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REFINEMENTS OF HOLDER AND MINKOWSKI
INEQUALITIES WITH WEIGHTS

L. HORVATH AND KH. ALI KHAN AND J. PECARIC

ABSTRACT. We establish refinements of the inequality between quasi-
arithmetic means with the help of generalized mixed means. This
leads to generalizations of the Holder’s and Minkowski’s inequalities.
To derive the main results we use refinements of the discrete Jensen’s
inequality for functions of several variables, given in [3].
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let U be a convex subset of a real linear space, and let f : U — R be a
convex function. If z; € U (1 < i < n) and p; > 0 (1 < ¢ < n) such that

n
> p; = 1, then the discrete Jensen’s inequality

i=1
n n
f(Zpixi) <> pif (i), (1)
i=1 i=1
holds.
Let I C R be an interval, let h : I — R be a continuous and strictly
monotone function, let a = (ay,...,a,) € I, and let p = (p1,...,pn) be a

n
nonnegative n-tuple such that > p; = 1. The quasi-arithmetic h-mean of

a with weights p is defined by
(o) = fafai 1 < 0 < i) = has ) = (Y- pintar) ).
i=1
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If p, = % (1 <i<n), then p will be ignored from the previous notations.

First, we extend Beck’s results (see [1]). The following hypothesis is
assumed:

(Ay) Let Ly : Iy = R (t =1,...,m) and N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f:I x---x I, — Iy be a continuous function. Let x(1), ... x(™ ¢ R"
(n > 2) such that x(!) € I} for each t = 1,...,m, and let p = (p1,...,pn)
be a nonnegative n-tuple such that Y7, p; = 1.

The result is a simple consequence of the discrete Jensen’s inequality.

Theorem 1.1. Assume (A1). If N is an increasing function, then the
inequality

F(Li(xDspsn),..., Ly (x™pin)) >
>N~ (fjpwf(x&”, - mﬁ““))), (2)
i=1

holds for all possible x¥) (t = 1,...,m) and p, if and only if the function
H defined on Ly(I1) X -+ X Lyn(In) by

H(ty, ..., ty) =N (f (L7 (t1)s -, Ly (tm))) (3)

is concave. The inequality in (2) is reversed for all possible x*) (t =
1,...,m) and p, if and only if H is convez.

Proof. We replace the convex function f by —H or H, and z; by Lt(xz(-t))
in (1) and then applying the increasing function N~=! we get the required
results. 0

Beck’s original result was the special case of Theorem 1.1, where m = 2
and I = [k1, k2], Iz = [l1,12] and Iny = [n1,n2] (see [2], p. 249).

For simplicity, in the case m = 2 we use the following form of (A;):

(Ag) Let K : Ix - R, L : I, — Rand N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R, and let
f Ik x I, — In be a continuous function. Let a, b € R™ (n > 2) such
that a € I and b € I}, and let p = (p1,...,pn) be a nonnegative n-tuple
such that Y1 p; = 1.

Then (2) has the form

f(Kn(a;p), Ln(b; p)) = Nu(f(a,b);p), (4)
where f(a,b) means (f(a1,b1),..., f(an,bn)).

The following results are important special cases of Theorem 1.1, and
generalize the corresponding results of Beck. The next hypothesis will be
used:

(Ag) Let K : Ix — R, L : I, — Rand N : Iy — R be continuous
and strictly monotone functions whose domains are intervals in R such that
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either I'x+1I;, C Iy and f(z,y) = 2+y ((z,y) € Ix xI1) or Ik, I, C|0, 0],
Ig - Ip C Iy and f(z,y) =2y ((x,y) € Ix x Ir). Assume further that the
functions K, L and N are twice continuously differentiable on the interior
of their domains, respectively. Let a, b € R™ (n > 2) such that a € I}
and b € I}, and let p = (p1,...,pn) be a nonnegative n-tuple such that
Yiopi=1.

The interior of a subset A of R is denoted by A°.

Corollary 1.2. Assume (Asz) with f(z,y) =z +vy ((x,y) € Ix x Ir),
and assume that K', L', N', K", L' and N are all positive. Introducing
E = %f F = LL—//,, G = ]JVV—,I/, (4) holds for all possible a, b and p if and
only if

E(@)+ F(y) <Gz +y), (vy)€li xI}. (5)

Corollary 1.3. Assume (As) with f(x,y) = zy ((x,y) € Ix x Ir).

Suppose the functions A(x) = W"&%’ B(z) = % and

C(z) := % are defined on Iy, I} and I3, respectively. Assume
further that K', L', N', A, B and C are all positive. Then (4) holds for all

possible a, b and p if and only if
A(x) + B(y) < Clzy), (x,y) € [ x I}

To prove these corollaries, similar arguments can be applied as in the
analogous results of Beck. We just sketch the proof of Corollary 1.2.
Proof. By Theorem 1.1, it is enough to prove that the function

H:K(Ix)x L(I.), H(t,s):=N (K "'(t)+L "(s))

is concave. Since H is continuous, and twice continuously differentiable on
the interior K(I3,) x L(I7) of its domain, we have to show that

l)u[’[(t7 S)h% + 2D12H(t, S)hlhg + DQQH(t, S)hg <0

for all (t,s) € K(I3) x L(I3) and (h1,h2) € R% By computing the partial
derivatives of H of order 2 at the points of K(I5) x L(I7), we have that
this condition follows from (5). O

In [4], Mitrinovi¢ and Pec¢ari¢ obtained a new inequality like (4), which
is based on the following refinement of the discrete Jensen’s inequality (see
Pecari¢ and Volenec [6]):

Lemma A. Let f be a real valued convex function defined on a convex
set U from a real linear space. If x1,...,x, € U, and

fk,n = fk,n(xlv s ,:L'n) =

::<Z>_1 3 f<]i(xil+-~~+xik)>, 1<k<n, (6)

1<ii<--<ip<n
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then

"1 |
f (an> =fan S S fin < S fra=) ~fl@). (D)
i i=1

Assume (Ap). We denote by of (1 < i < v) and ¥ (1 < i < v) the

k-tuples of a and b respectively, where v = Z . Following [4], we

introduce the mixed N-K-L means of a and b:

M(N, K, L; k) := No(f(Ki(af), Le(B1)); 1 < i <w), 1<k<n, (8)
and
M(N, K, L;1) = No(f(a, b)),
M(N,K, L;n) := f (K,(a), L,(b)).
The promised theorem from [4] is the next:

Theorem A. Assume (Az2). Let N be an increasing (decreasing) func-
tion, and let

H:K(Ix)x L(IL) =R, H(s,t):=N(f (K '(s),L7'(?)))
be a convex (concave) function. Then
M(N,K,L;k+1) < M(N,K,L;k), k=1,...,n— 1. (9)

If N is increasing (decreasing) but H is concave (convex) then the inequal-
ities in (9) are reversed.

Here we can apply Lemma A to the function H and to the points (K(a;),
L(bi) (1< i < n).

On the analogy of Corollary 1.2 and Corollary 1.3, we have the following
consequences of Theorem A.

Corollary A. Assume (Az) with f(z,y) = z+y ((z,y) € Ix x Ip).
Assume further that K', L', N', K", L" and N" are all positive and E(x)+
F(y) < Gz +vy) (z,y) € I}, x IY), where E := ;{{—,l,, F = LL—/I/, G:= %
Then (9) with reverse inequality is valid.

Corollary B. Assume (A3) with f(z,y) = zy ((z,y) € Ik xIL). Suppose

the functions A(z) := Wm, B(z) = m and C(z) =
N'(x)

NNy e defined on I3, I3 and Iy, respectively. If K', L', M’,
A, B and C are all positive and A(z) + B(y) < C(zy) ((z,y) € Iy x I7),

then (9) with reverse inequality is valid.

The results given in [4] are without weights. But in this paper, we give
results with weights. We improve the results given in [4] by using a new
refinement of the discrete Jensen’s inequality from [3]. First, we give the
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notations introduced in [3]:
Let X be a set, P(X) its power set and |X| denotes the number of elements
in X. Let w > 1 and v > 2 be fixed integers. Define the functions

Spw {1, ul? —{1,...,u}"l, 1<w<u,

Sy {1, ulv —>P({1,...,u}“*1),

and
T,: P({1,...,u}") —>P({1,...,u}”*1)
by
Sv’w(il,...Jv) = (i1,...,iw,l,iw+1,...7iv), 1 <w<w,
v
Sulity i) = | {Suuline.. - i)},
w=1
and

(’il,...,i1,)€I
b, I'=o.

Further, introduce the function

api {1, u}' =N, 1<i<u,

{ U Split, ... i), I # &,
T,(I) :=

via
0wy (i1, ..., 1y) = Number of occurrences of iinthe sequence (i1, ..., %,).
For each I € P({1,...,u}"), let
g = Z ity -5 00), 1< <u.
(31,50ens80 ) ET

It is easy to observe from the construction of the functions S, Sy ., T, and
o,; that they do not depend essentially on u, so we can write for short .S,
for Sy, and so on.

(H;) The following considerations concern a subset I, of {1,...,n}" sat-
isfying

Oé[k,iZL 1§i§n, (10)

where n > 1 and k& > 2 are fixed integers.

Next, we proceed inductively to define the sets I; C {1,...,n} (k—1>
[>1) by

.[171 = Tl(Il), k Z l 2 2.

By (10), I; = {1,...,n} and this implies that ay, ; = 1 for 1 < i < n. From
(10) again, we have ay,; > 1 (k—1>1>1,1<i<n).

For every k > 1> 2 and for any (j1,...,5i—1) € I;_1 let

Hy (1,5 i-1) i=
= {((il,...,il),m S Il X {1,,[} | Sl7m(i1,...,il) = (j17"'7jl—1)}'
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Using these sets we define the functions ¢y, ; : I; — N (k > | > 1) inductively
by
tlk,k(il,n-aik) =1, (il,...,ik) el (11)

tIk,l—l(j17"';jl—1) = Z tIk,l (il,...,il). (12)
((i1,.sir),m)EH (41,5--501-1)

We need another hypothesis:

(Hy) Let U be a convex set in R™, x1,...,x, € U, and let p :=
(p1,...,pn) be a positive n-tuples such that >, p; = 1. Further, let
f:U — R be a convex function.

For any k > 1> 1 set

A=A (I X, .. X P) =

L Pig X
- ¥ (l ) f(s& ) (13)
: : ,

Iy i ]
(ilan-,il)ell s=1 A Z Pig

s=1 Mphis

and associate to each kK — 1 > > 1 the number
1

Apr = Ak (Ig; X1, .o, X3 P) = mx
1
~ b D
x> tIk,z(ih---,iz)(Za - )f = . (14)
(i1,...,01) €D s=1 T sis E ai)m
s=1 ks

The following refinement of the discrete Jensen’s inequality is developed
in [3]:

Theorem B. Assume (Hy) and (Hz). Then

f <Zpixi) SApp SApp—1 < - < Apo < Ay = sz'f(xz‘), (15)

i=1 i=1
where the numbers Ay (k> 1> 1) are defined in (13) and (14). If f isa

concave function then the inequalities in (15) are reversed.
The following result is also given in [3].

Theorem C. Assume (Hy) and (Hz), and suppose |Hy, (j1,...,ji—1)| =
Bi—1 for any (j1,...,5i—1) € _1 (k>1>2). Then
Ay =4, =
!

n l leisxis
= , =L >1>
i > (szs>f l . k>1>1, (16

(i1, nir)€D “s=1 Z Di,
s=1
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and thus

f (ZPT‘XT> <Ak SAp1p—1 < < Agp < Al,lZZprf(Xr)- (17)
r=1 r=1

If f is a concave function then the inequalities in (17) are reversed.

2. GENERALIZATIONS OF BECK’S RESULT

In what follows (A;) and (H;) are assumed. The weighted mixed means
relative to (13) and (14) are defined in the following ways:

Mli,k(Lh .. -,Lm;X(1)7 N 7X("L);p) =
k

::N‘l(z (Z Pi, )x

1 alk )ls

X N(f(Ll(x(l); L; k), ..., Ly (x\™); L; k)>)> (18)

alk aIk

and for k—1>101>1

Mli,l(Lla RN Lm;X(l), cee ax(m);p) =

ilel; s=1 aI’“’“
xN(f(Ll(x(”;I;,lL o L B 0))) (19)

L(X(t);i;l) _Lt_l s=1 , t=1,...,m,
qu Xl: Pig
a=1 Xy s
respectively, and i’ := (i1,...,1).

Now, we get an interpolation of (2) by the direct application of Theorem
B as follows.
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Theorem 2.1. Assume (A1) and (Hy). If N is an increasing (decreasing)
function, then the inequalities

f (Ll(x(l);p; n), ..., L (x™);p; n)) <
< ML(Ly, .o Losx® L x™)p) <

< Mk{,k‘—l(Lla .. 7Lm7X(1)

< MéQ(Ll,...,Lm;x(l),...,x(m);p) <
<Mpy(Ly, ..o, Ly x™®,

-V (LN ) e
=1

ey

hold for all possible x¥ (t = 1,...,m) and p, if and only if the func-
tion H defined in Theorem 1.1 is convex (concave). If N is an increasing
(decreasing) function, then the inequalities in (20) are reversed for all pos-
sible xY) (t =1,...,m) and p, if and only if H is concave (convez).

Proof. Suppose N is increasing and the function H : Ly(I1) X -+ X Ly (1)
— R,

H(ti,....ty) =N (f (L7 (t1), ..., L} (tm)))

is convex. We apply Theorem B to the function H and to the vectors
(Li(z}), ..., Lip(2)), i = 1,...,n. Then the first term in (15) gives

H (Zpi(Ll(x}),...,Lm(gg;ﬁ))> —

_ N(f(Lf(gpiLl(le))“”’L’;l(,zn:piLm(xm))) B

=N (f (Ll(x(l);p;n), . -,Lm(x(m);p;n)» :

The last term in (15) will be

ZpiH<L1(le)7 s 7Lm(mzm)) =
=1

i=1
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A i in (15) has the form

Z <§k: . > iﬁ(Ll(xt),...,Lm(xZ))
s |\ g :

ar
(i1,eeik) €T, \5=1 Tt

(e B

P
(i1, min)el, \s=1 “Trsds

k
5 e L)
L*l s=1 H i ® _
o k Pis
k .
=> (sz) N(f <L1(X(1); Pk L (x; P ;k)))
ke, \s=1 Qi Qg Qg

= Mklj,k(Ll, oy Ly x™M ,x(m);p).

A similar argument shows that for K —1 >1>1 Ay in (15) can be written
as

M%,Z(Lla B .,Lm;X(l), s 7X(m)7p)

The inequality (20) follows from these observations and Theorem B since
N1 is increasing.
The converse is obtained by Theorem 1.1. O

The following applications of Theorem 2.1 are motivated by the examples
given in [3] corresponding to Theorem B.

Example 2.2. Assume (A;). Consider
I o ={(i1,i2) € {1,...,n}? | iia},

where 41 |io means that 41 divides is. Since i|i (i = 1,...,n), therefore (H;)
holds and

ani = [5] +d@), =1,

where [Z2] is the largest positive integer not greater than %, and d(i) means
the number of positive divisors of . Then a corresponding weighted mixed
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mean is

M21,2(L17 e ~7Lm;x(1)a s 7X(m);p) =

(i1,i2)€ly “s=1 [%] +d
xN(f<L (x® Oi), ’L"L(X(m)’ai)»)v (1)
where
2

2
Pis
Z [ n ]+d(ls)

s=1 lis

If N is increasing and the function H defined in Theorem 1.1 is convex,
then Theorem 2.1 gives

f (Ll(x(l);p; n),..., Ln(x"™):p; n)) <
< M21,2(L1, ey Ly xM o xM): p) <

<N <Zn:piN(f(x§1), - ,xg"”))) . (22)
i=1

Example 2.3. Assume (A;7). Let ¢; > 1 (¢ = 1,...,n) be integers, let

k:= 3" ¢;, and also let I, = P,""“" consist of all sequences (i1,...,%) in
i=1
which the number of occurrences of i € {1,...,n}is¢; (i =1,...,n). Then

(H;) is satisfied, and

n
T _ Pcl,»--,ci_hcifl,ci_;_l ..... Cn k!
k-1 — k—1 y QI = | 'Cl; 1*13 )y 1,
L Ci:e n
1=1
Moreover, tr, k—1(i1,...,ik—1) = k for
. . C1l,y..5Ci—1,Ci—1,C; C .
(’L1,...,Zk_1)EPki171 LETOret =1, ..., n.

Then we can write a corresponding mixed mean as follows:

Ml%,k—l(Lla .. '7Lm;x(1)a cee ’X(m);p) =
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where

p > prLe(at)) — B Ly(a")

— =1
Lt(x;c—i)::Lt1 z T , t=1,...,m.

If M is increasing and the function H defined in Theorem 1.1 is convex,
then Theorem 2.1 gives

f (Ll(x(”;p; n), ..., L (x™):p; n)) <

< Ml%,k—l(Lla RS Lm;x(l)7 cee ’X(m); p) <
< N1 N(f(zY (m) 24
< DonN(f( ™)) | (24)
=1

Now, we assume (A1), (Hy) and suppose |Hy, (j1,...,Ji-1)| = Bi—1 for
any (j1,...,Ji—1) € I1—1 (k > 1> 2). Then corresponding to the core term
of Theorem C, we define for k > 1> 1

n l
_ n
Ml%l(Lla"'aLm;X(l)a'"aX(’m);p):N 1(Z|Il| Z <szﬁ>x

ilter; “s=1
N (£ (B ipy ) L ipn) ) ). 25

where

1
> pi, Lo(el)
LixWipp) =Lyt | =0 |, t=1,...,m.

1
2. Pi,
s=1
In this case Theorem C gives another interpolation of (2) as follows:

Theorem 2.4. Assume (A1), (H1) and suppose |Hy, (j1,--.,51-1)| = Bi—1
for any (j1,...,j1—1) € [;_1 (k> 1> 2). If N is an increasing (decreasing)
function, then the inequalities

f (L1(X(1);p;n),---,Lm(x(m);p;n)) <
< ME (Lo Lo x W x0M:p) <

< MZ_y g (Lrye ey Lo x @, x(™)p) <

<. < M2272(L1,...,Lm;X(l),...,X(m);p) <
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§ M1271(L1,...,Lm;X(l),...,X(m);p) =

— N (LN a™))  20)
i=1

hold for all possible x¥ (t = 1,...,m) and p, if and only if the func-
tion H defined in Theorem 1.1 is convex (concave). If N is an increasing
(decreasing) function, then the inequalities in (26) are reversed for all pos-
sible xY) (t =1,...,m) and p, if and only if H is concave (convez).

Proof. The proof is similar to the proof of Theorem 2.1. O

Now, we give some applications of Theorem 2.4 with the help of examples
given in [3].

Example 2.5. Assume (A;). If we set
Lo ={(i1, - ip) €{1,...,n}* iy < - <idg}, 1<k<n,

then o, , =1 (i =1,...,n) i.e. (Hy) is satisfied for k = n. It comes easily
that Ty (I) = Ix—1(k = 2,...,n), |Ix] = (Z) (k=1,...,n), and for each
k=2....n

|Hr, (1, dk—1)|=n—(k=1), (1, Jk—1) € Tp—1.

In this case (25) becomes for n > k > 1

M,?’k(Ll, oy Ly x™M ,x(m);p) =

_N-! S x . X
- ( (z%i) 1§i1<;<ikﬁn <S§1P15> N(f(Ll( ’pIk)""’L’”( ’plk)))) . (27)

If N is increasing and the function H defined in Theorem 1.1 is convex,
then Theorem 2.4 gives

f(Ll(x(l)?p?”)w~~’Lm(X(m);p;n)) <
S Ms,n(Lla7Lm7X(1),,X(m)’p)
S Ms—l,n—l(Ll,'")Lm;X(l),...,X(m);p) SS NN S
< ]\422,2(111,...,Lm;x(l),...7
S Mlz,l(Lla"'vLm;X(l),...’

=N (N, ). )

IN

IN

x(™: p)
x(™);p)

Remark 2.6. If we take p; = -+ = p, = + and m = 2 in (27) then we get
(8). Hence the interpolation given in (28) is a generalization of (9).
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Example 2.7. Assume (A;). If we set
Lo = {(i1,...,ip) € {1,...,n}F | iy < - <ip}, k>1,

then ay,; > 1 (i = 1,...,n) and thus (H;) is satisfied. It is easy to see
that Ty (Iy) = Li—1 (k = 2,...), || = ("*F7") (k = 1,...), and for each
1=2 ..k

[Hy, (1,5 i-)l =m0 (G- di-1) € lioa
Under these settings (25) becomes

M2, (L, Ly x®, L xMip) =
N -
=N —-+ Z sz's X
(n-H]j—l) 1<ip <--<ip<n “s=1

xN(f(mx“%p,k),...,Lm<x<m>;p1k>))>. (29)

If N is increasing and the function H defined in Theorem 1.1 is convex,
then Theorem 2.4 gives

SMIS,k(Lla7L’m7x(1)7ax(m),p) <
<. = M/?,I(Lla"'a[/m;x(l) X )7p =

- N—l(gpimf(xg”, . ,g;gm)))). (30)

Example 2.8. Assume (A;). Let
Lo:={1,....,n}*, k>1.

Then ay,; > 1 (i = 1,...,n), hence (Hy) holds and Ty (I) = I—1 (k =
2,...), [yl =n* (k=1,...),alsofor [ =2,....k

(m

~

yr

|Hp, (j1s- - gi-) =n'y (G- 5i-1) € L
Therefore under these settings, for k > 1, (25) leads to

MZ (L1, Loy xW, x®:p) =

K

1
— N1 3 ,
- (knk—l ( 1p13>><

(i1,000sip )€l 8=

xN(f(L1<x<1>;pIk>,...,Lm<x<m>;plk>))). (31)



46 L. HORVATH AND KH. ALI KHAN AND J. PECARIC

If N is increasing and the function H defined in Theorem 1.1 is convex,
then for £ > 1 Theorem 2.4 gives

f (Ll(x(l);p; n), .., L (x"™;p; n)) <
S e S Mlg,k;(Lla'aL’m;X(l)v"'aX(m);p) S
<0< M1271(L1,,,,,Lm;x(l),,,,,x(m);p) =

N (VUG ™). 3

Example 2.9. Assume (A7). Let 1 < k < n and let I consist of all
sequences (i1, ...,1) of k distinct numbers from {1,...,n}. Then ay, ; > 1
(i =1,...,n), and (H;) is satisfied. It is immediate that Ty (Iy) = Ip—_1
k=2,...), [ Ig]l =nn—-1)...(n—k+1) (k=1,...,n), and for every
k=2,....n

|Hp, (1, - k=) = (n=k+ Dk, (1, Jk—1) € Tp—1.
Therefore under these settings, for k = 1,...,n, (25) gives
M,ik(Ll, Ly xM 7X(m);p) =

:N1<kn<n—1>?n—k+1> 2 (ip>

(i1,ik) €l 8=

X N(f <L1(x(1);p1k), . .,Lm(x(m);pjk))>). (33)

If N is increasing and the function H defined in Theorem 1.1 is convex,
then Theorem 2.4 gives

f (Ll(x(l);p; n),..., L (x"™);p; n)) <
< M2, (Li,..o, Lsx®, o x(Mip) <
<o < MEL(Ly, . Ly x
S M1271(L17~

oL x™M ,x(m);p) =
=N (Z piN(f(a, .. ,x§m>>>> - (34)
=1

3. GENERALIZATIONS OF THE CONSEQUENCES OF BECK’S RESULT

Assume (As) and (Hy). Then, for m = 2, the reverse of (20) can be
written as

f (Kn(a;p), Ln(b’p)) > Ml%,k(K’L; aab;p) > Ml%,k—l(Kv L; a, b;p) >
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> .- > M ,(K,L;a, b;p) >

> M Lia,bip) =N (S pN((ab) ). (35)
=1

Analogous to the results of Corollary A and Corollary B (see [4] and also
[5], p- 195), we have immediately from Theorem 2.1 and Corollaries 1.2, 1.3
that

Corollary 3.1. Assume (As3) with f(z,y) =z +y ((z,y) € Ix x Ip),
assume (Hy), and assume that K', L', N', K", L" and N" are all positive.

Introducing E := %7 F = LL—,/,, G = ]JVV—,/,, (35) holds for all possible a, b

and p if and only if
E(x)+ F(y) <Gz +y), (v,y)€lxxIp.

In this case

M; (K, L;a,b;p) =

:N‘l(z (f: Lie )N(K(a;;;k)—i-L(b;p;k))), (36)

(0%
ikely Tk Tk

and fork—1>1>1
MkJ(KaL;aab;p) =

:N_l((k—i)...l Zt’“(il)(i: ™ )X

a7
iler, s=1 Iy ,is

x N<K(a; Poyrm 2. z>>), (37)

ar, ar
respectively, where i' := (i1, ...,1).

Corollary 3.2. Assume (A3) with f(x,y) = zy ((z,y) € Ix x I1)
and assume (Hy). Suppose the functions A(x) = W%, B(x) =
L' (z N'(z o o °
m and C(z) = WSU\)’”(&?) are defined on I3, I3 and IR, re-

spectively. Assume further that K', L', M', A, B and C are all positive.
Then (35) holds for all possible a, b and p if and only if

A(z) + B(y) < C(zy), (x,y) € I x I7.
In this case

M, (K, L;a, b;p) =

- N‘1< 3 (22 pis)N(K(a; L) L(b: p;k))), (38)

— Xy i Iy, oy,
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and fork—1>1>1

Mk,l(KvL;aab;p) =

-

S ) (3 )

llejl s=1 Xy
P . P
X N(K(aa ay, 7l)L(ba oy, aD))’ (39)

respectively, where i' == (i1, ... ;).

We also give some special cases of the Corollaries 3.1 and 3.2 as illustra-
tions.

Remark 3.3. Under the settings of Example 2.2, if f(z1,22) = 1 + 22,
then (36) becomes
M; (K, L;a,b;p) =
2

:N—l( 3 (ZPZ‘S.JN(K(-&;;HL@; p))). (40)

(i1yin)€ls “s=1 [Zﬂ} + d(is I ar,

Under the conditions of Corollary 3.1

Kn(a;p) + Ln(a;p) >M; (K, L;a,bip) > N~ <Zpl (a; + b; ) (41)

Similarly, if f(x1,22) = 2122, then from (38) we have

M; (K, L;a,b;p) =
:N—1< S (i%)N(K(a;i)L(b;i))). (42)

(i1,i2)€ls “s=1 {ﬂ + d(is

Under the conditions of Corollary 3.2

K, (a;p)Ln(a;p) >M; (K, L;a,b;p) > N~ <Zpt aib; ) (43)

Remark 3.4. Under the settings of Example 2.3, if f(x1,22) = 21 + @2
then (37) becomes

M} (K, L;a,b;p) =

1(

3

>
I
—

<
Il
—
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Under the conditions of Corollary 3.1
K, (a;p)+L,(a;p)>M; . (K,L;a,b;p) > N~ (sz (ai + b)) ) (45)

Similarly if f(x1,z2) = x122 then from (39) we have
Mli,k (K, L;a,b; p)
e (,; - pON (K )0 2) )

Under the conditions of Corollary 3.2
Kn(a;p) Ly (a;p)>M, 1 (K, L;a,b;p) > N (Zpl aib;) ) (47)

Next, assume (As), (Hy) and suppose |Hy, (41, .-, Ji—1)| = Bi—1 for any
(J1y--+ydi—1) € [1_1 (k> 1> 2). For m = 2, the reverse of (26) becomes

f(Kn(a;p), L, (b;p)) > M} (K, L;a,bip) > M, (K, L;a,b;p) >
> .- > M3 ,(K, L;a,b;p) > M7 (K, L;a, bip) =

(sz (s, bs ) (48)

v (S <;pis>N(f(K(a; b, Libipn) ) (49)

iterl;

for k>1>1.

Now using Theorem 2.4 (for m = 2) and Corollaries 1.2, 1.3, we get gener-
alizations of Beck’s results in [1] (see also Mitrinovié¢ and Pecari¢ in [4] (see
also [5], page 195).

Corollary 3.5. Assume (As) with f(z,y) = x+y ((x,y) € Ix x I),

assume (Hy), and suppose |Hry, (41, ..., j51—1)| = Bi—1 for any (§1,...,ji—1) €
I, (k>1>2). Assume further that K', L', N', K", L" and N" are all
positive. Introducing E := K,,, F = L,'/, G = J]VV—,I,, (48) holds for all
possible a, b and p if and only if

E@)+F(y) < Gz +y), (v.y) € I x I}
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In this case for k>1>1

M?(K,L;a, b;p) =

n

= N—l(”nh| > (gpib,)N (K(a;py,) +L(b;pzl)))7 (50)

iterl
where it == (i1,...,4;).

Corollary 3.6. Assume (As) with f(z,y) = xy ((z,y) € Ik xIL), assume
(Hl)} and suppose |HII(j1a cee 7jl—l)| = ﬁl—l fO’f' any (jla e ajl—l) S Il—l

(k > 1 > 2). Suppose the functions A(x) = Wm, B(z) =
L'(z N'(z o o o
m and C(z) = Wif\)f”(m) are defined on I3, I3 and IR, re-

spectively. Assume further that K', L', M', A, B and C are all positive.
Then (48) holds for all possible a, b and p if and only if

A(z) + B(y) < C(ay), (x,y) € I x I7.
In this case for k>1>1
M?)(K,L;a, b;p) =
n l
_ n
=N 1(”L| > (ZPiS>N(K(a;p1l)+L(b;pu))), (51)
ilEIl s=1
where it == (i1,...,4;).

The special cases correspond to Examples 2.5, 2.7, 2.8 and 2.9 are as
follows:

Remark 3.7. Under the settings of Example 2.5, for n > k > 1, (50)
becomes

NkZ:,k(K7L;a7b;p) =

n=l < <<ip<n Ns=1

— =

=N} (1> > (ipu)N(K(a;pfk)+L(b;p1k)) - (52)

Under the conditions of Corollary 3.5

Kn(a;p) + L, (b;p) >M (K, Lya, bip) > M, (K, L;a,b;p) >
> > M3,(K,L;a,b;p) > M7, (K, L;a, b;p) =

=N1 (iPzN(Gﬁ‘bZ)) . (53)
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Similarly if f(z1,22) = 2129 then for n > k > 1, (51) cen be written as

Mk%,k(K7 L;aa b7 p) =

k
LA Fe= T DI O S R (R (o) BCHY

(Z:% ) 1<ip<-<ip<n “s=1

Under the conditions of Corollary 3.6

Kn(a;p)L, (bip) =M} (K, L;a, bip) > MZ_, (K, L;a, b;p) >
> ..o > M3 ,(K,L;a,bip) > M;,(K,L;a,bip) =

=Nt (ipiN(aibi)). (55)

Remark 3.8. Under the settings of Example 2.7, for k > 1, (50) becomes

Ml?,k(K7 L;a7 b; P) =

k
— N1 (n+11) > ( pia.)N(K(a;p[k)JrL(b;sz)) , (56)
1

k 1<i1 < <ip<n \s=

Under the conditions of Corollary 3.5

Kn(a;p) + L, (b;p) >M (K, Lya, bip) > M{_, ;. (K, L;a,b;p) >
> > M3,(K,L;a,b;p) > M7, (K, L;a, b;p) =

=N"1 (gpi]\f(ai—kbi)). (57)

Similarly if f(z1,22) = 2122 then for k£ > 1, (51) can be written as

Mkz‘,,k(K7 L;aa bv p) =
k
_ 1
=N 1((n+k—1) Z (Zpis> N (K (a; pIk)L(b;pIk))), (58)
ko) 1<ii <o <ip<n \s=1
Under the conditions of Corollary 3.6
Kn(a;p)Ln(b;p) > M, (K, L;a,b;p) >

> > M, (K,L;a,b;p) = N~! (Z piN(aibi)> . (59)
i=1
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Remark 3.9. Under the settings of Example 2.8, for k£ > 1, (50) becomes

Mkz‘,,k(K7 L;aa b7 p) =

Nl<lm,1€_1 > (Zp“> aplk)+L(b;plk)))~ (60)

(i15eeesi )€l

Under the conditions of Corollary 3.5
Kn(a;p) + Lo(b;p) > -+ > M (K, Lya,b;p) >

> M3, (K, L;a,b;p) = (Z az+b>. (61)

Similarly if f(x1,z2) = x122 then for k > 1, (51) can be written as

M} (K, L;a, b; p) =
_ 1
=N"! (k'nk_l Z (Zp“) K(a; plk)L(b;plk))). (62)
(i1,.sip)EL, 5=
Under the conditions of Corollary 3.6 gives
Kn(a;p)Ln(b;p) > --- > M? (K, L;a,b;p) >

> M7, (K,L;a,b;p) = N~! (;piN(aibi)> . (63)

Remark 3.10. Under the settings of Example 2.9, if f(xz1,22) = x1 + @2
then for 1 < k < n, (50) becomes

M} (K, L;a, b; p) =

k
:N—1<Im(n—1)...(n—k+1) Z (Zpis>><

(i1,vip) €l \8=1

X N(K(a;plk) + L(b;plk)>). (64)
Under the conditions of Corollary 3.5
Kn(a;p) +Ln(b7p) > M2 (KvL;a bp) Z 2 Mlgk(K L.a bvp) >

n,n

> > M7, (K,L;a,b;p) = (Zpl (a; +b;) ) (65)
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Similarly if f(z1,22) = 2122 then for 1 < k <n, (51) can be written as

Ml?,k(K7 L;a7 b; P) =

:N_l(kn(nl)..n.(nk+1)_ 2. (Szk;pié%

Under the conditions of Corollary 3.6
Ky (a;p) Lo (b;p) > M,

n,n

(K7L7a7bap) Z 2 Ml?,k(K7L7aab7p) 2

> > M1271(K, L;a,b;p) = N~* (ZpiN(aibi)). (67)
i=1

4. GENERALIZATION OF MINKOWSKI’S INEQUALITY

(A4) Let I be an interval in R, and let M : I — R be a continuous and
strictly monotone function. Let x; € I"™ (i =1,...,n), let p = (p1,...,Dn)

n
be a positive n-tuple such that > p; = 1, and let w = (wy,...,w,,) be a
7zn:1
nonnegative m-tuple such that > w; = 1.
i=1
We give a generalization of the Minkowski’s inequality by using Theo-
rem B.

Theorem 4.1. Assume (A4) and (Hy), and assume that the quasi-
arithmetic mean function

X = Mp(x;w), xelI™

is convex. Then

n
Mm(Zpr"h“’) < Ak,k < Ak,k—l <<
r=1

S Ak,Q § Ak,l = ZprMm(Xr;w)v (68)

r=1
where
L
k i Z 70”2315 Xi,
Awe= D (X M | W |, (69)
(i1,it) €l \s=1 " Troits Pig
s=1 Hois

and
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1
Ap = ———
T .

l
Pis
: Di SZ:I Hesis
<Y i i) [ Y P M [ S —w | (70)
(31,--581) €D s=1 " Teote ZL
s:lalk’is

fork—1>1>1.

Proof. This is obtained by applying Theorem B to the function M,,(-; w)
and to the vectors x; (¢ =1,...,n). It is enough to show that Ay ; in (15)
has the form (69) and (70) depending on [, but this is easy to check. O

Similarly, by using Theorem C we get

Theorem 4.2. Assume (A4), (H1), and suppose |Hy, (ji,...,Ji-1)] =
Bi—1 for any (j1,...,51-1) € 1 (k>1>2). Then

Mm(Zprxr;W> S Ak,k S
r=1

<Ap 1 p1 < <A< A = ZprMm(XT;W)v (71)
r=1
where
l
. ! > PiXi,
Ay = T > <Zpis>Mm S——iw |, k>1>1 (72)
(

i1,..,01)€L \s=1 > pi,
s=1

The following special case a necessary and sufficient condition for the
quasi-arithmetic mean function to be convex is given in ([5], p. 197):

Theorem D. If M : [mi,ms] — R has continuous derivatives of sec-
ond order and it is strictly increasing and strictly convex, then the quasi-
arithmetic mean function My, (-;w) is convex if and only if M'/M" is a
concave function.

(As) Let M :]0,00[—]0, oo[ be a continuous and strictly monotone func-

tion such that lin%) M(x) =occor lim M(x) =occ. Let x = (z1,...,Z,) and
T— Tr— 00
w = (w1, ..., W) be positive m-tuples such that w; > 1 (i =1,...,m). Let
n

p = (p1,...,pn) be a positive n-tuple such that > p; = 1.

i=1
Then we define

Mm(x;w) =M1 (Z wlM(xZ)> . (73)
i=1
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The following result is also given in ([5], p. 197):

Theorem E. If M :]0,00[—]0, 0] has continuous derivatives of second

order and it is strictly increasing and strictly convex, then My, (-;w) is a
convex function if M/M' is a convex function.
By using (73) we have

Theorem 4.3. Assume (As) and (Hy). If the function
x — Mu(x;w), x €10, co[™

is convex, then Theorem 4.1 and Theorem 4.2 (in this case we suppose
| Hi, (j1s - i-1)| = Biea for any (1., ji-1) € Lioa (B > 1 > 2)) re-

main valid for My, (x; w) instead of M, (x;w).

Remark 4.4. All special cases (as given in Section 2) can be considered
for Theorem 4.1, Theorem 4.2 and Theorem 4.3.
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