γ(1 + ω)
Γ(1 + λ + r1)Γ(1 + ω + r2)

tλ+r1xω+r2

for almost all (t, x) ∈ [0, a]× [0, b].

By 1− r we mean (1− r1, 1− r2) ∈ (0, 1]× (0, 1]. Denote by D2
tx := ∂2

∂t∂x ,
the mixed second order partial derivative.

Definition 2.3 ([31]). Let r ∈ (0, 1] × (0, 1] and u ∈ L1([0, a] × [0, b]).
The Caputo fractional-order derivative of order r of u is defined by the
expression cDr

θu(t, x) = (I1−r
θ D2

txu)(t, x).

The case σ = (1, 1) is included and we have

(cDσ
θ u)(t, x) = (D2

txu)(t, x) for almost all (t, x) ∈ [0, a]× [0, b].

Example 2.4. Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

cDr
θt

λxω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2

for almost all (t, x) ∈ [0, a]× [0, b].
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Let ∅ 6= Ω ⊂ BC, and let G : Ω → Ω, and consider the solutions of
equation

(Gu)(t, x) = u(t, x). (4)
Inspired by the definition of the attractivity of solutions of integral equa-
tions (for instance [2]), we introduce the following concept of attractivity of
solutions for equation (4).

Definition 2.5. Solutions of equation (4) are locally attractive if there
exists a ball B(u0, η) in the space BC such that, for arbitrary solutions
v = v(t, x) and w = w(t, x) of equations (4) belonging to B(u0, η) ∩ Ω, we
have that, for each x ∈ [0, b],

lim
t→∞

(v(t, x)− w(t, x)) = 0. (5)

When the limit (5) is uniform with respect to B(u0, η) ∩ Ω, solutions of
equation (4) are said to be uniformly locally attractive (or equivalently that
solutions of (4) are locally asymptotically stable).

Definition 2.6 ([2]). The solution v = v(t) of equation (4) is said to
be globally attractive if (5) hold for each solution w = w(t) of (4). If
condition (5) is satisfied uniformly with respect to the set Ω, solutions of
equation (4) are said to be globally asymptotically stable (or uniformly
globally attractive).

Lemma 2.7 ([12], p. 62). Let D ⊂ BC. Then D is relatively compact
in BC if the following conditions hold:

(a) D is uniformly bounded in BC,
(b) The functions belonging to D are almost equicontinuous on R+×[0, b],

i.e. equicontinuous on every compact of R+ × [0, b],
(c) The functions from D are equiconvergent, that is, given ε > 0, x ∈

[0, b] there corresponds T (ε, x) > 0 such that |u(t, x) − lim
t→∞

u(t, x)| < ε for

any t ≥ T (ε, x) and u ∈ D.

3. Main Results

Let us start by defining what we mean by a solution of of the problem
(1)–(3).

Definition 3.1. A function u ∈ BC is said to be a solution of (1)–(3) if
u satisfies equation (1) on J, equation (2) on J̃ and condition (3) is satisfied.

Lemma 3.2 ([1]). Let f ∈ L1([0, a] × [0, b]), a, b > 0. A function u ∈
AC([0, a]× [0, b]) is a solution of problem




(cDr
θu)(t, x) = f(t, x), (t, x) ∈ [0, a]× [0, b],

u(t, 0) = ϕ(t), t ∈ [0, a], u(0, x) = ψ(x), x ∈ [0, b],
ϕ(0) = ψ(0),
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if and only if u(t, x) satisfies

u(t, x) = µ(t, x) + (Ir
θf)(t, x), (t, x) ∈ [0, a]× [0, b],

where
µ(t, x) = ϕ(t) + ψ(x)− ϕ(0).

The following hypotheses will be used in the sequel:

(H1) The functions Φ, p and q are in BC. Moreover, assume that

lim
t→∞

Ir
θp(t, x) = 0, x ∈ [0, b],

(H2) There exist continuous functions di : R+ × [0, b] → R+ such that
(

1 +
m∑

i=1

|ui|
)∣∣f(t, x, u1, u2, . . . , um)

∣∣ ≤
m∑

i=1

|ui|di(t, x)

for (t, x) ∈ R+ × [0, b] and for ui ∈ R, i = 1, . . . ,m.

Moreover, assume that

lim
t→∞

Ir
θdi(t, x) = 0, x ∈ [0, b], i = 1, . . . ,m.

Remark 3.3. Set

Φ∗ := sup
(t,x)∈J̃

Φ(t, x), ϕ∗ := sup
t∈R+

ϕ(t), p∗ := sup
(t,x)∈J

Ir
θp(t, x),

q∗ := sup
(t,x)∈J

q(t, x) and d∗i := sup
(t,x)∈J

Ir
θdi(t, x), i = 1, . . . , m.

¿From hypotheses, we infer that Φ∗, ϕ∗, p∗, q∗ and d∗i , i = 1, . . . ,m are
finite.

Now, we shall prove the following theorem concerning the existence and
the stability of a solution of problem (1)–(3).

Theorem 3.4. Assume that the hypotheses (H1) and (H2) hold, then
the problem (1)–(3) has at least one solution in the space BC. Moreover,
solutions of problem (1)–(3) are globally asymptotically stable.

Proof. Let us define the operator N such that, for any u ∈ BC,

(Nu)(t, x) =





Φ(t, x), (t, x) ∈ J̃ ,

ϕ(t) + Ir
θ

[
p(t, x)−

−q(t, x)f
(
t, x, u(t−τ1, x−ξ1), . . .

. . . , u(t−τm, x−ξm)
)]

, (t, x) ∈ J.

(6)

The operator N maps BC into BC. Indeed the map N(u) is continuous on
[−T,∞)× [−ξ, b] for any u ∈ BC, and for each (t, x) ∈ J we have

∣∣(Nu)(t, x)
∣∣ ≤ |ϕ(t)|+ Ir

θ

∣∣∣p(t, x)− q(t, x)×
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× g
(
t, x, u(t− τ1, x− ξ1), . . . , u(t− τm, x− ξm)

)∣∣∣ ≤

≤ |ϕ(t)|+ 1
Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r1×

×
[
|p(t, x)|+ |q(t, x)|

( m∑

i=1

∣∣u(τ − τi, s− ξi)
∣∣di(τ, s)

)
×

×
(

1 +
m∑

i=1

∣∣u(τ − τi, s− ξi)
∣∣
)−1]

ds dτ ≤

≤ ϕ∗ + p∗ + q∗
m∑

i=1

d∗i ,

and for (t, x) ∈ J̃ , we have
∣∣(Nu)(t, x)

∣∣ =
∣∣Φ(t, x)

∣∣ ≤ Φ∗.

Thus,

∥∥N(u)
∥∥

BC
≤ max

{
Φ∗, ϕ∗ + p∗ + q∗

m∑

i=1

d∗i

}
:= η. (7)

Hence, N(u) ∈ BC. This proves that the operator N maps BC into itself.
By Lemma 3.2, the problem of finding the solutions of the problem

(1)–(3) is reduced to finding the solutions of the operator equation N(u) = u.
Equation (7) implies that N transforms the ball Bη := B(0, η) into itself.
We shall show that N : Bη → Bη satisfies the assumptions of Schauder’s
fixed point theorem [17]. The proof will be given in several steps.

Step 1: N is continuous. Let {un}n∈N be a sequence such that un → u
in Bη. Then, for each (t, x) ∈ [−T,∞)× [−ξ, b], we have

∣∣(Nun)(t, x)−(Nu)(t, x)
∣∣≤ 1

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t−τ)r1−1(x−s)r2−1|q(τ, s)|×

×
∣∣∣f

(
τ, s, un(τ − τ1, s− ξ1), . . . , un(τ − τm, s− ξm)

)−

− f
(
τ, s, u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm)

)∣∣∣ds dτ. (8)

Case 1. If (t, x) ∈ J̃ ∪ ([0, a] × [0, b]), a > 0, then, since un → u as
n →∞ and f is continuous, (8) gives

∥∥N(un)−N(u)
∥∥

BC
→ 0 as n →∞.
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Case 2. If (t, x) ∈ (a,∞)× [0, b], a > 0, then from (H2) and (8), we get
∣∣(Nun)(t, x)− (Nu)(t, x)

∣∣ ≤

≤ 2q∗

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t−τ)r1−1(x−s)r2−1

( m∑

i=1

∣∣u(τ − τi, s− ξi)
∣∣di(τ, s)

)
×

×
(

1 +
m∑

i=1

∣∣ui(τ − τi, s− ξi)
∣∣
)−1

ds dτ ≤

≤
m∑

i=1

2q∗

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1di(τ, s)ds dτ ≤

≤ 2q∗
m∑

i=1

Ir
θdi(t, x).

Then
∣∣(Nun)(t, x)− (Nu)(t, x)

∣∣ ≤ 2q∗
m∑

i=1

Ir
θdi(t, x). (9)

Thus (9) gives
∥∥N(un)−N(u)

∥∥
BC

→ 0 as n →∞.

Step 2: N(Bη) is uniformly bounded. This is clear since N(Bη) ⊂ Bη

and Bη is bounded.

Step 3: N(Bη) is equicontinuous on every compact subset [−T, a]×[−ξ, b]
of [−T, a] × [−ξ,∞), a > 0. Let (t1, x1), (t2, x2) ∈ [0, a] × [0, b], t1 < t2,
x1 < x2 and let u ∈ Bη. Thus we have
∣∣(Nu)(t2, x2)− (Nu)(t1, x1)

∣∣ ≤
∣∣ϕ(t2)− ϕ(t1)

∣∣ +
∣∣p(t2, x2)− p(t1, x1)

∣∣+

+
1

Γ(r1)Γ(r2)

t1∫

0

x1∫

0

[
(t2 − τ)r1−1(x2 − s)r2−1 − (t1 − τ)r1−1(x1 − s)r2−1

]
×

×|q(τ, s)| ·
∣∣∣f

(
τ, s, Ir2

0,su(τ, s), u(τ−τ1, s−ξ1), . . . , u(τ−τm, s−ξm)
)∣∣∣ds dτ+

+
1

Γ(r1)Γ(r2)

t2∫

t1

x2∫

x1

(t2 − τ)r1−1(x2 − s)r2−1|q(τ, s)|×

×
∣∣∣f

(
τ, s, Ir2

0,su(τ, s), u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm)
)∣∣∣ds dτ+
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+
1

Γ(r1)Γ(r2)

t1∫

0

x2∫

x1

(t2 − τ)r1−1(x2 − s)r2−1|q(τ, s)|×

×
∣∣∣f

(
τ, s, Ir2

0,su(τ, s), u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm)
)∣∣∣ds dτ+

+
1

Γ(r1)Γ(r2)

t2∫

t1

x1∫

0

(t2 − τ)r1−1(x2 − s)r2−1|q(τ, s)|×

×
∣∣∣f

(
τ, s, Ir2

0,su(τ, s), u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm)
)∣∣∣ds dτ.

Thus
∣∣(Nu)(t2, x2)− (Nu)(t1, x1)

∣∣ ≤
∣∣ϕ(t2)− ϕ(t1)

∣∣ +
∣∣p(t2, x2)− p(t1, x1)

∣∣+

+
q∗

Γ(r1)Γ(r2)

t1∫

0

x1∫

0

[
(t2 − τ)r1−1(x2 − s)r2−1−(t1 − τ)r1−1(x1 − s)r2−1

]×

×
m∑

i=0

di(τ, s)ds dτ +
q∗

Γ(r1)Γ(r2)

t2∫

t1

x2∫

x1

(t2−τ)r1−1(x2−s)r2−1
m∑

i=0

di(τ, s)ds dτ+

+
q∗

Γ(r1)Γ(r2)

t1∫

0

x2∫

x1

(t2 − τ)r1−1(x2 − s)r2−1
m∑

i=0

di(τ, s)ds dτ+

+
q∗

Γ(r1)Γ(r2)

t2∫

t1

x1∫

0

(t2 − τ)r1−1(x2 − s)r2−1
m∑

i=0

di(τ, s)ds dτ.

From continuity of ϕ, p, di, i = 0, . . . , m and as t1 → t2 and x1 → x2, the
right-hand side of the above inequality tends to zero. The equicontinuity
for the cases t1 < t2 < 0, x1 < x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤ 0 ≤ x2 is
obvious.

Step 4: N(Bη) is equiconvergent. Let (t, x) ∈ R+ × [0, b] and u ∈ Bη,
then we have

∣∣(Nu)(t, x)
∣∣≤|ϕ(t)|+

∣∣∣∣
1

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t−τ)r1−1(x−s)r2−1
[
p(τ, s)−q(τ, s)×

× f(τ, s, u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm))
]
ds dτ

∣∣∣∣ ≤

≤ |ϕ(t)|+ 1
Γ(r1)Γ(r2)

t∫

0

x∫

0

(t−τ)r1−1(x−s)r2−1|p(τ, s)|ds dτ+
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+
q∗

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1
m∑

i=0

di(τ, s)ds dτ ≤

≤ |ϕ(t)|+ Ir
θp(t, x) + q∗

m∑

i=0

Ir
θdi(t, x).

Thus, for each x ∈ [0, b], we get
∣∣(Nu)(t, x)

∣∣ → 0 as t → +∞.

Hence, ∣∣(Nu)(t, x)− (Nu)(+∞, x)
∣∣ → 0 as t → +∞.

As a consequence of Steps 1 to 4 together with the Lemma 2.7, we can
conclude that N : Bη → Bη is continuous and compact. From an application
of Schauder’s theorem [17], we deduce that N has a fixed point u which is
a solution of the problem (1)–(3).

Step 5: The global asymptotic stability of solutions. Now we investi-
gate the global asymptotic stability of solutions of problem (1)–(3). Let
us assume that u and v are solutions of problem (1)–(3). Then for each
(t, x) ∈ J

∣∣u(t, x)− v(t, x)
∣∣ =

∣∣(Nu)(t, x)− (Nv)(t, x)
∣∣ ≤

≤ q∗

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1×

×
∣∣∣f

(
τ, s, u(τ − τ1, s− ξ1), . . . , u(τ − τm, s− ξm)

)−

− f
(
τ, s, v(τ − τ1, s− ξ1), . . . , v(τ − τm, s− ξm)

)∣∣∣ds dτ ≤

≤ 2q∗

Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1
m∑

i=1

di(τ, s)ds dτ ≤

≤ 2q∗
m∑

i=1

Ir
θdi(t, x). (10)

By using (10) and the fact that Ir
θdi(t, x) → 0 as t → ∞, i = 0, . . . , m we

deduce that

lim
t→∞

∣∣u(t, x)− v(t, x)
∣∣ = 0.

Consequently, all solutions of problem (1)–(3) are globally asymptotically
stable. ¤
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4. An Example

As an application and to illustrate our results, we consider the following
system of delay differential equations of fractional order

cDr
θu(t, x) = p(t, x)− q(t, x)f

(
t, x, u

(
t− 1, x− 1

4

)
, u

(
t− 2

3
, x− 1

5

))

for (t, x) ∈ J := [0,∞)× [0, 1], (11)

u(t, x) = e−t for (t, x)∈ J̃ := [−1,∞)×
[
− 1

4
, 1

]
\(0,∞)×(0, 1], (12)

{
u(t, 0) = e−t, t ∈ [0,∞),
u(0, x) = 1, x ∈ [0, 1],

(13)

where r = (r1, r2) = ( 1
4 , 1

2 ), q(t, x) = 1
1+t2+x2 , (t, x) ∈ (0,∞)× [0, 1],

{
p(t, x) = xt

−3
4 sin t, (t, x) ∈ (0,∞)× [0, 1],

p(0, x) = 0, x ∈ [0, 1],

and




f(t, x, u, v) =
xt

−3
4

(|u| sin t+|v|e− 1
t

)

2+|u|+|v| , (t, x)∈(0,∞)×[0, 1] and u, v∈R,

f(0, x, u, v) = 0, x ∈ [0, 1] and u, v ∈ R.

We have for each (t, x) ∈ [0,∞) × [0, 1], Φ(t, x) = e−t and ϕ(t) = e−t → 0
as t →∞, Φ∗ = ϕ∗ = 1, p∗ = 1, then the assumption (H1) is satisfies. Let
us notice that the function f satisfies assumption (H2), where

{
d1(t, x) = xt

−3
4 | sin t|, (t, x) ∈ (0,∞)× [0, 1],

d1(0, x) = 0, x ∈ [0, 1],

and {
d2(t, x) = xt

−3
4 e−

1
t , (t, x) ∈ (0,∞)× [0, 1],

d2(0, x) = 0, x ∈ [0, 1].

Also, for each x ∈ [0, 1], we get

Ir
θp(t, x) =

1
Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1p(τ, s)ds dτ =

=
1

Γ( 1
4 )Γ( 1

2 )

t∫

0

x∫

0

(t− τ)
−3
4 (x− s)

−1
2 sτ

−3
4 | sin τ |ds dτ ≤
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≤ 1
Γ( 1

4 )Γ( 1
2 )

t∫

0

x∫

0

(t− τ)
−3
4 (x− s)

−1
2 sτ

−3
4 ds dτ =

=
Γ( 1

4 )Γ(2)
Γ( 5

4 )Γ( 5
2 )

t
−1
2 x

3
2 → 0 as t →∞,

Ir
θd1(t, x) = Ir

θp(t, x) and

Ir
θd2(t, x) =

1
Γ(r1)Γ(r2)

t∫

0

x∫

0

(t− τ)r1−1(x− s)r2−1d2(τ, s)ds dτ =

=
1

Γ( 1
4 )Γ(1

2 )

t∫

0

x∫

0

(t− τ)
−3
4 (x− s)

−1
2 sτ

−3
4 e−

1
τ ds dτ ≤

≤ 1
Γ( 1

4 )Γ(1
2 )

t∫

0

x∫

0

(t− τ)
−3
4 (x− s)

−1
2 sτ

−3
4 ds dτ =

=
Γ( 1

4 )Γ(2)
Γ( 5

4 )Γ(5
2 )

t
−1
2 x

3
2 → 0 as t →∞.

Thus

lim
t→∞

Ir
θp(t, x) = lim

t→∞
Ir
θdi(t, x) = 0, x ∈ [0, 1], i = 0, 1, 2.

Hence by Theorem 3.4, the problem (11)–(13) has a solution defined on
[−1,∞) × [− 1

4 , 1] and all solutions are globally asymptotically stable on
[−1,∞)× [− 1

4 , 1].
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