Proceedings of A. Razmadze
Mathematical Institute
Vol. 158 (2012), 57-65

ON ANISOTROPIC WEIGHTED SOBOLEV INEQUALITIES

P. JAIN AND S. JAIN

Abstract. Two weighted versions of the known anisotropic Sobolev
inequality are obtained.
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1. INTRODUCTION

Let I; = (a;,b;), —00 < a; < b; <o0,i=1,2,...;,nand Q = I; X I X
-+ x I,. As usual, C§°(€) will denote the space of infinitely differentiable
functions with compact support in 2. The standard Sobolev inequality
asserts that if 1 < p < n then for all u € C§°(Q2), there exists a constant
K > 0 such that

n
lully < K [ Dsullp, (1.1)
i=1
where ¢ is the Sobolev conjugate of p, i.e., % = % - % or g = n"—_’; and the
norms involved are the norms in L?(), i.e., for u € L?(Q)

oty = ( f1r)""

Q

In [3], the space LP(Q) was studied with mixed norm : for P = (p1,pa,. ..,
pn), 1 < p; < oo, the mixed norm space LT () consists of all measurable
functions u defined on §2 for which

lulle = [l ]| < oo (1:2)

where first, LP1-norm is calculated w.r.t. x1, then on the result LP2-norm
of u is calculated w.r.t. x5 and so on. In case p; = p,i = 1,2,...,n, we
Also, by %, we shall mean the vector

shall denote .|, for ||.{[pp,....p)-
(L 1 L)
P17 P2’ pp
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In [2], the anisotropic version of the inequality (1.1) was derived. Pre-
cisely, the following was proved:

Theorem A. For1l < i < mn, let p; > 1 and Z?:li > 1. If% =
% S i - %, then there exists a constant K > 0 such that the anisotropic

Sobolev inequality

lully < K || Diu

i=1

holds for all w € C§°(Q).

In the present paper, as one of the aims, we shall obtain a weighted
version of (1.3). As done for the proof of Theorem A, we shall also use
mixed norm Lebesgue spaces as a tool. Let w be a weight function, i.e., a
function which is measurable, positive and finite a.e. The weighted Lebesgue
space, denoted by LP (Q) is the space of all functions u € Q such that

1/p
mmw=(/mw) coo, 1<p<oo
Q

with usual modifications when p = co.
Next, another anisotropic version of the inequality (1.1) was given, again
by Adams, in [1]. In fact, he proved the following:
Theorem B. Let 1 <n < oo, 1 <p < q and r satisfies
1 -1
R i )
r p q
Then there exists a positive constant K such that for all u € C§ ().

lull- < K~ I Ditallug .0 (1.4)
i=1

where v;(p,q) = (¢,q,---,D;---,q) having p at the it" place.

As another aim of this paper, we shall obtain a weighted version of the
inequality (1.4). In [4, 5], various imbeddings and inequalities have been
obtained in the framework of anisotropic Sobolev spaces.

2. WEIGHTED PERMUTATION INEQUALITY

In this section, we shall prove a weighted permutation inequality which
is required in the subsequent results. Let w be a product type weight on 2,
ie., w(z) = wy(z1)wa(z2) ... wy(x,). Then the weighted mixed norm space
LE(Q) consists of all measurable functions u on Q for which

1/py
coow, P

1 1
ulln = |l ™ ™ <o, 21
2

Pn
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ie.,

lell s = [l on g -+ < o

Pn,Wn

The permutation inequality asserts that if the components of P are ar-
ranged in non-increasing order then the resulting mixed L*-norm (1.2) will
not decrease. This fact was proved in [2] (see also [1]). We prove the
weighted version of the same, i.e., for the inequality (2.1).

Let o be a permutation of {1,2,...,n}. For P = (p1,pa,...,pn), we write
0P = (Po(1),Po(2); - - - > Po(n)) and similarly for u = u(xi,29,...,2,), we
write ou = u(Zy(1), To(2); - - - » To(n)). The weighted permutation inequality
is formulated in the following lemma:

Lemma 2.1. Let w be a product type weight on Q0 and 01,09 be permu-
tations of {1,2,...,n} so that the components of o1 P are in non-decreasing
order while the components of oo P are in non-increasing order. Then for a
function u defined on €2, the following holds:

lo1tlloyPorw < loztllo,posw-

Proof. We shall prove the result for n = 2 since then the assertion would
follow by induction. Now P = (p1,p2). Without loss of generality, we can
assume that p; < ps. Then o1 P = (p1,p2) and oo P = (pa, p1).

Now by taking r = pa/p1, we have by Minkowski’s integral inequality

p2/p1 1/p2
lorllor prore = ( / ( / u(xl,xznmw(ml)dm) w($2)d$2) _
I

I
1/p1
_ H/|u(az1,x2)|p1w(ﬂc1)dx1 <
I8 raw(za)
1/?1
< (/ |u(z1, x2)|Prw(zy) dxl) =
7 raw(zs)
1/r 1/p1
T
I I
p1/P2 1/p1
= (/ </u(m1,m2)|p2w(x2)daz2> w(ml)dx1> =
I I

= ||U2u||02P702w- |
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3. WEIGHTED ANISOTROPIC SOBOLEV INEQUALITY

We say that a weight function w defined on I = (a,b), —co < a < b < 00
belongs to the class D(I), written w € D(I), if w is differentiable and
w’ ()

w(x)

sup < Q.

Remark 3.1. The condition of differentiability on weights seems to be
restrictive but many of the useful weights are so, e.g, power weights, expo-
nential weights etc. Further, the class D(I) is non-trivial since e* € D(I)
and all power weights belong to D(I) whenever a > 0.

The following is the first main result of the paper in which a weighted
version of the inequality (1.3) is obtained.

n
Theorem 3.2. Let1l <i<n,p; >1, Z(l/pl) >1andw = wiws ... wy,

i=1
be a product type weight defined on Q such that for each i, w; € D(I;). If

1_1z":<1) 1
q_ni:l bi n’

then there exists constants C and K such that

1 n
[ullguw < n Z (CllDiu
i=1

piw + Kllu

piw)

holds for all u € C§°(Q).
Proof. Since w; € D(I;), there exists a constant K > 0 such that
Diw;(z;) < Kw;(x;). (3.1)
For 1 <i <n, take s; > 1. We have

|u()

aq
so that using (3.1) we get
sup [u(z)|* wi(z;) < /Di (lu(@)* wi(x:)) da; =
1.

Zq

i

:/Dz(|u(gc)\“)wl(ﬂcz)dgcl—l—/|u(ac)|51Dlwz(:tz)alajz <
I, I

i

§si/|u(m)\s"_lDi\u(xﬂwi(mi)d:Bi+K/|u(x)\siwi(xi)dxi. (3.2)
I; I;
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Following the notation of Adams [1], let us recall that

Ui(a /6) = (6 6a"'a a"'aﬁ)
where a occupies the i*" position. Let C' = 1max s;. By taking Ll norm
<i<n

on both sides of (3.2) w.r.t. other n — 1 components and using Holder’s
inequality we get

loul* lov, (00,1),00 < SZIIIU|S'_1D e + Klu* 1w <
Pyl Ditellpsw + K\Ius” ot wllellp:

1 —1
= CHUIIS; 1wl Pitllpsw + Kllull5 7, o llullpsw =

?;;_11);02,,” (C”Diullpi,w + KHU

= ||U pi,w)7

where o is a permutation of {1,2,...,n} with o(1) =4 and i + % =1. By
the weighted permutation inequality (Lemma 2.1)

|Hu|g7 vi(o0,1),w < ||U|U‘SiHUvi(oo,1),aw <

—1
< ullEi o (C1Ds0l s+ K [l )

Let s =51 + 59+ -+ s, and denote

1=1
so that T = (n T nl Toeees 1) By applying Hélder’s inequality we get
||uHs/(n71),w = [|Jul® Hl/(n—l),w
<
< H |||U|Sl vi(00,1),w =
i=1
< Mllgi o (CllDittllpy o + Ky o) - (3.3)
Choose the number s; so that
(s1=Dpy=(s2=Lpp=---=(sn — 1)p,, = ¢.
Then i
=(s; — )pl = (s; — 1 ! 3.4
q=(si—1)p; = (s )pﬁ1 (3.4)
or
1
Si:1+q(1—>.
Di
Therefore

n
8251+82+--~+8n=n+f1<n_z

i=1

)=(n—1)q

B =
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since by assumption

Then (3.3) and (3.4) give

|mmw_IHM&*<mmumw+KmpM»=
n
= [lull3zr TT (ClIDsullpsw + K el 0) -
=1
Hence
n
lully, < T (ClIDtlp, o + K ullp, )
=1
so that

piw + Kllu

1/n
)

which, by the arithmetic-geometric mean inequality, gives that

1
ullgw < — Z (ClIDsullp, o + Klullp, w)

=1

W%@S(H(QWW

i=1

S

3

and the assertion follows. O

Remark 3.3. Theorem 3.3 extends a result of Adams [2] who proves it for
the non-weighted case.

4. ANOTHER WEIGHTED ANISOTROPIC SOBOLEV INEQUALITY

In [1], Adams proves another type of anisotropic Sobolev inequality as
given by (1.4). Below we prove its weighted version.

Theorem 4.1. Let2 <n < oo, 1 <p<qandw = wiws...w, be a
product type weight defined on Q such that for each i, w; € D(I;). If r >0
satisfies

n 1 n-—1
S = -1
r p q
then there exists constants s and K such that
1 n
Hu”T,w < E Z HD U|v; (p,q) +K||u v, ( p,q))

=1

for allu € C3°(Q).
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Proof. For s > 1 we have

hmwwm=/mmmmmmmF

@

:s/|u(a:)\571|Diu(x)|wi(x¢)dzi+/|u(x)|5Diwi(xi)d:ci

By using (3.1) we get

sup |u(x)[*w;(2;) <

Tq

< s/|u(x)|571|Diu(x)|wi(xi)dxi+/|u(x)\sDiwi(xi)dxi <

Ss/\u(x)|571\Diu(x)|wi(:vi)dxi+K/|u(x)|swi(xi)d:ci. (4.1)
I; I;

Let A > 1 be such that
1 1

1 1
A g

1
-+1--.

q p

By taking L) norm of both sides of (4.1) w.r.t. other (n — 1) variables, we
get

||O'|u‘s|‘ovi(oo,/\),aw < 5‘|U|u|871DiuH0vi(1,>\)70w +I(H0'|u|8”m)i(l,/\),tfwv (4'2)

where o be any permutation of (1,2,...,n) with o(1) = i. By using (4.2)
and an application of Holder’s and weighted permutation inequality (Lemma
2.1), we have

S

HU v; (00,8A),w

= [[fuf®

v (00,A),w

< loful’l

ov;(00,\),cw
< slloful* " Diulgv,(1,0).0w+
+ Kllolul*[lgo,(1,0),00 <
< slloful* Mo, o .o ll0Dittll v, (p.g).owt
+ Kllo|u[*~! lovi (0 p7), 00 10U [0, (p,g) 0w <
< sllulli w1 Ditullos gy + Kl

= [[ulli; 1) 0 (sl Diu

(s=1)p",w

v (p,q),w =

vi(pya)w + K|l (p,q),w)

or

1-1/s
(s=1)p’,w

1/s

lu

(s]|Dju

vi(py)yw T K [|u vi(pyq)yw)

v; (00,8\),w < ||u||
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Denote
1_2”2 1 (n-1mn-1 n—1
T_izlvi(oo,s/\)_ £ WD WD)
so that T = (nsj\l, nsj‘l R, n“‘j‘l). By using Hélder’s inequality, we have
lllhes = [Tu| <
n i=1 ITw
n
S H ||’LL v; (00,8A),w S
i=1
< |5 T (5D, K Ve (a3
H“” (s—1)p' w (s1Dittll v, (pg,0 + Kl pgyw) - (4:3)
i=1

Choose the number s so that Ziﬁ = (s — 1)p’ which on using the definition
of X\ gives

_ (n=D(g+p)

- pn—q —p :

/). Then

Denote r = 222 (= (s — 1

= -+ —1>0.

p q
Finally, the estimate (4.3) reduces to

n 1/n
[ellrw < <H I1Diullv; (p.g)w + Kllullv; p.0), 10)) <

)p
n 1 n-1
r

i=1
< *Z IDitullo; (p,q),0 + Bt (p,0),00)

i=1

:r—t

and we are done. O

Remark 4.2. As mentioned in Remark 3.3, Theorem 4.1 also extends a
result of Adams [1] to the weighted case.

Remark 4.3. In the final step of the proofs of Theorems 3.2 and 4.1, the
arithmetic-geometric mean inequality has been used. In fact, if we consider

1 n 1/a
the more general power means P, = < Z x;’) , then it is known that
n
i=1
P, is increasing in a, which for a = 1 becomes arithmetic mean and for a = 0
n 1/n
becomes geometric mean (H xb> . It is of interest if the monotonicity
i=1

of P, can be used in more generality, e.g., the case when a < 0 is of interest.



ON ANISOTROPIC WEIGHTED SOBOLEV INEQUALITIES 65

ACKNOWLEDGEMENT

The first author acknowledges NBHM for its research grant no. 48/2/2008-
R&D-11/3723. Also the authors acknowledge the careful referee for useful
comments and suggestions.

REFERENCES

1. R. A. Adams, Reduced Sobolev inequalities. Canad. Math. Bull. 31 (1988), No. 2,
159-167.

2. R. A. Adams, Anisotropic Sobolev inequalities. Casopis Pest. Mat. 113 (1988), No.
3, 267-279.

3. A. Benedek and R. Panzone, The space LP, with mixed norm. Duke Math. J. 28
(1961), 301-324.

4. M. Krbec, On anisotropic imbeddings. Comment. Math. Univ. Carolinae 25 (1984),
473-481.

5. J. Rakosnik, Some remarks to anisotropic Sobolev spaces I and I1I, Beitrdge Anal., 13
(1979), 55-68 and 15 (1980), 127-140.

(Received 21.11.2011)

Authors’ addresses:

P. Jain

Department of Mathematics

Deshbandhu College (University of Delhi)
Kalkaji, New Delhi -110019, India
E-mail: pankajkrjain@hotmail.com

S. Jain

Department of Mathematics

Vivekanand College (University of Delhi)
Vivek Vihar, Delhi - 110095, India
E-mail: singhal.sandhya@gmail.com



