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ON A STAGE OF A NUMERICAL ALGORITHM FOR A
TIMOSHENKO TYPE NONLINEAR EQUATION

G. PAPUKASHVILI, J. PERADZE AND Z. TSIKLAURI

ABSTRACT. An initial boundary value problem for a differential equa-
tion describing the beam oscillation is considered.As a result of appli-
cation of the variational method and a difference scheme, a nonlinear
system of equations is obtained, which is solved by iteration. The con-
vergence conditions and the error estimate of the iteration method are
obtained.
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1. STATEMENT OF THE PROBLEM

Let us consider the initial boundary value problem

Utt(fE, t) + 5ut (.’IJ, t) + YUgzzzat ('T7 t) + QUggxa (m7 t)_
L
- (ﬁ + p/ u?(x,t) dx) Upe (T, 1) —
0

L
—0‘(/ uw(x7t)um(x,t)dx)um(x,t):0, O<z<L, 0<t<T, (1)
0

u(z,0) = u’(z), u(z,0) =u'(z), @)
w(0,t) = u(L,t) =0, Upz(0,t) = ug(L,t) =0,

where «, v, p, o, 3 and § are the given constants, among which the first
four are positive numbers, while u°(z) € WZ(0,L) and u!(z) € L2(0,L)
are given functions such that ug(0) = u1(0) = ug(L) = u1(L) = 0. In the
sequel it is assumed that the inequality |§] < y(F)* is fulfilled when § < 0,
and a(F)? > |B] holds when 8 < 0. It will be assumed that there exists a
solution u(z,t) € W((0,L) x (0,T)) of problem (1), (2).
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Equation (1) obtained by J. Ball [1] using the Timoshenko theory de-
scribes the vibration of the beam. Moreover, in [1], the existence of a global
solution for (1) is shown. The problem of construction of an approximate

solution for this equation is investigated in [2], [3], [4].
Here we consider a numerical solution algorithm for problem (1), (2).

2. ALGORITHM

a. Galerkin method. A solution of the problem (1), (2) will be sought in
the form of a finite sum

Z Ui (t sm , (3)

where the coefficients u,;(t) are defined by the Galerkin method from the
system of ordinary differential equations

uiii(t)+<5+7<ig>4) ")+ |a n<L)+
(5) (o () =

+0§jil<j£r>2unj(t)u/nj(t)>]um-(t)0, i=1,2,...,n, (4)

with the initial conditions

uni(0) = af, wul,;(0)=aj,i=1,2,...,n, (5)
where
2 L
af:z/o uP (z )sin%daj p=0,1, i=1,2,...,n

The convergence of the Galerkin method for equation (1) and an equation
with similar nonlinearity is studied in [6] and [7].

b. Difference scheme. Let us introduce the notation

Yni(t) =l (1), zm(t):%um(t), i=1,2,....n, (6)
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and rewrite system (4), (5) in the new notation as follows
m ° im L
Yni(t) + (54’7 ) L) +L(ﬁ+p2;z2j(t)+
to L
2

Z_j % B)zng t))] ni(8) = 0, (1)

2z (t) = L ym(t), i=1,2,...,n,
(8)
yni(0) = al,  2,:(0) = ZZ a?, i=1,2,...,n.

Problem (7), (8) will be solved using the difference method. On the time
interval [0,7] we introduce a net with step 7 = - and nodes t,, = mr,
m=0,1,..., M.

On the m-th layer, i.e. for ¢ = t,,, the approximate values of y,;(t) and
zni(t) are denoted by y and 27

We use a Crank-Nicolson type scheme

m—1 m—1
Yni — Y 20 Yni + Y
ni ni 5 ni ni
T ( + ( L ) ) 2 *

. 3 . n m\2 m—1\2
iT i L (z5)° + (2 )
+a(L) +L(ﬁ+p2; 5 +
L g (i + o G+ )\ ] o )
+0 — E yn] yn7 nj nj Zni+znz 0
2 &~ L 4 2 ’
Jj=1
a2 imym !
T L 2 ’
m=12.... M, i=12...,n,
with the conditions
ygi:a%, zgi:%a?, 1=1,2,...,n. (10)

c. Iteration method. System (9), (10) will be solved layer-by-layer. Assum-
ing that the solution has already been obtained on the (m — 1)-th layer, to
find it on the m-th layer we use the Jacobi iteration method. For the sake
of simplicity, the error of the final approximation iteration approximation
on the (m — 1)-th layer will be neglected. This means that for fixed m the
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counting will be carried out by the formulas

1 —1
Yni k41 — Yni 5+ im\* Ynik+1 T Yni n
T L 2

. 3 . m 2 m—1\2
1 1 L Zni + Zni
a<7r> N W<ﬂ+p2( ,k+1)2 ( )

+

L (2 ,)? + ()2
2 2

Jj=1

_|_

-1 1
L i (ynz k41 + ynz )( 117. Jk+1 + Z:LT: )
oo —

2 L 4
L En:]j (Y k +l/$‘_1)( Zpi ks *ZZ;'_l))} Zni ket +am ! B

i=1
J#i
m m—1 - m m—1
Znik+l ~ Fni AT Ynik1 T Uni
T L 2 ’
m=1,2,....M, k=01,..., i=1,2,....n

where yi ., and 27, . denote the (k + p) th iteration approximation for

m— 1

ymramd 20t i =1,2,...,n,p=0,1, y:~ L and z, " are the known values,

i1=1,2,...,n, and

_ 1 o _ ' o _
Yni = @iy Zp; = —a;, 1=12,....n
L
: m : m—1 m—1
On expressing y,7; ;41 in (12) through yi™", 277" and 277 ;. 4,

-1

L zm —zm

m _ m—1 ni,k+1 ni

Ynik+1 = ~Yni T 2 i - ) (13)

and substituting (13) into (11), we come to the expression

1 1 L 25 kg1~ Zng  Yni
( Yni  T2— et
T 1T T T

. 4 m m—1
T L z,; — Zni

. 3 . m 2 m—1\2
iT T L (z; + (Zn;
+{a<> . [ﬁﬂ)( PR G

L 2 2

m—1\2
L nj k (an )
Ty Z +
=
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m m—1
L Zpi kg1 — Zng

o7 (208 i1 +2my )+

T

L G2y =2 PN T
j=1
J#i
Hence it follows that for each k the iteration process means the realization
of only one formula (14). On obtaining the final iteration approximation
20l k41, We substitute this value into (13) to find an approximation for y;;,
i=1,2,...,n.
From expression (14) it follows that we have to solve a cubic equation
with respect to 2]} , ., at the (k + 1)-th iteration step for each i.
Applying Cardano’s formula we get

m—1

2
m ZTLZ
Zni,k-i—l = - 3 + Z(_l)p+lai7pa (15)
p=1
k=0,1,..., i=12...,n,
where
1
si (2 r\?|°
= (=1 pZt ey J4 , 1
%0 [( >2+(4+27” (16)
and
e S (B L (s (Y ) () L ()
" Lip+9) i 2 "\T i) 1T 2 L
+lﬂ +i(zm%)2 1( m—1)2+ﬁi(zm—l)2 (17)
9 . nj, g\ p+g - nj ?
Jj=1 T =1
J#i
20z 13 16ym ! 8zm! o L 21
s; = - = -8l =] =
27 in(c +71p)  3L(p+ %) imr) T2

N4 2 N2
—4<5+7<Zz> ) (i) i+a(zg) + 8|+
2 m— - m p_% - m—
+§Zn7, 1<Z(an,k)2+ p_’_g Z(an 1)2>' (18)

j=1 T j=1
J#i

The considered algorithm of solution of problem (1), (2) should be under-
stood as counting by formula (15). Using 27} , and taking (6) and (3) into
consideration, we construct the approximate value of the function u(x,t)
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for t = ¢,,, as the sum
L,k L °

3. ESTIMATE OF THE ITERATION METHOD ERROR

Our aim consists in finding convergence conditions and estimating the
accuracy of the iteration method (15).

n n
Let us estimate the sums Y (y%)? and > (4)??(21%)?, p = 0, 1. For this,
i=1 i=1

we multiply the first equation in (9) by $(ym + y™~ 1), sum the obtained

nt
relation over ¢ = 1,2,...,n and take into consideration the second equality
in (9). We obtain

m\2 m—1\2 1 5 i ! m m—1\2
37 - ((yni)? = (s ))+ZZ +7<L> (Yni +ymi )+

whence we have

n

DUTERES 9l () WE LN SIEHLTES O oIEH0 N

=1 i=1

eay e o ()

i=1 i=1
From this inequality and relations (10) and (5) follow the estimates

= m\2 - ZI o m)2 l : —
D)<t D (7)) GEP<(2) e p=01 (20)

i=1 i=1
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where
L
0= [ 1 @) + ol (@) + B )] da+
P r 0r 2 ’
2 ( [ wwra)
1 = g (05 + (63 +40002)%), 6y = pg, R (%)2

We will need these estimates later.
Note that under the conditions imposed on the coefficients of equation
(1) and functions u°(z) and u!(z) the inequality 6y > 0 holds.
Under the iteration method error we understand the difference between
(19) and the sum
"L T
ur(z) = ; o 2z sin -
which would give an approximate value of the function u(z,t) for ¢t = t,, if
the difference system (9), (10) were solved exactly. So, we mean here the
relation
"L X

W) g (a) = 37 (el — ) sin (21)
i=1
To estimate (21), we represent system (15) as
Zﬁ,kﬂ = ¥i (Zgﬁ,m Z:LnQ,ka ) ZZZ,JC) (22)

and consider the Jacobi matrix

3501‘ "
J=|-2 . (23)
<8zn]—,k>

ij=1

By virtue of (15)-(18) and (22) the diagonal elements of the matrix J are
equal to zero, while for the nondiagonal elements we have

&pz Z’Z}k 2 1 |: 1
— TR NT o fopmety
2 i
Oz 1 9 ; A
- 2 r3y-h
+ (—].)p<87,2’nZ ! + g?"?) (Z + ?) :| (24)
By (16)

3 3
0;1052 = — 032—031:Si i_|_7 2707 (25)
T 37 " b ’ 4 27
Formulas (24) are obtained under the condition that o;, # 0, p = 1,2, for
the fulfilment of which it suffices to assume that |r;| > 0. As will be shown
below, this condition will be observed.
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From (24) and (25) follows

—1
0p; 4 T4
_ m m—1 2 7 2
am g fmikai il T g + 050 +
nj,k

2 P N\
+ g an)kSi Ui71 + 5 + O-i72 ) ? 7& J- (26)

Now to the obvious inequality al 1+ o2p > 2(04,10:2)P, p = 1,2, we apply
the first relation in (25). We have

P
+02’5>2 .
s 3

By virtue of this inequality, from (26) follows

&pi 2
o] < (g1 b et (27)

ozm
Let us estimate |r;| from below. From (17) and (20) we conclude that

nj,k

lrll>u’l+z n]k _,uela
J#Z

where

Let us choose an arbitrary number € from the interval (0,1) and require
that the inequality

= 5
> (1 — i A Ly 29
lr l = ( 6) (/’(‘ +;(zn]7k) + 9 1) ( )
J#i
be fulfilled. For this it suffices to assume that the step 7 is so small that
the inequality u; > 1 91(u + 2(1—¢)) is fulfilled. On replacing in the latter
inequality p; by L(U+Tp) w+2(:2)2L + L 7(a(Z)? + B)], where w = 21/6y

for 6 > 0and w = (6+(F)*)(:£)? for § < 0, we obtain a simpler but more
rigid condition of the fulﬁllment of relation (29).
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Further, (18) and (20) imply

m—1 m—1 2
in(+7p) | 3L(p+2)

o)) () -

2 & 20 _
+ (3 D G+ > 91) 2. (30)

j=1
i

Using (27)-(30), we obtain
Opi 1 ir\? [ 1
25 oo ()3

ozm
1 T, A -
+ 8(1 _ 8) |:7_ f Yni 1| + g |Zm ! ] }|an,k' (31)

nj,k

n
We need the vector norm equal to ||v]| = > |v;| and the corresponding

=1

norm for the matrix || K| = max Sor i |kij|, where v = (v;)P; and K =
i<n

(kij)?—1- By (23), (31) and (20) we get

< 3 2 m )
7] < (ar® + b7 + e7) masx [215 ], (32)

where the following notation is used

1

3 n =
__rL m 6\ o .0 P
a8(1—5)2<L> <Zz> o, b—ap+cg,

=1

1
1 1 1 \ 7/ w 2 /6,
= — L — — ;2 — .
“Te1-e" <2+1—E>L<;Z> a
By virtue of Banach’s construction principle [5], it can be assumed that

the condition [|J|| < ¢ is fulfilled for 0 < ¢ < 1 and 2% = (2] 1 )it1s
k=0,1,..., belongs to the domain

n m 1 m m
{werrs ol < Tl -l (33)

According to (32), for this it suffices that the restriction

-1
1
a4 br? 4 or < q<||z;;jo| Al SN zlffoll) (34)

be fulfilled for the step 7.
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If this restriction is fulfilled, then system (9), (10) has a unique solu-

tion yt, 2 i = 1,2,...,n, in (33), the iteration process (15) converges,
lim 2%, =z, ¢ =1,2,...,n, and the convergence rate is determined by

— 00

the vector inequality

B

q
e — 2l < 2 e = 22

where 27" = (zm)*_,.

Applying this relation to (21), we come to a conclusion that if condition
(34) is fulfilled, then the estimate

| o | < (E) 5 -
L2(0,L) m —q

p=01, m=1,2...,M, k=12,...,
holds for the L?(0, L)-norm of the iteration method error.

dr
dzp
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