
Proceedings of A. Razmadze
Mathematical Institute
Vol. 158 (2012), 83–97

ON BOUNDEDNESS OF THE MULTIFUNCTIONAL
BERGMAN TYPE OPERATORS IN TUBE DOMAINS

OVER SYMMETRIC CONES

R. F. SHAMOYAN AND M. ARSENOVIĆ

Abstract. We introduce and study new multifunctional Bergman
type integral operators in tube domains over symmetric cones. We
obtain a new sufficient condition for the continuity of the Bergman-
type projection in tube domains over symmetric cones using multy-
functional embeddings.

îâäæñéâ. öâéëôâĲñèæŽ áŽ öâïûŽãèæèæŽ ŽýŽèæ éñèðæòñêóùæëêŽ-
èñîæ ĲâîàéŽêæï ðæìæï ëìâîŽðëîâĲæ éæèæïâĲî ŽîââĲöæ ïæéâðîæ-
ñè çëêâĲäâ. éîŽãŽèòñêóùæñîæ øŽîåãæï åâëîâéâĲæï àŽéëõâêâĲæå
áŽáàâêæèæŽ ĲâîàéŽêæï ìîëâóùæâĲæï ñûõãâðëĲæï ŽýŽèæ ïŽçéŽîæïæ
ìæîëĲâĲæ.

1. Introduction and Statements of the Results

Let TΩ = V + iΩ be the tube domain over an irreducible symmetric
cone Ω in the complexification V C of an n-dimensional euclidean space V .
Following the notation of [6] we denote the rank of the cone Ω by r and by
∆ the determinant function on V . Letting V = Rn, we have as an example
of a symmetric cone on Rn the Lorentz cone Λn which is a rank 2 cone
defined for n ≥ 3 by

Λn = {y ∈ Rn : y2
1 − · · · − y2

n > 0, y1 > 0}.
The determinant function in this case is given by the Lorentz form

∆(y) = y2
1 − · · · − y2

n.

Let us introduce some convenient notation regarding multi-indices.
If t = (t1, . . . , tr), then t? = (tr, . . . , t1) and, for a ∈ R, t + a = (t1 +

a, . . . , tn + a). Also, if t, k ∈ Rn, then t < k means tj < kj for all 1 ≤ j ≤ r.
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We are going to use the following multi-index,where d can be determined
from equation below via r,n,mentioned above.

g0 =
(

(j − 1)
d

2

)

1≤j≤r

, where (r − 1)
d

2
=

n

r
− 1.

For 1 ≤ p, q < +∞ and ν ∈ Rr, we denote by Ap,q
ν (TΩ) the mixed-norm

Bergman space consisting of analytic functions f in TΩ such that

‖f‖Lp,q
ν

=
( ∫

Ω

( ∫

V

|F (x + iy)|pd x

)q/p

∆ν(y)
d y

∆(y)n/r

)1/q

< ∞,

where ∆ν is the generalized power function to be defined in the next section.
The space Ap,q

ν (TΩ) is nontrivial if and only if ν > g0, see [5]. When p = q we
write Ap,q

ν (TΩ) = Ap
ν(TΩ); the classical Bergman space Ap(Ω) corresponds

to ν = (n/r, . . . , n/r).
The (weighted) Bergman projection Pν is the orthogonal projection from

the Hilbert space L2
ν(TΩ) onto its closed subspace A2

ν(TΩ) and it is given by
the following integral formula

Pνf(z) = dν

∫

TΩ

Bν(z, w)f(w)dVν(w), (1)

where Bν(z, w) = cν∆−(ν+ n
r )((z−w)/i) is the Bergman reproducing kernel

for A2
ν , see [6]. Here we used notation dVν(w) = ∆ν−n

r (v)dudv, where
w = u + iv ∈ TΩ.

The problem of boundedness of the Bergman projection on tube domains
over symmetric cones has been considered by several authors (see [1], [4], [2],
[3] and references therein) and still remains open. The best known results
have been obtained in [7] in the setting of the light cone. Recently, an
equivalent condition for the boundedness of the Bergman projection in terms
of Hardy-type inequalities and duality was obtained in [3]. We introduce
here the operators Tβ , β = (β1, . . . , βm) which generalize the Bergman
projection and are defined by

Tβ(
−→
f )(−→z ) =

∫

TΩ

(
m∏

j=1

fj(z)
)

∆
1
m

m∑
j=1

βj

(=z)

m∏
j=1

∆
1
m ( n

r +βj)( zj−z
i )

dV (z)
∆

n
r (=z)

,

where
−→
f = (f1, . . . , fn), −→z = (z1, . . . , zn), zj ∈ TΩ and fj ∈ L1

loc(TΩ) for
1 ≤ j ≤ m. Combining classical arguments with integrability properties
of the Bergman kernel and determinant function we obtain the following
sufficient condition for the boundedness of the operator Tβ from the product
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space
m∏

k=1

Lp
mνk+(m−1) n

r
(TΩ) = Lp

mν1+(m−1) n
r
(TΩ)× · · · × Lp

mνm+(m−1) n
r
(TΩ)

to the space Lp((TΩ)m,
m∏

k=1

∆νk−n
r dV (zk)). The idea to consider such mul-

tifunctional operator is motivated by [8]. Some results of this paper are
analogous to results of [8] proven in the case of the unit ball in Cn. We note
here that almost all multifunctional results of this paper are well known in
the case m = 1. For example, the case m = 1 of the following theorem is
contained in [4].

Theorem 1. Let νk ∈ R, k = 1, . . . , m, m > 1, 1 ≤ p < ∞ and
β = (β1, . . . , βn). If the parameters satisfy the following conditions

1
m

m∑

j=1

βj >
n

r
− 1, (2)

1 ≤ p < 1 + m

(
minj νj

n
r − 1

− 1
)

, (3)

min
j

βj >
1
m

m∑

j=1

βj − n

rp
+

m

p

(
2
n

r
− 1 + max

j
νj

)
, (4)

then Tβ is bounded from
m∏

k=1

Lp
mνk+(m−1) n

r
(TΩ) to Lp((TΩ)m,

m∏

k=1

∆νk−n
r dV (zk)).

Among our applications of the above result, we obtain a sufficient condi-
tion for the boundedness of the Bergman projection in terms of the repro-
ducing formula, which is new in this setting. More precisely, we prove the
following theorem.

Theorem 2. Let ν > n
r − 1 and 1 < p < ∞. If for any f ∈ Lp

ν(TΩ) the
following representation formula holds

Pνf(z1)Pνf(z2) = Cβ

∫

TΩ

f(z)Pνf(z)∆β−n
r (=z)

∆
1
2 ( n

r + β
2 )

(
z1−z

i

)
∆

1
2 ( n

r + β
2 )

(
z2−z

i

)dV (z) (5)

for some sufficiently large β and all z1, z2 in TΩ, then the Bergman projec-
tion Pν is bounded on Lp

ν(TΩ).

In this theorem the weights ν and β are taken real, but the result gen-
eralizes directly to the vector weight case. The condition ”β is sufficiently
large” is related to the boundedness conditions for the Bergman kernal and
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determinant function. For example, a necessary condition for the bounded-
ness of the Bergman projection Pβ on Lp

ν(TΩ) is that the related Bergman
kernel belongs to Lp′,q′

ν (TΩ), where 1/p + 1/p′ = 1, 1/q + 1/q′ = 1, and this
can only happen for large values of β for p, q and ν fixed, see [9].

Finally as usual, throughout this paper C or c denote positive constants,
not necessarily the same at different occurences; dependence on parameters
is indicated by subscripts. As usual given two various quantities A and B,
the notation A . B means that there is an absolute constant C such that
A . CB. When both A . B and B . A hold we write A ≈ B.

2. Preliminaries and Auxiliary Results

For reader’s convenience, we collect in this section some definitions and
results that are used in this paper, they are essentially contained in [6].

2.1. Symmetric cones and the generalized determinant function.
Let Ω be an irreducible open cone of rank r in an n-dimensional vector
space V endowed with an inner product (·/·) for which Ω is self-dual. Let
G(Ω) be the group of transformations of Ω and G its identity component.
It is well known that there is a subgroup H of G acting simply transitively
on Ω, i.e. for every y ∈ Ω there is a unique g ∈ H such that y = ge, where
e is a fixed element in Ω.

We recall that Ω induces in V a structure of Euclidean Jordan algebra
with identity e such that

Ω = {x2 : x ∈ V }.
We can identify (since Ω is irreducible) the inner product (·/·) with the one
given by the trace on V :

(x/y) = tr (xy), x, y ∈ V.

Let {c1, . . . , cr} be a fixed Jordan frame in V and

V = ⊕1≤i≤j≤rVi,j

be its associated Pierce decomposition of V . We denote by ∆1(x), . . . , ∆r(x)
the principal minors of x ∈ V with respect to the fixed Jordan frame
{c1, . . . , cr}. More precisely, ∆k(x) is the determinant of the projection
Pkx of x in the Jordan subalgebra V (k) = ⊕1≤i≤j≤kVi,j . We have ∆ = ∆r

and ∆k(x) > 0, 1 ≤ k ≤ r, when x ∈ Ω. The generalized power function on
Ω is defined as

∆s(x) = ∆s1−s2
1 (x)∆s2−s3

2 (x) ·∆sr
r (x), x ∈ Ω, s ∈ Cr.
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Next, we recall the definition of generalized gamma function associated
to Ω:

ΓΩ(s) =
∫

Ω

e−(e/ξ)∆s(ξ)∆−n/r(ξ)dξ, s = (s1, . . . , sr) ∈ Cr.

This integral converges if and only if <sj > (j − 1)n/r−1
r−1 = (j − 1)d

2 for all
1 ≤ j ≤ r. In that case we have a formula:

ΓΩ(s) = (2π)
n−r

2

r∏

j=1

Γ
(

sj − (j − 1)
d

2

)
,

see Chapter VII of [6] for details. We have the following result on the Laplace
transform of the generalized power function (see Proposition VII.1.2 and
Proposition VII.1.6 in [6]).

Lemma 1. Let s = (s1, . . . , sr) ∈ Cn with <sj > (j − 1)d
2 , j = 1, . . . , r.

Then, for all y ∈ Ω we have∫

Ω

e−i(y/ξ)∆s(ξ)∆−n/r(ξ)dξ = ΓΩ(s)∆s(y−1) = ΓΩ(s)[∆∗
s?(y)]−1.

Here, y = he if and only if y−1 = h∗−1e with h ∈ H and ∆∗
j , j = 1, . . . , r are

the principal minors with respect to the rotated Jordan frame {c1, . . . , cr}.
2.2. Bergman spaces and integrability of the Bergman kernel func-
tion. In this section we formulate and prove main results of this note.

Let us recall some estimates for the functions in the Bergman space or
the projections of the functions in Lp,q

ν (TΩ). We begin with a pointwise
estimate of elements in Ap,q

ν (TΩ). The following lemma follows from the
invariance of the Bergman spaces with respect to the transformation group
G(Ω) (see [5]).

Lemma 2. Let 1 ≤ p, q < ∞ and ν ∈ Rr, ν > g0. Then

|f(z)| . ∆− ν
q− n

rp
(=z)‖f‖Ap,q

ν
, z ∈ TΩ. (6)

We also need a pointwise estimate for the Bergman projection of func-
tions in Lp,q(TΩ), defined by integral formula (1), when this projection
makes sense. Let us first recall the following integrability properties for the
determinant function.

Lemma 3. Let α ∈ Cr and y ∈ Ω.
1) The integral

Jα(y) =
∫

Rn

∣∣∣∣∆−α

(
x + iy

i

)∣∣∣∣ dx

converges if and only if <α > g∗0 + n
r . In that case Jα(y) = Cα|∆−α+n/r(y)|.
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2) For any multi-indices s and β and t ∈ Ω the function y 7→ ∆β(y +
t)∆s(y) belongs to L1(Ω, dy

∆n/r(y)
) if and only if <s > g0 and <(s+β) < g∗0 .

In that case we have∫

Ω

∆β(y)∆s(y)
dy

∆n/r(y)
= Cβ,s∆s+β(y).

We refer to Corollary 2.18 and Corollary 2.19 of [5] for the proof of
the above lemma. Let τ denotes the set of all triples (p, q, ν) such that
1 ≤ p, q < ∞, ν > g0 and the function Bν(·, ie) belongs to Lp′,q′

ν (TΩ). We
have the following pointwise estimate.

Lemma 4. Suppose (p, q, ν) ∈ τ . Then

|Pνf(z)| ≤ ∆− ν
q− n

rp
(=z)‖f‖Lp,q

ν
. (7)

Proof. This is an easy consequence of the above lemma and Hölder’s in-
equality. ¤

3. Bergman-type Operators and Multifunctional Embeddings

We denote by ¤ = ∆( 1
i

∂
∂x ) the partial differential operator of order r on

Rn defined by
¤[ei(x|ξ)] = ∆(ξ)ei(x|ξ), x, ξ ∈ Rn. (8)

3.1. Multifunctional Bergman-type operators. Now we investigate bo-

undedness of Tβ from
m∏

k=1

Lp
mνk+(m−1) n

r
(TΩ) to Lp((TΩ)m,

m∏
k=1

∆νk−n
r dV(zk)).

We apply the obtained result to multifunctional embeddings for functions
in the Bergman spaces Ap

ν(TΩ) where ν > n
r − 1 and 1 ≤ p < ∞. We begin

with the following result, which is known in the case m = 1, see [4].

Theorem 3. Let ν = (ν1, . . . , νm) ∈ Rm, m > 1 and 1 ≤ p < ∞,
β = (β1, . . . , βm) ∈ Rm. If the parameters satisfy the following conditions

1
m

m∑

j=1

βj >
n

r
− 1, (9)

1 ≤ p < 1 + m

(
minj νj

n
r − 1

− 1
)

, (10)

and

min
j

βj >
1
m

m∑

j=1

βj − n

rp
+

m

p

(
2
n

r
− 1 + max

j
νj

)
, (11)

then Tβ is bounded from
m∏

k=1

Lp
mνk+(m−1) n

r
(TΩ) to Lp

(
(TΩ)m,

m∏

k=1

∆νk−n
r dV (zk)

)
.
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The idea of proof is taken from [8] where similar arguments can be found
in higher dimensional case.

Proof. Using Hölder inequality we obtain

|Tβ(
−→
f (z1, . . . , zm)|p =

∣∣∣∣∣∣∣∣∣∣∣

∫

TΩ

(
m∏

j=1

fj(z)

)
∆

1
m

m∑
j=1

βj

(=z)

m∏
j=1

∆
1
m ( n

r +βj)( zj−z
i )

dV (z)
∆

n
r (=z)

∣∣∣∣∣∣∣∣∣∣∣

p

≤

≤ I × J,

where

I =
∫

TΩ

(
m∏

j=1

|fj(z)|p
)

∆
1
m

m∑
j=1

βj

(=z)

m∏
j=1

|∆( zj−z
i )|pαj

dV (z)
∆

n
r (=z)

,

Jp′/p =
∫

TΩ

∆
1
m

m∑
j=1

βj

(=z)
m∏

j=1

|∆( zj−z
i )|p′γj

dV (z)
∆

n
r (=z)

,

and
αj + γj =

1
m

(n

r
+ βj

)
. (12)

Let us choose γj such that γj > 1
mp′

(
1
m

m∑
j=1

βj + 2n
r − 1

)
. Then we esti-

mate the integral J using Hölder’s inequality and Lemma 4:

Jp′/p =
∫

TΩ

m∏

j=1

∣∣∣∣∆
(

zj − z

i

)∣∣∣∣
−p′γj

∆
1
m

m∑
j=1

βj−n
r

(=z)dV (z) ≤

≤ C

m∏

j=1

( ∫

TΩ

∣∣∣∣∆
(

zj − z

i

)∣∣∣∣
−mp′γj

∆
1
m

m∑
j=1

βj−n
r

(=z)dV (z)
)1/m

=

= C

m∏

j=1

∆
−p′γj+

1
m2

m∑
j=1

βj+
n

rm

(=zj).

Hence we obtained:

J ≤ C

m∏

j=1

∆
−pγj+

p

m2p′
m∑

j=1
βj+

p
p′

n
rm

(=zj). (13)
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Using the estimate (13) and Lemma 4 we finally obtain
∫

TΩ

· · ·
∫

TΩ

m∏

k=1

|Tβ(
−→
f )(z1, . . . , zm)|p∆νk−n

r (=zk)dV (z1) · · · dV (zm) ≤

≤ C

∫

TΩ




m∏

j=1

|fj(z)|p

 g(z)∆

1
m

m∑
j=1

βj

(=z)
dV (z)

∆
n
r (=z)

where

g(z)=
∫

TΩ

· · ·
∫

TΩ

m∏

k=1

(∣∣∣∣∆
(

zk − z

i

) ∣∣∣∣
−pαk

∆
νk−n

r−pγj+
p

m2p′
k∑

j=1
βj+

np
rmp′

(=zk)
)

dV (z1) · · · dV (zm).

Note that (11) implies pαk > νk−pγk + p
m2p′

m∑
k=1

βk + pn
rmp′ +2n

r −1. Thus, if

we finally choose αj and γj such that (12) holds and, for every j = 1, . . . , m,
we have

1
mp′


 1

m

m∑

j=1

βj + 2
n

r
− 1


 < γj <

< min





1
m

(
n

r
+ βj),

minj νj − n
r + 1

p
+

1
m

m∑
j=1

βj + n
r

mp′





,

then an application of Lemma 4 gives estimate

g(z) ≤ C∆
m∑

k=1
νk+m n

r−p
m∑

k=1
(αk+βk)+ p

mp′
m∑

k=1
βk+ pn

rp′ (=z).

Finally, using Hölder’s inequality we obtain
∫

TΩ

· · ·
∫

TΩ

m∏

k=1

|Tβ(
−→
f )(z1, . . . , zm)|p∆νk−n

r (=zk)dV (z1) · · · dV (zm) ≤

≤ C

∫

TΩ

( m∏

j=1

|fj(z)|p
)

∆
m∑

k=1
νk+(m−1) n

r (=z)
dV (z)

∆
n
r (=z)

≤

≤ C




m∏

j=1

∫

TΩ

|fj(z)|mp∆mνj+(m−1) n
r (=z)

dV (z)
∆

n
r (=z)




1/m

<∞. ¤
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An analogue of the following lemma in the setting of the unit ball in Cn

is contained in [8]. Note also it is easy to see that the case m = 1 is obvious.

Lemma 5. Let νk > n
r − 1, k = 1, . . . ,m and 1 ≤ p < ∞. Then there is

a constant C > 0 such that
∫

TΩ

m∏

k=1

|fk(z)|p∆(m−1) n
r +

m∑
k=1

νk−n
r (=z)dV (z) ≤ C

m∏

k=1

‖fk‖p
Ap

νk

. (14)

Proof. By embedding from [5] we have A
p/m

1
m

m∑
k=1

νk

(TΩ) ↪→Ap

(m−1) n
r +

m∑
k=1

νk

(TΩ).

Thus, to prove the lemma, we only need to check that for fj ∈ Ap
νj

(TΩ),

j = 1, . . . , m, the product f1 · · · fm is in A
p/m

1
m

m∑
k=1

νk

(TΩ) with the appropriate

norm estimate. An application of Hölder’s inequality
∫

TΩ

m∏

k=1

|fk(z)|p∆
1
m

m∑
k=1

νk−n
r (=z)dV (z) ≤

≤
m∏

k=1

( ∫

TΩ

|fk(z)|p∆νk−n
r (=z)dV (z)

)1/m

finishes the proof since the last expression is equal to
m∏

k=1

‖fk‖p/m

Ap
νk

. ¤

A complete analogue of the following multifunctional result in the setting
of the unit ball in Cn can be found in [8].

Theorem 4. Let νk > n
r for 1 ≤ k ≤ m, m > 1. Let 1 ≤ p < ∞ and

suppose that βj are sufficiently large so that for any sequence (zj)m
j=1 in TΩ

the following representation holds for f1, . . . , fm ∈ H(TΩ)

f1(z1) · · · fm(zm) = Cm,β

∫

TΩ

m∏
j=1

fj(z)∆
1
m

m∑
j=1(=z)

m∏
j=1

∆
1
m ( n

r +βj)( zj−z
i )

dV (z)
∆nr(=z)

. (15)

Assuming none of the functions fk is identically zero, the following state-
ments are equivalent.

1) There is a constant C > 0 such that
∫

TΩ

m∏

k=1

|fk(z)|p∆(m−1) n
r +

m∑
k=1

νk

(=z)
dV (z)

∆
n
r (=z)

≤ C < ∞. (16)

2) fk ∈ Ap
νk

(TΩ) for all k = 1, . . . ,m.
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Proof. We have already seen that 2) ⇒ 1) independently of the representa-
tion formula (15). Let us prove implication 1) ⇒ 2) assuming (15). Since
the functions fj are not identically zero, condition

∫

TΩ

· · ·
∫

TΩ

m∏

k=1

(|fk(zk)||p∆νk−n
r (=zk)dV (z1) · · · dV (zm) < ∞

implies fk ∈ Ap
νk

(TΩ) for all k = 1, . . . ,m. Now, using the representation
(15) we obtain

K =
∫

TΩ

· · ·
∫

TΩ

m∏

k=1

(|fk(zk)|p∆νk−n
r (=zk))dV (z1) · · · dV (zm) =

=
∫

TΩ

· · ·
∫

TΩ

|Tβ(
−→
f (z1, . . . , zm)|p

( m∏

k=1

∆νk−n
r (=zk)

)
dV (z1) · · · dV (zm),

where
−→
f = (f1, . . . , fm). The proof of Theorem 5 gives

K ≤ C

∫

TΩ

· · ·
∫

TΩ

m∏

k=1

(|fk(zk)||p∆νk−n
r (=zk)dV (z1) · · · dV (zm) < ∞. ¤

We write (ν, p) ∈ σ if ν ∈ R, 1 ≤ p < ∞, ν > n
r −1 and ∆−(ν+ n

r )( z−ie
i ) ∈

Lp′
ν (TΩ). Let us define, for fk ∈ Lp

νk
, the following operators:

Sβ,k(
−→
f )(−→z ) =

∫

TΩ

fk(z)
∏

j 6=k

Pνj fj(z)∆
1
m

m∑
j=1

βj

(=z)

m∏
j=1

∆
1
m ( n

r +βj)( zj−z
i )

dV (z)
∆

n
r (=z)

, (17)

and

Sβ =
m∑

k=1

Sβ,k. (18)

Theorem 5. Suppose (νk, p) ∈ σ for k = 1, . . . , m. If the parameters sat-
isfy conditions (2), (3), and (4), then the operators Sβk

and Sβ are bounded

from
m∏

j=1

Lp
νj

(TΩ) to Lp((TΩ)m,
m∏

j=1

∆νj−n
r (=zj)dV (zj)).

Proof. Clearly we only need to prove the result for Sβk
for fixed k. An

inspection of the proof of Theorem 5 and Lemma 5 give∫

TΩ

·
∫

TΩ

|Sβ,k(
−→
f (−→z |p∆νj−n

r (=zj)dV (z1) · · · dV (zm) ≤
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≤ C

∫

TΩ

|fk(z)|p
( m∏

j 6=k

|Pνj
fj(z)|p

)
∆

m∑
k=1

νk+(m−1) n
r (=z)

dV (z)
∆

n
r (=z)

≤

≤ C
∏

j 6=k

‖fj‖Lp
νj

∫

TΩ

|fk(z)|p∆νk−n
r (=z)dV (z) ≤ C

∏

j 6=k

‖fj‖Lp
νj

,

and the proof is complete. ¤

As a consequence we have the following result.

Theorem 6. Suppose (νk, p) ∈ σ for k = 1, . . . , m. Suppose also that,
for βj large enough, the following representation

m∏

k=1

Pνk
fk(zk) = Cm,β

∫

TΩ

fk(z)
m∏

j 6=k

Pνj fj(z)∆
1
m

m∑
j=1

βj

(=z)

m∏
j=1

∆
1
m ( n

r +βj)( zj−z
i )

dV (z)
∆

n
r (=z)

(19)

holds for any sequence (zj)m
j=1 in TΩ and any fk ∈ Lp

νk
(TΩ), 1 ≤ k ≤ m.

Then Pνk
fk ∈ Lp

νk
(TΩ), 1 ≤ k ≤ m.

We also have the following corollary which gives a sufficient condition for
boundedness of the Bergman projection.

Corollary 1. Let (ν, p) ∈ σ. If the following representation

Pνf(z1)Pνf(z2) =

= Cβ

∫

TΩ

f(z)Pνf(z)

∆
1
2 ( n

r + β
2 )( z1−z

i )∆
1
2 ( n

r + β
2 )( z2−z

i )
∆β−n

r (=z)dV (z) (20)

holds for all z1, z2 ∈ TΩ and f ∈ Lp
ν(TΩ), where β is large enough, then Pν

is bounded on Lp
ν(TΩ).

Proof. Using Lemma 5 we clearly have
∫

TΩ

|f(z)|p|Pνf(z)|p∆2ν(=z)dV (z) ≤

≤ C‖f ||p
Lp

ν

∫

TΩ

|f(z)|p∆ν−n
r (=z)dV (z) =

= C‖f‖2p
Lp

ν
.
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Now, following the proof of Theorem 7 we obtain

Pνf‖2p
Lp

ν
=

=
∫

TΩ

∫

TΩ

|Pνf(z1)|p|Pνf(z2)|p∆ν−n
r (=z1)∆ν−n

r (=z2)dV (z1)dV (z2) ≤

≤ C

∫

TΩ

|f(z)|p|Pνf(z)|p∆2ν(=z)dV (z) ≤

≤ C‖f‖2p
Lp

ν
. ¤

3.2. Multifunctional inequalities involving Bergman projection or
the box operator. Next we derive multifunctional inequalities involving
the Bergman projection or the box operator. As a preparation, we first
prove the following proposition.

Proposition 1. Let (ν, p) ∈ σ. If Pν is bounded on Lp
ν(TΩ), then Pν is

bounded from Lp
ν(TΩ) to Lkp

kν+(k−2) n
r
(TΩ) for any k ∈ N.

Proof. Suppose Pν is bounded on Lp
ν(TΩ). Then using Lemma 5 we obtain,

for any f ∈ Lp
ν(TΩ):

∫

TΩ

|Pνf(z)|kp∆kν+(k−2) n
r (=z)dV (z) =

=
∫

TΩ

(|Pνf(z)|p∆ν+ n
r (=z))k−1|Pνf(z)|p∆ν−n

r (=z)dV (z) ≤

≤ C‖f‖(k−1)p

Lp
ν

∫

TΩ

|Pνf(z)|p∆ν−n
r (=z)dV (z) ≤

≤ C‖f‖kp
Lp

ν
. ¤

Proposition 2. Let (νk, p) ∈ σ for 1 ≤ k ≤ m. Suppose Pνk
is bounded

on Lp
νk

(TΩ) for all k = 1, . . . , m. Then for any l ∈ N we have

∫

TΩ

m∏

k=1

[|Pνk
|fk(z)|lp∆lνk+l n

r (=z)]
dV (z)

∆2 n
r (=z)

≤ C

m∏

k=1

‖fk‖lp
Lp

νk

.
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Proof. Using the above proposition, Hölder’s inequality and Lemma 5 we
obtain

∫

TΩ

m∏

k=1

[|Pνk
|fk(z)|kp∆lνk+l n

r (=z)]
dV (z)

∆2 n
r (=z)

≤

≤ C

m∏

k=1

‖fk‖(l−1)pLp
νk

∫

TΩ

m∏

k=1

[|Pνk
|fk(z)|p∆νk+ n

r (=z)]
dV (z)

∆2 n
r (=z)

≤

≤ C

m∏

k=1

‖fk‖(l−1)p

Lp
νk

m∏

k=1

( ∫

TΩ

|Pνk
fk(z)|mp∆mνk+(m−2) n

r (=z)dV (z)
)1/m

≤

≤ C

m∏

k=1

‖fk‖lp
Lp

νk

¤

It is well-known that the operator ¤ satisfies the following boundedness
estimate

‖¤f‖Ap
ν+p

≤ C‖f‖Ap
ν
, (21)

see [4]. It follows, using Hölder’s inequality, that for 1 ≤ p < ∞ and q < p
∫

TΩ

|¤f(z)|q|f(z)|p−q∆ν+q−n
r (=z)dV (z) ≤ C‖f‖p

Ap
ν
. (22)

Our goal is to obtain a multifunctional version of the above estimate. To
this end, we introduce the following operator, which we still denote by ¤,
defined for pointwise products of holomorphic functions:

¤(f1 · · · fm) =
m∑

j=1

f1 · · · fj−1(¤fj)fj+1 · · · fm.

We note that the ¤ inside the sum is the usual ¤ as defined at the beginning
of this section. The next theorem generalizes (22), this idea probably for
the first time appeared in [8].

Theorem 7. Let ν > n
r − 1, 1 ≤ q ≤ p < ∞. Then there exists C > 0

such that
∫

TΩ

|¤(f1 · · · fm)|q
m∏

j=1

|fj(z)|p−q∆m(ν+ n
r )+q(=z)

dV (z)
∆2 n

r (=z)
≤

≤ Cmq
m∏

j=1

‖fj‖p
Ap

ν
. (23)
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Proof. Using Minkowski’s inequality, the pointwise estimate for functions
in Ap

ν(TΩ) and the estimate (22) we obtain
∫

TΩ

|¤(f1 · · · fm)|q
m∏

j=1

|fj(z)|p−q∆m(ν+ n
r )+q(=z)

dV (z)
∆2 n

r (=z)
≤

≤ C

( m∑

j=1

( ∫

TΩ

m∏

k 6=j

|fk(z)|q|¤fj(z)|q×

×
m∏

k=1

|fk(z)|p−q∆m(ν+ n
r )+q(=z)

dV (z)
∆2 n

r (=z)

)1/q)q

≤

≤ C

( m∑

j=1

( ∫

TΩ

( m∏

k 6=j

|fk(z)|p∆ν+ n
r (=z)

)
×

×|¤fj(z)|q|fj(z)|p−q∆ν−n
r +q(=z)dV (z)

)1/q)q

≤

≤ C

( m∑

j=1

( m∏

k 6=j

‖fk‖p/q

Ap
ν

)
×

×
( ∫

TΩ

|¤fj(z)|q|fj(z)|p−q∆ν−n
r +q(=z)dV (z)

)1/q)q

≤

≤ Cmq
m∏

k=1

‖fk‖p
Ap

µ
. ¤
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