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ON A VARIABLE EXPONENT MODULAR HARDY-TYPE
INEQUALITY

S. SAMKO

Abstract. We show that a certain modular variable exponent Hardy-
type inequality (of order α = 1) in Rn with precise constant may be
derived from the divergence theorem.

îâäæñéâ. êŽøãâêâĲæŽ, îëé â. û. àŽêöèŽáëĲæï åâëîâéæáŽê öâæú-
èâĲŽ àŽéëõãŽêæèæ æóêŽï n-àŽêäëéæèâĲæŽê ïæãîùâöæ éëáñèŽîñèæ
α = 1 îæàæï ùãèŽáéŽøãâêâĲèæŽêæ ßŽîáæï ðæìæï ñðëèëĲŽ äñïðæ
éñáéæãæå.

1. Introduction

In this short note we make use of the trick suggested in the paper [3] in
the case of constant exponents p, to derive a certain modular Hardy-type
inequality in Rn with variable exponent p(x). Norm Hardy inequalities of
such a type with variable exponents were studied in [2]. For the variable
exponent analysis we refer to the book [1] and references therein.

In [4] it was shown that the modular inequalities with variable exponents
cannot be valid for integral operators with a wide variety of kernels (called
proper kernels in [4]). In particular, the kernels |x−y|α−n are proper, so that
we cannot have the variable modular Hardy inequality with this kernel. In
the theorem below, in the case α = 1 we show that a kind of a substitution
for the variable exponent modular Hardy inequality is possible, see (2.2).
In the case of constant exponent, the usual Hardy inequality immediately
follows from (2.2) by the application of the Holder inequality.
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2. Modular Hardy-Type Inequality

Theorem 2.1. Let p ∈ C1(Rn\{0}) be a function with values in (0,∞).
Then the following modular inequality with precise constant holds

∣∣∣∣
∫

Rn

( |u|
|x|

)p(x) [
(x · ∇p) ln

|u|
|x| + n− p(x)

]
dx

∣∣∣∣ ≤

≤
∫

Rn

p(x)
( |u|
|x|

)p(x)−1

|∇u| dx, (2.1)

where u ∈ C1
0 (Rn). In the case p is homogeneous of degree 0, p = p

(
x
|x|

)
,

this takes the form
∣∣∣∣
∫

Rn

(n− p(x))
( |u|
|x|

)p(x)

dx

∣∣∣∣ ≤
∫

Rn

p(x)
( |u|
|x|

)p(x)−1

|∇u| dx. (2.2)

Proof. In fact, the following identity
∫

Rn

( |u|
|x|

)p(x) [
(x · ∇p) ln

|u|
|x| + n− p(x)

]
dx =

= −
∫

Rn

p(x)|u|p(x)−2u

|x|p(x)
(x · ∇u) dx (2.3)

holds from which (2.1) immediately follows. We make use of the trick from
[3], where the Hardy inequality with constant exponent was derived from
the divergence theorem ∫

Rn

div
−→
f dx = 0

under the appropriate choice of the vector field
−→
f . When

−→
f = a(x)−→g ,

where a(x) is a scalar function, via the formula div(a−→g ) = ∇a ·−→g +adiv−→g
in the case −→g = x we have∫

Rn

x · ∇a dx = −n

∫

Rn

a dx. (2.4)

We choose now a(x) = |u|p(x)

ε+|x|p(x) , ε > 0. Direct calculations yield

∇a =
p(x)|u|p(x)−2u∇u + |u|p(x) ln |u|∇p

ε + |x|p(x)
−

−|u|p(x) p(x)|x|p(x)−2x + |x|p(x) ln |x|∇p

(ε + |x|p(x))2
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so that

x · ∇a =
p(x)|u|p(x)−2u (x · ∇u) + |u|p(x) ln |u|(x · ∇p)

ε + |x|p(x)
−

−|u|p(x) p(x)|x|p(x) + |x|p(x) ln |x|(x · ∇p)
(ε + |x|p(x))2

and (2.4) turns into
∫

Rn

|u|p(x)

ε + |x|p(x)

[
(x · ∇p) ln |u|+ |x|p(x) nε + n− p(x)− ln |x|(x · ∇p)

ε + |x|p(x)

]
dx=

= −
∫

Rn

p(x)|u|p(x)−2u

ε + |x|p(x)
(x · ∇u) dx.

Passing to the limit as ε → 0, we arrive at (2).
In the case p is homogeneous of degree 0, it suffices to note that

(x · ∇p) = 0. ¤

Remark 2.2. In the case of constant p ∈ (1, n), the classical Hardy norm
inequality ∥∥∥∥

u

|x|

∥∥∥∥
p

≤ p

n− p
‖∇u‖p (2.5)

with the best constant p
n−p is immediately derived from (2.2) by the ap-

plication of the Hölder inequality on the right-hand side of (2.2). If we
proceed similarly in the case of variable homogeneous exponents, supposing
that 1 ≤ p(x) ≤ p+ =: supx∈Rn p(x), we obtain
∫

Rn

( |u|
|x|

)p(x)

dx ·
∥∥∥∥∥
( |u|
|x|

)p(x)−1
∥∥∥∥∥

−1

q

≤ kp+

n− p+
‖∇u‖p, k =

1
p−

+
1

p′−
≤ 2,

which does not provide an inequality of form (2.5) with variable exponent.

Remark 2.3. Note that (2.1) contains ln |u|. Thus the admission of
variable exponents (with variable radial part) under the choice of p(x) such
that (x · ∇p(x)) ≥ 0, allows to have the above substitution (2.1) for the
modular Hardy-type inequality with an additional growing factor ln |u| on
the left-hand side.
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